NB6L14MMNG [ONSEMI]

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer; 2.5 V / 3.3 V 3.0 GHz差分1 : 4 CML扇出缓冲器
NB6L14MMNG
型号: NB6L14MMNG
厂家: ONSEMI    ONSEMI
描述:

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer
2.5 V / 3.3 V 3.0 GHz差分1 : 4 CML扇出缓冲器

文件: 总11页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB6L14M  
2.5 V/3.3 Vꢀ3.0 GHz  
Differential 1:4 CML Fanout  
Buffer  
MultiLevel Inputs with Internal Termination  
http://onsemi.com  
MARKING  
Description  
The NB6L14M is a 3.0 GHz differential 1:4 CML fanout buffer.  
The differential inputs incorporate internal 50 W termination resistors  
that are accessed through the VT pin. This feature allows the  
NB6L14M to accept various logic standards, such as CML, LVCMOS,  
LVTTL, CML, or LVDS logic levels. The 16 mA differential CML  
outputs provide matching internal 50 W terminations and produce  
400 mV output swings when externally terminated with a 50 W  
DIAGRAM*  
16  
1
NB6L  
14M  
ALYWG  
G
QFN16  
MN SUFFIX  
CASE 485G  
resistor to V . The V  
reference output can be used to rebias  
CC  
REFAC  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
capacitorcoupled differential or singleended input signals. The 1:4  
fanout design was optimized for low output skew applications.  
The NB6L14M is a member of the ECLinPS MAXfamily of high  
performance clock and data products.  
(Note: Microdot may be in either location)  
Features  
*For additional marking information, refer to  
Application Note AND8002/D.  
Maximum Input Clock Frequency > 3.0 GHz, Typical  
< 20 ps Within Device Output Skew  
350 ps Typical Propagation Delay  
90 ps Typical Rise and Fall Times  
Differential CML Outputs, 400 mV Amplitude, Typical  
CML Mode Operating Range: V = 2.375 V to 3.63 V with  
CC  
GND = 0 V  
Internal Input and Output Termination Resistors, 50 W  
V  
Reference Output Voltage  
REFAC  
40°C to +85°C Ambient Operating Temperature  
Available in 3 mm x 3 mm 16 Pin QFN  
These are PbFree Devices  
D
Q
Figure 1. Simplified Logic Diagram  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
December, 2006 Rev. 0  
NB6L14M/D  
NB6L14M  
Q0  
Q0 Q0  
16 15  
V
GND  
13  
CC  
/Q0  
Exposed Pad (EP)  
14  
Q1  
Q1  
1
2
3
4
12  
11  
10  
9
IN  
/Q1  
IN  
VT  
/IN  
50 W  
50 W  
Q1  
Q2  
Q2  
VT  
V
Q2  
REFAC  
/Q2  
IN  
D
Q
EN  
5
6
7
8
CLK  
Q3  
VREFAC  
Q3 Q3  
V
EN  
CC  
/Q3  
Figure 2. QFN16 Pinout  
Figure 3. Logic Diagram  
Q0:Q3  
(Top View)  
Table 1. EN TRUTH TABLE  
IN  
IN  
EN  
Q0:Q3  
0
1
x
1
0
x
1
1
0
0
1
0+  
1
0
1+  
+ = On next negative transition of the input signal (IN).  
x = Don’t care.  
Table 2. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
2
3
4
5
6
7
8
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
CML Output  
CML Output  
CML Output  
CML Output  
CML Output  
CML Output  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
.
.
CC  
CC  
CC  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
V
Positive Supply Voltage  
CC  
EN  
LVTTL/LVCMOS  
Synchronous Output Enable. When LOW, Q outputs will go LOW and Q outputs will  
go HIGH on the next negative transition of IN input. The internal D register is  
FF  
clocked on the falling edge of IN input (see Figure 16). The EN pin has an internal  
pullup resistor and defaults HIGH when left open.  
9
IN  
CML, CML, LVDS,  
HSTL  
Inverted Differential Clock Input. Internal 50 W Resistor to Termination Pin, VT.  
10  
11  
12  
V
Output Voltage Reference for capacitorcoupled inputs, only.  
REFAC  
VT  
Internal 100 W centertapped Termination Pin for IN and IN.  
