NB6L11SMNR2G [ONSEMI]

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator; 2.5 V 1 : 2 AnyLevel TM输入到LVDS扇出缓冲器/翻译
NB6L11SMNR2G
型号: NB6L11SMNR2G
厂家: ONSEMI    ONSEMI
描述:

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
2.5 V 1 : 2 AnyLevel TM输入到LVDS扇出缓冲器/翻译

文件: 总10页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB6L11S  
2.5 V 1:2 AnyLevelt Input  
to LVDS Fanout Buffer /  
Translator  
The NB6L11S is a differential 1:2 Clock or Data Receiver and will  
accept AnyLevelt input signals: LVPECL, CML, LVCMOS,  
LVTTL, or LVDS. These signals will be translated to LVDS and two  
identical copies of Clock or Data will be distributed, operating up to  
2.0 GHz or 2.5 Gb/s, respectively. As such, the NB6L11S is ideal for  
SONET, GigE, Fiber Channel, Backplane and other Clock or Data  
distribution applications.  
http://onsemi.com  
MARKING  
DIAGRAM*  
16  
1
The NB6L11S has a wide input common mode range from  
NB6L  
11S  
1
GND + 50 mV to V − 50 mV. Combined with the 50 W internal  
CC  
termination resistors at the inputs, the NB6L11S is ideal for translating  
a variety of differential or single−ended Clock or Data signals to  
350 mV typical LVDS output levels.  
ALYW G  
QFN−16  
MN SUFFIX  
CASE 485G  
G
The NB6L11S is the 2.5 V version of the NB6N11S and is offered in  
a small 3 mm X 3 mm 16−QFN package. Application notes, models,  
and support documentation are available at www.onsemi.com.  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
Features  
Maximum Input Clock Frequency > 2.0 GHz  
Maximum Input Data Rate > 2.5 Gb/s  
1 ps Maximum of RMS Clock Jitter  
Typically 10 ps of Data Dependent Jitter  
380 ps Typical Propagation Delay  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
Q0  
120 ps Typical Rise and Fall Times  
V
V
Single Power Supply; V = 2.5 V " 5%  
Q0  
TD  
CC  
These are Pb−Free Devices  
D
D
TD  
Q1  
Q1  
Figure 1. Logic Diagram  
Device DDJ = 10 ps  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
TIME (58 ps/div)  
Figure 2. Typical Output Waveform at 2.488 Gb/s with  
PRBS 223−1 (VINPP = 400 mV; Input Signal DDJ = 14 ps)  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
September, 2006 − Rev. 2  
NB6L11S/D  
NB6L11S  
Exposed Pad (EP)  
V
V
V
V
CC CC  
CC  
CC  
16  
15  
14  
13  
Q0  
1
2
3
4
12  
11  
10  
9
V
TD  
Q0  
Q1  
D
D
NB6L11S  
Q1  
V
TD  
5
6
7
8
V
NC  
V
V
EE  
CC  
EE  
Figure 3. NB6L11S Pinout, 16−pin QFN (Top View)  
Table 1. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
Q0  
LVDS Output  
Non−inverted D output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
2
3
4
Q0  
Q1  
Q1  
LVDS Output  
LVDS Output  
LVDS Output  
Inverted D output. Typically loaded with 100 W receiver termination resistor  
across differential pair.  
Non−inverted D output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
Inverted D output. Typically loaded with 100 W receiver termination resistor  
across differential pair.  
5
6
V
Positive Supply Voltage.  
CC  
NC  
No Connect.  
7
V
V
V
Negative Supply Voltage.  
EE  
EE  
TD  
8
Negative Supply Voltage.  
9
Internal 50 W termination pin for D.  
Inverted Differential Clock/Data Input (Note 1).  
10  
D
LVPECL, CML, LVDS,  
LVCMOS, LVTTL  
11  
D
LVPECL, CML, LVDS,  
LVCMOS, LVTTL  
Non−inverted Differential Clock/Data Input (Note 1).  
12  
13  
14  
15  
16  
EP  
V
Internal 50 W termination pin for D.  
Positive Supply Voltage.  
Positive Supply Voltage.  
Positive Supply Voltage.  
Positive Supply Voltage.  
TD  
CC  
CC  
CC  
CC  
V
V
V
V
Exposed pad. The exposed pad (EP) on the package bottom must be  
attached to a heat−sinking conduit. The exposed pad may only be  
electrically connected to V  
.
EE  
1. In the differential configuration when the input termination pins(VTD0/VTD0, VTD1/ VTD1) are connected to a common termination voltage  
or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self−oscillation.  
http://onsemi.com  
2
 
NB6L11S  
Table 2. ATTRIBUTES  
Characteristic  
Value  
ESD Protection  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 200 V  
> 1 kV  
Moisture Sensitivity (Note 2)  
Pb−Free Pkg  
Level 1  
QFN−16  
Flammability RatingOxygen Index: 28 to 34  
Transistor Count  
UL 94 V−0 @ 0.125 in  
225  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
2. For additional information, see Application Note AND8003/D.  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Positive Input  
Condition 1  
GND = 0 V  
Condition 2  
Rating  
3.8  
Unit  
V
V
V
CC  
IN  
GND = 0 V  
V
V  
3.8  
V
IN  
CC  
I
Input Current Through R (50 W Resistor)  
Static  
Surge  
35  
70  
mA  
mA  
IN  
T
I
Output Short Circuit Current  
Line−to−Line (Q to Q)  
Line−to−End (Q or Q to GND)  
mA  
OSC  
Q or Q to GND  
Q to Q  
Continuous  
Continuous  
12  
24  
T
Operating Temperature Range  
QFN−16  
−40 to +85  
°C  
°C  
A
T
stg  
Storage Temperature Range  
−65 to +150  
Thermal Resistance (Junction−to−Ambient) (Note 3)  
0 lfpm  
500 lfpm  
QFN−16  
QFN−16  
41.6  
35.2  
°C/W  
°C/W  
q
JA  
Thermal Resistance (Junction−to−Case)  
1S2P (Note 3)  
QFN−16  
4.0  
°C/W  
°C  
q
JC  
T
sol  
Wave Solder  
Pb−Free  
265  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
3. JEDEC standard multilayer board − 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
3
 
NB6L11S  
Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS V = 2.375 V to 2.625 V, GND = 0 V,  
CC  
T = −40°C to +85°C  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Note 8)  
30  
45  
mA  
CC  
DIFFERENTIAL INPUTS DRIVEN SINGLE−ENDED (Figures 11, 12, 16, and 18)  
V
V
V
Input Threshold Reference Voltage Range (Note 7)  
Single−ended Input HIGH Voltage  
GND +100  
V
− 100  
CC  
mV  
mV  
mV  
th  
IH  
IL  
V
+ 100  
V
CC  
th  
Single−ended Input LOW Voltage  
GND  
V
− 100  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19)  
V
V
V
V
Differential Input HIGH Voltage  
100  
V
mV  
mV  
mV  
mV  
W
IHD  
ILD  
CMR  
ID  
CC  
Differential Input LOW Voltage  
GND  
V
− 100  
CC  
Input Common Mode Range (Differential Configuration)  
GND + 50  
100  
V
− 50  
CC  
Differential Input Voltage (V  
− V )  
ILD  
V
IHD  
CC  
R
Internal Input Termination Resistor  
LVDS OUTPUTS (Note 4)  
Differential Output Voltage  
40  
50  
1
60  
TIN  
V
250  
0
450  
25  
mV  
mV  
mV  
mV  
mV  
mV  
OD  
DV  
Change in Magnitude of V  
Offset Voltage (Figure 15)  
for Complementary Output States (Note 9)  
OD  
OD  
V
1125  
0
1375  
25  
OS  
DV  
Change in Magnitude of V for Complementary Output States (Note 9)  
1
OS  
OS  
V
V
Output HIGH Voltage (Note 5)  
Output LOW Voltage (Note 6)  
1425  
1075  
1600  
OH  
OL  
900  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
4. LVDS outputs require 100 W receiver termination resistor between differential pair. See Figure 14.  
5. V max = V max + ½ V max.  
OH  
OS  
OD  
6. V max = V min − ½ V max.  
OL  
OS  
OD  
7. V is applied to the complementary input when operating in single−ended mode.  
th  
8. Input termination pins open, D/D at the DC level within V  
and output pins loaded with R = 100 W across differential.  
CMR  
L
9. Parameter guaranteed by design verification not tested in production.  
http://onsemi.com  
4
 
NB6L11S  
Table 5. AC CHARACTERISTICS V = 2.375 V to 2.625 V, GND = 0 V; (Note 10)  
CC  
−40°C  
25°C  
85°C  
Min Typ Max Min Typ Max Min Typ Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude (@ V  
(Figure 4)  
) f 1.0 GHz 220 350  
INPPmin in  
220 350  
200 300  
170 270  
220 350  
200 300  
170 270  
mV  
OUTPP  
f = 1.5 GHz 200 300  
in  
f = 2.0 GHz 170 270  
in  
f
Maximum Operating Data Rate  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
Gb/s  
ps  
DATA  
t
t
,
Differential Input to Differential Output  
Propagation Delay  
250  
450  
250  
450  
250  
450  
PLH  
PHL  
t
Duty Cycle Skew (Note 11)  
Within Device Skew (Note 16)  
Device−to−Device Skew (Note 15)  
8
5
30  
45  
25  
100  
8
5
30  
45  
25  
100  
8
5
30  
45  
25  
100  
ps  
SKEW  
t
RMS Random Clock Jitter (Note 13)  
f
f
= 1.0 GHz  
= 1.5 GHz  
0.5  
0.5  
6
7
10  
0.5  
0.5  
6
7
10  
0.5  
0.5  
6
7
10  
JITTER  
in  
in  
ps  
Deterministic Jitter (Note 14)  
f
f
f
= 622 Mb/s  
= 1.5 Gb/s  
= 2.488 Gb/s  
DATA  
DATA  
DATA  
V
Input Voltage Swing/Sensitivity  
(Differential Configuration) (Note 12)  
100  
70  
V
GND  
100  
70  
V
GND  
100  
70  
V
GND  
mV  
ps  
INPP  
CC  
CC  
CC  
t
t
Output Rise/Fall Times @ 250 MHz  
(20% − 80%)  
Q, Q  
120  
170  
120  
170  
120  
170  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Measured by forcing V  
with 50% duty cycle clock source and V − 1400 mV offset. All loading with an external R = 100 W across  
INPPmin  
C
C
L
“D” and “D” of the receiver. Input edge rates 150 ps (20%−80%).  
11. See Figure 13 differential measurement of t = |t − t | for a nominal 50% differential clock input waveform @ 250 MHz.  
skew  
PLH  
PHL  
12.Input voltage swing is a single−ended measurement operating in differential mode.  
13.RMS jitter with 50% Duty Cycle input clock signal.  
23  
14.Deterministic jitter with input NRZ data at PRBS 2 −1 and K28.5.  
15.Skew is measured between outputs under identical transition @ 250 MHz.  
16.The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.  
400  
350  
300  
−40°C  
250  
85°C  
200  
25°C  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
INPUT CLOCK FREQUENCY (GHz)  
Figure 4. Output Voltage Amplitude (VOUTPP) versus  
Input Clock Frequency (fin) and Temperature (@ VCC = 2.5 V)  
http://onsemi.com  
5
 
NB6L11S  
Device DDJ = 10 ps  
TIME (58 ps/div)  
Figure 5. Typical Output Waveform at 2.488 Gb/s with PRBS 223−1 and OC48 mask  
(VINPP = 100 mV; Input Signal DDJ = 14 ps)  
R
C
R
C
1.25 kW  
1.25 kW  
Dx  
1.25 kW  
1.25 kW  
50 W  
50 W  
I
V
V
TDx  
TDx  
D
x
Figure 6. Input Structure  
http://onsemi.com  
6
NB6L11S  
V
= 3.3 V  
V
= 3.3 V  
CC  
CC  
or 2.5 V  
or 2.5 V  
V
= 2.5 V  
V
= 2.5 V  
CC  
CC  
NB6L11S  
NB6L11S  
D
D
Z = 50 W  
o
Z = 50 W  
o
50 W*  
50 W*  
50 W*  
50 W*  
V
V
V
V
TD  
TD  
TD  
TD  
LVPECL  
Driver  
LVDS  
Driver  
Z = 50 W  
o
Z = 50 W  
o
D
D
V
= V  
TD  
TD  
V
= V = V − 2.0 V  
TD CC  
TD  
GND  
GND  
GND  
GND  
Figure 7. LVPECL Interface  
Figure 8. LVDS Interface  
V
= 3.3 V  
CC  
V
= 2.5 V  
V
= 2.5 V  
CC  
or 2.5 V  
CC  
V
= 2.5 V  
CC  
NB6L11S  
NB6L11S  
D
D
Z = 50 W  
o
Z = 50 W  
o
V
CC  
50 W*  
50 W*  
V
V
V
V
TD  
TD  
TD  
TD  
CML  
Driver  
HSTL  
Driver  
50 W*  
50 W*  
Z = 50 W  
o
Z = 50 W  
o
D
D
V
= V = V  
TD CC  
TD  
V
= V = GND or V /2  
TD DD  
TD  
Depending on Driver.  
GND  
GND  
GND  
GND  
Figure 9. Standard 50 W Load CML Interface  
Figure 10. HSTL Interface  
V
= 2.5 V  
V
= 2.5 V  
V
= 2.5 V  
V
= 2.5 V  
CC  
CC  
CC  
CC  
NB6L11S  
D
NB6L11S  
D
Z = 50 W  
o
Z = 50 W  
o
50 W*  
50 W*  
V
V
V
V
TD  
TD  
TD  
TD  
LVCMOS  
Driver  
LVTTL  
Driver  
50 W*  
50 W*  
D
D
2.5 kW*  
1.5 kW*  
GND  
GND  
GND  
GND  
GND  
GND  
V
= OPEN  
V
= V = OPEN  
TD  
TD  
TD  
D = GND  
D = GND  
Figure 11. LVCMOS Interface  
Figure 12. LVTTL Interface  
*R , Internal Input Termination Resistor.  
TIN  
http://onsemi.com  
7
NB6L11S  
D
V
V
= V (D) − V (D)  
IH IL  
INPP  
D
Q
= V (Q) − V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 13. AC Reference Measurement  
Z = 50 W  
Q
Q
D
D
o
LVDS  
Driver  
Device  
LVDS  
Receiver  
Device  
100 W  
Z = 50 W  
o
Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation  
Q
Q
V
V
N
N
OH  
OL  
V
V
OS  
OD  
Figure 15. LVDS Output  
D
D
D
D
V
V
IH  
V
IL  
th  
V
th  
Figure 16. Differential Input Driven  
Single−Ended  
Figure 17. Differential Inputs Driven  
Differentially  
V
CC  
V
V
V
IH(MAX)  
IL  
V
CC  
V
V
IHmax  
ILmax  
V
thmax  
D
D
IH  
V
V
= V  
− V  
IHD ILD  
CMR  
INPP  
V
th  
V
IL  
V
V
IHmin  
ILmin  
V
V
V
IH  
thmin  
GND  
IL(MIN)  
GND  
Figure 18. Vth Diagram  
Figure 19. VCMR Diagram  
http://onsemi.com  
8
NB6L11S  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB6L11SMNG  
QFN−16, 3 X 3 mm  
(Pb−Free)  
123 Units / Rail  
NB6L11SMNR2G  
QFN−16, 3 X 3 mm  
(Pb−Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NB6L11S  
PACKAGE DIMENSIONS  
16 PIN QFN  
CASE 485G−01  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
B
PIN 1  
LOCATION  
5.  
L
CONDITION CAN NOT VIOLATE 0.2 MM  
max  
MINIMUM SPACING BETWEEN LEAD TIP  
AND FLAG  
E
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
0.15  
C
A3  
b
D
0.20 REF  
TOP VIEW  
0.18  
0.30  
0.15  
C
3.00 BSC  
D2 1.65  
1.85  
E
3.00 BSC  
(A3)  
E2 1.65  
1.85  
0.10  
0.08  
C
C
e
K
L
0.50 BSC  
0.18 TYP  
0.30 0.50  
A
SEATING  
PLANE  
16 X  
SIDE VIEW  
D2  
A1  
SOLDERING FOOTPRINT*  
C
3.25  
0.128  
0.30  
0.575  
0.022  
EXPOSED PAD  
e
L
16X  
0.012  
EXPOSED PAD  
5
8
NOTE 5  
4
9
E2  
e
1.50  
0.059  
K
16X  
3.25  
0.128  
12  
1
16  
13  
16X b  
0.30  
0.012  
0.10  
0.05  
C
C
A
B
BOTTOM VIEW  
0.50  
0.02  
NOTE 3  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB6L11S/D  

相关型号:

NB6L11S_06

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
ONSEMI

NB6L11_06

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L14

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L14M

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer
ONSEMI

NB6L14MMNG

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer
ONSEMI

NB6L14MMNR2G

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer
ONSEMI

NB6L14MNG

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L14MNR2G

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L14S

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNG

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNTWG

Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNTXG

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI