NB4N527S [ONSEMI]

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination; 3.3V , 2.5Gb / s的双AnyLevel⑩到LVDS接收器/驱动器/缓冲器/转换器具有内部输入终端
NB4N527S
型号: NB4N527S
厂家: ONSEMI    ONSEMI
描述:

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
3.3V , 2.5Gb / s的双AnyLevel⑩到LVDS接收器/驱动器/缓冲器/转换器具有内部输入终端

驱动器 转换器
文件: 总10页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB4N527S  
3.3V, 2.5Gb/s Dual  
AnyLevelto LVDS  
Receiver/Driver/Buffer/  
Translator with Internal  
Input Termination  
http://onsemi.com  
MARKING  
NB4N527S is a clock or data Receiver/Driver/Buffer/Translator  
TM  
capable of translating AnyLevel  
input signal (LVPECL, CML,  
DIAGRAM*  
HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the  
distance, noise immunity of the system design, and transmission line  
media, this device will receive, drive or translate data or clock signals  
up to 2.5 Gb/s or 1.5 GHz, respectively.  
16  
1
NB4N  
527S  
ALYW G  
G
1
The NB4N527S has a wide input common mode range of  
QFN−16  
MN SUFFIX  
CASE 485G  
GND + 50 mV to V − 50 mV combined with two 50 W internal  
CC  
termination resistors is ideal for translating differential or  
single−ended data or clock signals to 350 mV typical LVDS output  
levels without use of any additional external components (Figure 6).  
The device is offered in a small 3 mm x 3 mm QFN−16 package.  
NB4N527S is targeted for data, wireless and telecom applications as  
well as high speed logic interface where jitter and package size are  
main requirements. Application notes, models, and support  
documentation are available on www.onsemi.com.  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
Maximum Input Clock Frequency up to 1.5 GHz  
Maximum Input Data Rate up to 2.5 Gb/s (Figure 5)  
470 ps Maximum Propagation Delay\  
1 ps Maximum RMS Jitter  
*For additional marking information, refer to  
Application Note AND8002/D.  
140 ps Maximum Rise/Fall Times  
50 W*  
Single Power Supply; V = 3.3 V $10%  
CC  
VTD0  
Temperature Compensated TIA/EIA−644 Compliant LVDS Outputs  
Internal 50 W Termination Resistor per Input Pin  
D0  
D0  
Q0  
Q0  
GND + 50 mV to V − 50 mV V  
Range  
CC  
CMR  
50 W*  
50 W*  
VTD0  
Pb−Free Packages are Available  
VTD1  
D1  
D1  
Q1  
Q1  
50 W*  
VTD1  
Device DDJ = 10 ps  
Figure 1. Functional Block Diagram  
*R  
TIN  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
TIME (58 ps/div)  
Figure 2. Typical Output Waveform at 2.488 Gb/s with  
PRBS 223−1 (VINPP = 400 mV; Input Signal DDJ = 14 ps)  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
June, 2006 − Rev. 3  
NB4N527S/D  
NB4N527S  
Exposed Pad (EP)  
VTD0 D0  
16 15  
D0 VTD0  
14 13  
V
V
1
2
3
4
12  
11  
10  
9
Q0  
TD1  
D1  
D1  
Q0  
Q1  
Q1  
NB4N527S  
TD1  
5
GND NC NC  
Figure 3. Pin Configuration (Top View)  
6
7
8
V
CC  
Table 1. PIN DESCRIPTION  
Pin  
1
Name  
VTD1  
D1  
I/O  
Description  
Internal 50 W termination pin for D1. (R  
)
TIN  
2
LVPECL, CML, LVDS,  
LVCMOS, LVTTL, HSTL  
Noninverted differential clock/data D1 input (Note 1).  
3
D1  
LVPECL, CML, LVDS,  
LVCMOS, LVTTL, HSTL  
Inverted differential clock/data D1 input (Note 1).  
4
5
VTD1  
GND  
NC  
Internal 50 W termination pin for D1. (R  
)
TIN  
0 V. Ground.  
6, 7  
8
No connect.  
V
Positive Supply Voltage.  
CC  
9
Q1  
Q1  
Q0  
Q0  
LVDS Output  
LVDS Output  
LVDS Output  
LVDS Output  
Inverted D1 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
10  
11  
12  
Noninverted D1 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
Inverted D0 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
Noninverted D0 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
13  
14  
VTD0  
D0  
Internal 50 W termination pin for D0.  
LVPECL, CML, LVDS,  
LVCMOS, LVTTL, HSTL  
Noninverted differential clock/data D0 input (Note 1).  
15  
D0  
LVPECL, CML, LVDS,  
LVCMOS, LVTTL, HSTL  
Inverted differential clock/data D0 input (Note 1).  
16  
VTD0  
Internal 50 W termination pin for D0.  
EP  
Exposed pad. EP on the package bottom is thermally connected to the die  
improved heat transfer out of package. The pad is not electrically connected  
to the die, but is recommended to be soldered to GND on the PCB.  
1. In the differential configuration when the input termination pins(VTD0/VTD0, VTD1/ VTD1) are connected to a common termination voltage  
or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self−oscillation.  
http://onsemi.com  
2
 
NB4N527S  
Table 2. ATTRIBUTES  
Characteristics  
Value  
Level 1  
Moisture Sensitivity (Note 2)  
Flammability Rating  
ESD Protection  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 200 V  
> 1 kV  
Transistor Count  
281  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
2. For additional information, see Application Note AND8003/D.  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Positive Input  
Condition 1  
GND = 0 V  
Condition 2  
Rating  
3.8  
Unit  
V
V
V
CC  
I
GND = 0 V  
V = V  
3.8  
V
I
CC  
I
Input Current Through R (50 W Resistor)  
Static  
Surge  
35  
70  
mA  
mA  
IN  
T
I
Output Short Circuit Current  
Line−to−Line (Q to Q)  
Line−to−End (Q or Q to GND)  
OSC  
Q or Q to GND  
Q to Q  
Continuous  
Continuous  
12  
24  
mA  
T
Operating Temperature Range  
QFN−16  
−40 to +85  
°C  
°C  
A
T
stg  
Storage Temperature Range  
−65 to +150  
Thermal Resistance (Junction−to−Ambient) (Note 3)  
0 lfpm  
500 lfpm  
QFN−16  
QFN−16  
41.6  
35.2  
°C/W  
°C/W  
q
JA  
Thermal Resistance (Junction−to−Case)  
1S2P (Note 3)  
QFN−16  
4.0  
°C/W  
°C  
q
JC  
T
sol  
Wave Solder  
Pb  
Pb−Free  
265  
265  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
3. JEDEC standard multilayer board − 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
3
 
NB4N527S  
Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS V = 3.0 V to 3.6 V, GND = 0 V, T = −40°C to +85°C  
CC  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Note 8)  
40  
53  
mA  
CC  
DIFFERENTIAL INPUTS DRIVEN SINGLE−ENDED (Figures 11, 12, 16, and 18)  
V
V
V
Input Threshold Reference Voltage Range (Note 7)  
Single−ended Input HIGH Voltage  
GND +100  
V
− 100  
CC  
mV  
mV  
mV  
th  
IH  
IL  
V
+ 100  
V
CC  
th  
Single−ended Input LOW Voltage  
GND  
V
− 100  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19)  
V
V
V
V
Differential Input HIGH Voltage  
100  
V
mV  
mV  
mV  
mV  
W
IHD  
ILD  
CMR  
ID  
CC  
Differential Input LOW Voltage  
GND  
V
− 100  
CC  
Input Common Mode Range (Differential Configuration)  
GND + 50  
100  
V
− 50  
CC  
Differential Input Voltage (V  
− V )  
ILD  
V
IHD  
CC  
R
Internal Input Termination Resistor  
LVDS OUTPUTS (Note 4)  
Differential Output Voltage  
40  
50  
1
60  
TIN  
V
250  
0
450  
25  
mV  
mV  
mV  
mV  
mV  
mV  
OD  
DV  
Change in Magnitude of V  
Offset Voltage (Figure 15)  
for Complementary Output States (Note 9)  
OD  
OD  
V
1125  
0
1375  
25  
OS  
DV  
Change in Magnitude of V for Complementary Output States (Note 9)  
1
OS  
OS  
V
V
Output HIGH Voltage (Note 5)  
Output LOW Voltage (Note 6)  
1425  
1075  
1600  
OH  
OL  
900  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
4. LVDS outputs require 100 W receiver termination resistor between differential pair. See Figure 14.  
5. V max = V max + ½ V max.  
OH  
OS  
OD  
6. V max = V min − ½ V max.  
OL  
OS  
OD  
7. V is applied to the complementary input when operating in single−ended mode.  
th  
8. Input termination pins open, Dx/Dx at the DC level within V  
and output pins loaded with R = 100 W across differential.  
CMR  
L
9. Parameter guaranteed by design verification not tested in production.  
http://onsemi.com  
4
 
NB4N527S  
Table 5. AC CHARACTERISTICS V = 3.0 V to 3.6 V, GND = 0 V; (Note 10)  
CC  
−40°C  
25°C  
85°C  
Min Typ Max Min Typ Max Min Typ Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude (@ V  
(Figure 4)  
) f 1.0 GHz 220 350  
INPPmin in  
220 350  
200 300  
220 350  
200 300  
mV  
OUTPP  
f = 1.5 GHz 200 300  
in  
f
Maximum Operating Data Rate  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
Gb/s  
ps  
DATA  
t
t
,
Differential Input to Differential Output  
Propagation Delay  
270 370  
470  
270 370  
470  
270 370  
470  
PLH  
PHL  
t
Duty Cycle Skew (Note 11)  
Within Device Skew (Note 17)  
Device−to−Device Skew (Note 15)  
8
5
30  
45  
25  
100  
8
5
30  
45  
25  
100  
8
5
30  
45  
25  
100  
ps  
SKEW  
t
RMS Random Clock Jitter (Note 13)  
f
f
= 1.0 GHz  
= 1.5 GHz  
0.5  
0.5  
6
7
10  
20  
1
1
20  
20  
25  
40  
0.5  
0.5  
6
7
10  
20  
1
1
20  
20  
25  
40  
0.5  
0.5  
6
7
10  
20  
1
1
20  
20  
25  
40  
JITTER  
in  
in  
ps  
Deterministic Jitter (Note 14)  
f
f
f
= 622 Mb/s  
= 1.5 Gb/s  
= 2.488 Gb/s  
DATA  
DATA  
DATA  
Crosstalk Induced Jitter (Note 16)  
V
Input Voltage Swing/Sensitivity  
(Differential Configuration) (Note 12)  
100  
V
GND  
100  
V
GND  
100  
V
GND  
mV  
ps  
INPP  
CC  
CC  
CC  
t
t
Output Rise/Fall Times @ 250 MHz  
(20% − 80%)  
Q, Q  
60  
100  
140  
60  
100  
140  
60  
100  
140  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Measured by forcing V  
with 50% duty cycle clock source and V − 1400 mV offset. All loading with an external R = 100 W across  
INPPmin  
C
C
L
“D” and “D” of the receiver. Input edge rates 150 ps (20%−80%).  
11. See Figure 13 differential measurement of t = |t − t | for a nominal 50% differential clock input waveform @ 250 MHz.  
skew  
PLH  
PHL  
12.Input voltage swing is a single−ended measurement operating in differential mode.  
13.RMS jitter with 50% duty cycle input clock signal.  
23  
14.Deterministic jitter with input NRZ data at PRBS 2 −1 and K28.5.  
15.Skew is measured between outputs under identical transition @ 250 MHz.  
16.Crosstalk induced jitter is the additive deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2 −1 as  
an asynchronous signals.  
23  
17.The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.  
400  
350  
300  
−40°C  
250  
85°C  
200  
25°C  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
INPUT CLOCK FREQUENCY (GHz)  
Figure 4. Output Voltage Amplitude (VOUTPP) versus  
Input Clock Frequency (fin) and Temperature (@ VCC = 3.3 V)  
http://onsemi.com  
5
 
NB4N527S  
Device DDJ = 10 ps  
TIME (58 ps/div)  
Figure 5. Typical Output Waveform at 2.488 Gb/s with PRBS 223−1 and OC48 mask  
(VINPP = 100 mV; Input Signal DDJ = 14 ps)  
R
C
R
C
1.25 kW  
1.25 kW  
Dx  
1.25 kW  
1.25 kW  
50 W  
50 W  
I
V
V
TDx  
TDx  
D
x
Figure 6. Input Structure  
http://onsemi.com  
6
NB4N527S  
V
V
V
V
CC  
CC  
CC  
CC  
NB4N527S  
Dx  
NB4N527S  
Dx  
Z = 50 W  
o
Z = 50 W  
o
50 W*  
50 W*  
V
V
V
V
TDx  
TDx  
TDx  
TDx  
LVPECL  
Driver  
LVDS  
Driver  
50 W*  
50 W*  
Z = 50 W  
o
Z = 50 W  
o
Dx  
Dx  
V
= V  
TDx  
TDx  
V
= V  
= V − 2.0 V  
TDx CC  
TDx  
GND  
GND  
GND  
GND  
Figure 7. LVPECL Interface  
Figure 8. LVDS Interface  
V
V
V
V
CC  
CC  
CC  
CC  
NB4N527S  
Dx  
NB4N527S  
Dx  
Z = 50 W  
o
Z = 50 W  
o
V
CC  
50 W*  
50 W*  
V
V
V
V
TDx  
TDx  
TDx  
TDx  
CML  
Driver  
HSTL  
Driver  
50 W*  
50 W*  
Z = 50 W  
o
Z = 50 W  
o
Dx  
Dx  
V
= V  
= V  
TDx CC  
TDx  
V
= V  
= GND or V /2  
TDx DD  
TDx  
Depending on Driver.  
GND  
GND  
GND  
GND  
Figure 9. Standard 50 W Load CML Interface  
Figure 10. HSTL Interface  
V
V
V
V
CC  
CC  
CC  
CC  
NB4N527S  
Dx  
NB4N527S  
Dx  
Z = 50 W  
o
Z = 50 W  
o
50 W*  
50 W*  
V
V
V
V
TDx  
TDx  
TDx  
TDx  
LVCMOS  
Driver  
LVTTL  
Driver  
50 W*  
50 W*  
Dx  
Dx  
1.5 kW  
2.5 kW  
GND  
GND  
= OPEN  
TDx  
GND  
GND  
GND  
V = OPEN  
TDx  
GND  
V
= V  
TDx  
Dx = GND  
Dx = GND  
Figure 11. LVCMOS Interface  
Figure 12. LVTTL Interface  
*R , Internal Input Termination Resistor.  
TIN  
http://onsemi.com  
7
NB4N527S  
D
V
V
= V (D ) − V (D )  
IH x IL x  
INPP  
D
Q
= V (Q ) − V (Q )  
OUTPP  
OH  
x
OL  
x
Q
t
PHL  
t
PLH  
Figure 13. AC Reference Measurement  
Z = 50 W  
Q
Q
D
D
o
LVDS  
Driver  
Device  
LVDS  
Receiver  
Device  
100 W  
Z = 50 W  
o
Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation  
Q
Q
V
V
N
N
OH  
OL  
V
V
OS  
OD  
Figure 15. LVDS Output  
D
D
D
D
V
V
IH  
V
IL  
th  
V
th  
Figure 16. Differential Input Driven  
Single−Ended  
Figure 17. Differential Inputs Driven  
Differentially  
V
CC  
V
V
V
IH(MAX)  
IL  
V
CC  
V
V
IHmax  
ILmax  
V
thmax  
D
D
IH  
V
V
= V  
− V  
IHD ILD  
CMR  
INPP  
V
th  
V
IL  
V
V
IHmin  
ILmin  
V
V
V
IH  
thmin  
GND  
IL(MIN)  
V
EE  
Figure 18. Vth Diagram  
Figure 19. VCMR Diagram  
http://onsemi.com  
8
NB4N527S  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB4N527SMN  
QFN−16  
123 Units / Rail  
123 Units / Rail  
NB4N527SMNG  
QFN−16  
(Pb−Free)  
NB4N527SMNR2  
NB4N527SMNR2G  
QFN−16  
3000 / Tape & Reel  
3000 / Tape & Reel  
QFN−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NB4N527S  
PACKAGE DIMENSIONS  
16 PIN QFN  
CASE 485G−01  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A
B
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
LOCATION  
5.  
L
CONDITION CAN NOT VIOLATE 0.2 MM  
max  
MINIMUM SPACING BETWEEN LEAD TIP  
AND FLAG  
E
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
0.15  
C
A3  
b
D
0.20 REF  
TOP VIEW  
0.18  
0.30  
0.15  
C
3.00 BSC  
D2 1.65  
1.85  
E
3.00 BSC  
(A3)  
E2 1.65  
1.85  
0.10  
0.08  
C
C
e
K
L
0.50 BSC  
0.18 TYP  
0.30 0.50  
A
SEATING  
PLANE  
16 X  
SOLDERING FOOTPRINT*  
SIDE VIEW  
D2  
A1  
C
3.25  
0.128  
0.30  
0.575  
0.022  
EXPOSED PAD  
0.012  
e
L
16X  
EXPOSED PAD  
5
8
NOTE 5  
4
9
1.50  
0.059  
E2  
e
3.25  
0.128  
K
16X  
12  
1
16  
13  
0.30  
16X b  
0.012  
0.50  
0.02  
0.10  
0.05  
C
C
A
B
BOTTOM VIEW  
mm  
inches  
NOTE 3  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB4N527S/D  

相关型号:

NB4N527SMN

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI

NB4N527SMNEVB

Evaluation Board Manual for NB4N527S
ONSEMI

NB4N527SMNG

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI

NB4N527SMNR2

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI

NB4N527SMNR2G

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI

NB4N7132

Link Replicator for Fibre Channel, Gigabit Ethernet, HDTV and SATA
ONSEMI

NB4N7132DTG

Link Replicator for Fibre Channel, Gigabit Ethernet, HDTV and SATA
ONSEMI

NB4N7132DTR2G

Link Replicator for Fibre Channel, Gigabit Ethernet, HDTV and SATA
ONSEMI

NB4N840M

3.3V 3.2Gb/s Dual Differential Clock/Data 2 x 2 Crosspoint Switch with CML Output and Internal Termination
ONSEMI

NB4N840MMNEVB

3.3V 3.2Gb/s Dual Differential Clock/Data 2 x 2 Crosspoint Switch with CML Output and Internal Termination
ONSEMI

NB4N840MMNG

3.3V 3.2Gb/s Dual Differential Clock/Data 2 x 2 Crosspoint Switch with CML Output and Internal Termination
ONSEMI

NB4N840MMNR4G

3.3V 3.2Gb/s Dual Differential Clock/Data 2 x 2 Crosspoint Switch with CML Output and Internal Termination
ONSEMI