IN  
CML, CML, LVDS,  
HSTL  
Noninverted Differential Clock Input. Internal 50 W Resistor to Termination Pin, VT.  
13  
14  
15  
16  
GND  
Negative Supply Voltage  
Positive Supply Voltage  
V
CC  
Q0  
Q0  
EP  
CML Output  
CML Output  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
The Exposed Pad (EP) on the QFN16 package bottom is thermally connected to the  
die for improved heat transfer out of package. The exposed pad must be attached to  
a heatsinking conduit. The pad is not electrically connected to the die, but is  
recommended to be electrically and thermally connected to GND on the PC board.  
1. In the differential configuration when the input termination pin VT, is connected to a common termination voltage or left open, and if no signal  
is applied on IN/IN inputs, then the device will be susceptible to selfoscillation.  
http://onsemi.com  
2
NB6L14M  
Table 3. ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model  
Machine Mode  
> 2 kV  
> 200 V  
Moisture Sensitivity (Note 2)  
Flammability Rating  
Transistor Count  
QFN16  
Level 1  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
2. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Condition 1  
GND = 0 V  
Condition 2  
Rating  
4.0  
Unit  
V
V
CC  
Io  
V
Positive Input/Output  
Input Current  
GND = 0 V  
0.5 V v V v V + 0.5 V  
4.5  
V
Io  
CC  
I
"50  
mA  
IN  
Source or Sink Current (IN/IN)  
I
I
Sink/Source Current  
Output Current  
"2.0  
mA  
VREFAC  
OUT  
Continuous  
Surge  
25  
50  
mA  
mA  
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
°C  
°C  
A
T
stg  
65 to +150  
q
Thermal Resistance  
(JunctiontoAmbient) (Note 3)  
0 lfpm  
500 lfpm  
QFN16  
QFN16  
42  
35  
°C/W  
°C/W  
JA  
q
Thermal Resistance (JunctiontoCase) 2S2P (Note 3)  
Wave Solder PbFree  
QFN16  
4
°C/W  
°C  
JC  
T
sol  
265  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
3. JEDEC standard multilayer board 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
3
NB6L14M  
Table 5. DC CHARACTERISTICS, MultiLevel Inputs, CML Outputs  
V
= 2.375 V to 3.63 V, GND = 0 V, T = 40°C to +85°C  
CC  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Inputs and Outputs Open)  
80  
100  
130  
mA  
CC  
CML OUTPUT (Notes 4 and 5)  
V
V
Output HIGH Voltage  
Output LOW Voltage  
V
40  
3260  
1355  
V
10  
3290  
2490  
V
CC  
3300  
2500  
mV  
mV  
OH  
CC  
CC  
V
V
= 3.3 V  
= 2.5 V  
CC  
CC  
V
500  
2800  
2000  
V
400  
2900  
2100  
V
300  
CC  
3000  
2200  
OL  
CC  
CC  
V
V
= 3.3 V  
= 2.5 V  
CC  
CC  
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (See Figures 5 and 6)  
V
V
V
V
Input Threshold Reference Voltage Range (Note 6)  
SingleEnded Input High Voltage  
1125  
GND  
V
75  
CC  
mV  
mV  
mV  
mV  
th  
V
IH  
CC  
SingleEnded Input LOW Voltage  
V
V 75  
th  
IL  
EE  
SingleEnded Input Voltage Amplitude (V V )  
150  
2800  
ISE  
REFAC  
IH  
IL  
V
V
Output Reference Voltage  
V
1525  
V
1425  
V 1325  
CC  
mV  
REFAC  
CC  
CC  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 7 and 8) (Note 7)  
V
V
V
V
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
Differential Input Voltage (ININ) (V  
1200  
GND  
100  
V
mV  
mV  
mV  
mV  
IHD  
ILD  
ID  
CC  
V
100  
IHD  
V
)
2800  
V – 50  
CC  
IHDILD  
Input Common Mode Range (Differential Configuration)  
(Note 8)  
1150  
CMR  
I
I
Input HIGH Current IN/IN  
(VT Open)  
10  
50  
50  
10  
mA  
mA  
IH  
Input LOW Current IN/IN  
(VT Open)  
IL  
LVTTL/LVCMOS INPUT DC ELECTRICAL CHARACTERISTICS  
V
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
V
V
V
IH  
IL  
CC  
GND  
10  
0.8  
50  
0
I
I
Input HIGH Current, V = V = 3.63 V  
mA  
mA  
IH  
IL  
CC  
IN  
Input LOW Current, V = 3.63 V, V = 0 V  
150  
CC  
IN  
TERMINATION RESISTORS  
R
R
R
Internal Input Termination Resistor (IN to VT)  
Differential Input Resistance (IN to IN)  
Internal Output Termination Resistor  
40  
80  
40  
50  
60  
120  
60  
W
W
W
TIN  
100  
50  
DIFF_IN  
TOUT  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
4. CML outputs loaded with 50 W to V for proper operation.  
CC  
5. Input and output parameters vary 1:1 with V  
.
CC  
6. V is applied to the complementary input when operating in singleended mode.  
th  
7. V , V , V and V parameters must be complied with simultaneously.  
IHD  
ILD  
ID  
CMR  
8. V  
minimum varies 1:1 with GND, V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
CMR  
CMR  
CC  
CMR  
input signal.  
http://onsemi.com  
4
NB6L14M  
Table 6. AC CHARACTERISTICS V = 2.375 V to 3.63 V, GND = 0 V, T = 40°C to +85°C (Note 9)  
CC  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
V
Output Voltage Amplitude (@ V  
) (Note 10)  
INPPmin  
mV  
OUTPP  
f
2.5 GHz  
180  
100  
280  
200  
in  
in  
2.5 GHz f 3.0 GHz  
t
t
t
t
Propagation Delay  
IN to Q  
EN to IN, IN  
EN to IN, IN  
230  
300  
300  
350  
480  
ps  
ps  
ps  
ps  
PD  
SetUp Time (Note 11)  
Hold Time (Note 11)  
S
H
WithinDevice Skew (Note 12)  
DevicetoDevice Skew (Note 13)  
5.0  
50  
20  
80  
SKEW  
t
t
Output Clock Duty Cycle  
(Referenced Duty Cycle = 50%)  
f
3.0 GHz  
in  
40  
60  
%
DC  
RMS Random Jitter (Note 14)  
ps  
JITTER  
f
3.0 GHz  
3.0 GHz  
0.2  
20  
0.5  
IN  
IN  
PeaktoPeak Data Dependent Jitter  
(Note 15)  
f
V
Input Voltage Swing/Sensitivity  
100  
70  
2800  
150  
mV  
ps  
INPP  
(Differential Configuration) (Note 10)  
t ,t  
r
Output Rise/Fall Times  
(20%80%)  
90  
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
9. Measured by forcing V  
(minimum) from a 50% duty cycle clock source. All loading with an external R = 50 W to V . Input edge rates  
INPP  
L CC  
40 ps (20%80%).  
10.Input and output voltage swing is a singleended measurement operating in differential mode.  
11. Setup and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous  
applications, setup and hold times do not apply.  
12.Within device skew is measured between two different outputs under identical power supply, temperature and input conditions.  
13.Device to device skew is measured between outputs under identical transition @ 0.5 GHz.  
14.Additive RMS jitter with 50% duty cycle clock signal.  
15.Additive peaktopeak data dependent jitter with input NRZ data at PRBS 231 and K28.5 at 2.5 Gb/s.  
http://onsemi.com  
5
NB6L14M  
INn  
50 W  
VTn  
50 W  
INn  
Figure 4. Input Structure  
V
CC  
V
V
IN  
IHmax  
ILmax  
V
thmax  
V
IH  
V
th  
IL  
V
V
V
IH  
th  
IL  
V
th  
V
IN  
V
V
IHmin  
ILmin  
V
thmin  
V
th  
GND  
Figure 6. Vth Diagram  
Figure 5. Differential Input Driven  
SingleEnded  
V
CC  
V
V
V
IH(MAX)  
IL  
IN  
IN  
IH  
V
V
= V  
V  
IHD ILD  
CMR  
ID  
V
IL  
V
V
IH  
Figure 7. Differential Inputs  
Driven Differentially  
IL(MIN)  
GND  
Figure 8. VCMR Diagram  
IN  
V
V
= V (IN) V (IN)  
IH IL  
INPP  
IN  
Q
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
t
PD  
t
PD  
Figure 9. AC Reference Measurement  
http://onsemi.com  
6
NB6L14M  
V
V
V
V
CC  
CC  
CC  
CC  
NB6L14M  
NB6L14M  
Z
= 50 W  
Z
Z
= 50 W  
O
O
IN  
IN  
IN  
IN  
50 W  
50 W  
50 W  
50 W  
CML  
LVDS  
Driver  
VT = V 2 V  
O
VT = Open  
= 50 W  
O
CC  
= 50 W  
Driver  
Z
GND  
GND  
GND  
GND  
Figure 10. CML Interface  
Figure 11. LVDS Interface  
V
V
CC  
CC  
NB6L14M  
Z
= 50 W  
O
IN  
IN  
50 W  
50 W  
CML  
VT = V  
CC  
Driver  
Z
= 50 W  
O
GND  
GND  
Figure 12. Standard 50 W Load CML Interface  
V
V
V
V
CC  
CC  
CC  
CC  
NB6L14M  
NB6L14M  
Z
= 50 W  
Z = 50 W  
O
O
IN  
IN  
IN  
50 W  
50 W  
50 W  
50 W  
Differential  
Driver  
SingleEnded  
VT = V  
_AC*  
VT = V _AC*  
REF  
REF  
Driver  
Z
= 50 W  
O
IN (Open)  
GND  
GND  
GND  
GND  
Figure 13. CapacitorCoupled  
Figure 14. CapacitorCoupled  
SingleEnded Interface  
Differential Interface  
(VT Connected to VREFAC  
)
(VT Connected to VREFAC)  
*V  
bypassed to ground with a 0.01 mF capacitor  
REFAC  
http://onsemi.com  
7
NB6L14M  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
f
, CLOCK OUTPUT FREQUENCY (GHz)  
out  
Figure 15. Output Voltage Amplitude (VOUTPP) versus Output  
Frequency at Ambient Temperature (Typical)  
EN  
V
/2  
CC  
V
/2  
CC  
t
t
H
S
/IN  
IN  
V
INPP  
t
pd  
/Q  
Q
V
OUTPP  
Figure 16. EN Timing Diagram  
V
CC  
50 W  
50 W  
Q
Q
16 mA  
GND  
Figure 17. CML Output Structure  
http://onsemi.com  
8
NB6L14M  
V
CC  
50 W  
Z = 50 W  
50 W  
Q
Q
D
D
Receiver  
Device  
Driver  
Device  
Z = 50 W  
Figure 18. Typical CML Termination for Output Driver and Device Evaluation  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB6L14MMNG  
QFN16, 3x3 mm  
(PbFree)  
123 Units / Rail  
NB6L14MMNR2G  
QFN16, 3x3 mm  
(PbFree)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NB6L14M  
PACKAGE DIMENSIONS  
16 PIN QFN  
MN SUFFIX  
CASE 485G01  
ISSUE C  
D
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
PIN 1  
LOCATION  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
E
5.  
L
CONDITION CAN NOT VIOLATE 0.2 MM  
max  
MINIMUM SPACING BETWEEN LEAD TIP  
AND FLAG  
0.15  
C
TOP VIEW  
MILLIMETERS  
0.15  
C
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
(A3)  
0.10  
0.08  
C
C
A3  
b
D
0.20 REF  
0.18  
3.00 BSC  
0.30  
A
D2 1.65  
1.85  
E
3.00 BSC  
SEATING  
PLANE  
16 X  
E2 1.65  
1.85  
SIDE VIEW  
D2  
A1  
e
K
L
0.50 BSC  
0.18 TYP  
0.30 0.50  
C
e
L
16X  
EXPOSED PAD  
5
8
NOTE 5  
4
9
E2  
e
K
16X  
12  
1
16  
13  
16X b  
SOLDERING FOOTPRINT*  
0.10  
0.05  
C
C
A
B
BOTTOM VIEW  
NOTE 3  
3.25  
0.128  
0.30  
0.575  
0.022  
EXPOSED PAD  
0.012  
1.50  
0.059  
3.25  
0.128  
0.30  
0.012  
0.50  
0.02  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
10  
NB6L14M  
ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
291 Kamimeguro, Meguroku, Tokyo, Japan 1530051  
Phone: 81357733850  
For additional information, please contact your  
local Sales Representative.  
NB6L14M/D  

相关型号:

NB6L14MMNR2G

2.5 V/3.3 V 3.0 GHz Differential 1:4 CML Fanout Buffer
ONSEMI

NB6L14MNG

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L14MNR2G

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L14S

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNG

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNTWG

Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14SMNTXG

2.5 V 1:4 AnyLevel™ Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14S_11

Differential Input to LVDS Fanout Buffer/Translator
ONSEMI

NB6L14_07

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
ONSEMI

NB6L16

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16D

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DG

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI