NCD57080ADR2G [ONSEMI]

Isolated High Current IGBT Gate Driver;
NCD57080ADR2G
型号: NCD57080ADR2G
厂家: ONSEMI    ONSEMI
描述:

Isolated High Current IGBT Gate Driver

栅 双极性晶体管
文件: 总24页 (文件大小:646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated High Current IGBT  
Gate Driver  
NCD57080A, NCD57080B,  
NCD57080C  
NCD57080A, NCD57080B and NCD57080C are highcurrent  
single channel IGBT gate drivers with 3.75 kVrms internal galvanic  
isolation, designed for high system efficiency and reliability in high  
power applications. The devices accept complementary inputs and  
depending on the pin configuration, offer options such as Active  
Miller Clamp (NCD57080A), negative power supply (NCD57080B)  
and separate high and low (OUTH and OUTL) driver outputs  
(NCD57080C) for system design convenience. NCD57080 (A/B/C)  
accommodate wide range of input bias voltage and signal levels  
from 3.3 V to 20 V. NCD57080 (A/B/C) are available in narrowbody  
SOIC8 package.  
www.onsemi.com  
8
1
SOIC8 NB  
CASE 75107  
MARKING DIAGRAM  
8
Features  
High Peak Output Current (+6.5 A/6.5 A)  
Low Clamp Voltage Drop Eliminates the Need of Negative Power  
Supply to Prevent Spurious Gate Turnon (NCD57080A)  
Short Propagation Delays with Accurate Matching  
IGBT Gate Clamping during Short Circuit  
NCD57080x  
ALYW  
G
1
NCD57080  
x
= Specific Device Code  
= A/B/C  
= Assembly Location  
= Wafer Lot  
= Year  
IGBT Gate Active Pull Down  
A
L
Y
W
G
Tight UVLO Thresholds for Bias Flexibility  
Wide Bias Voltage Range including Negative V  
3.3 V, 5 V, and 15 V Logic Input  
3.75 kVrms Galvanic Isolation  
High Transient Immunity  
(NCD57080B)  
EE2  
= Work Week  
= PbFree Package  
PIN CONNECTIONS  
High Electromagnetic Immunity  
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
V
DD1  
GND2  
CLAMP  
OUT  
Compliant  
IN+  
IN−  
Typical Applications  
Motor Control  
Uninterruptible Power Supplies (UPS)  
Industrial Power Supplies  
HVAC  
GND1  
V
DD2  
NCD57080A  
NCD57080B  
V
DD1  
V
EE2  
IN+  
IN−  
GND2  
OUT  
GND1  
V
DD2  
V
GND2  
OUTL  
OUTH  
DD1  
IN+  
IN−  
GND1  
V
DD2  
NCD57080C  
This document contains information on some products that are still under development.  
ON Semiconductor reserves the right to change or discontinue these products without  
notice.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 21 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
August, 2020 Rev. 1  
NCD57080A/D  
NCD57080A, NCD57080B, NCD57080C  
V
DD2  
V
DD1  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUT  
IN+  
Logic  
Logic  
2
GND1  
VCLAMPTHR  
1
+
CLAMP  
GND2  
2
Figure 1. Simplified Block Diagram, NCD57080A  
V
DD2  
V
DD1  
V
DD2  
V
DD1  
IN+  
OUT  
CLAMP  
GND2  
IN−  
GND1  
Figure 2. Simplified Application Schematic, NCD57080A  
www.onsemi.com  
2
NCD57080A, NCD57080B, NCD57080C  
V
DD2  
V
DD1  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUT  
IN+  
V
EE2  
Logic  
Logic  
GND1  
1
GND2  
2
Figure 3. Simplified Block Diagram, NCD57080B  
V
DD2  
V
DD1  
V
DD2  
V
DD1  
IN+  
OUT  
IN−  
GND2  
GND1  
V
EE2  
Figure 4. Simplified Application Schematic, NCD57080B  
www.onsemi.com  
3
NCD57080A, NCD57080B, NCD57080C  
V
DD1  
V
DD2  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUTH  
OUTL  
IN+  
Logic  
Logic  
GND2  
GND1  
2
1
Figure 5. Simplified Block Diagram, NCD57080C  
V
DD1  
V
DD2  
V
DD2  
V
DD1  
IN+  
OUTH  
OUTL  
GND2  
IN−  
GND1  
Figure 6. Simplified Application Schematic, NCD57080C  
www.onsemi.com  
4
NCD57080A, NCD57080B, NCD57080C  
Table 1. FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
V
DD1  
1
Power  
Input side power supply. A good quality bypassing capacitor is required from this  
pin to GND1 and should be placed close to the pins for best results.  
The under voltage lockout (UVLO) circuit enables the device to operate at power  
on when a typical supply voltage higher than V  
Please see Figure 8 for more details.  
is present.  
UVLO1OUTON  
IN+  
IN−  
2
3
I
I
Non inverted gate driver input. It is internally clamped to V  
and has a pull−  
DD1  
down resistor of 50 kW to ensure that output is low in the absence of an input  
signal. A minimum positive or negative going pulsewidth is required at IN+ be-  
fore OUT or OUTH/OUTL responds.  
Inverted gate driver input. It is internally clamped to V  
and has a pullup  
DD1  
resistor of 50 kW to ensure that output is low in the absence of an input signal. A  
minimum negative or positive going pulsewidth is required at INbefore OUT  
or OUTH/OUTL responds.  
GND1  
4
5
Power  
Power  
Input side ground reference.  
V
DD2  
Output side positive power supply. The operating range for this pin is from  
UVLO2 to its maximum allowed value. A good quality bypassing capacitor is  
required from this pin to GND2 and should be placed close to the pins for best  
results.  
GND2  
8
Power  
Output side gate drive reference connecting to IGBT emitter or FET source.  
(NCD57080A,  
NCD57080C)  
GND2  
(NCD57080B)  
7
6
OUT  
O
Driver output that provides the appropriate drive voltage and source/sink current  
to the IGBT/FET gate. OUT is actively pulled low during startup.  
(NCD57080A,  
NCD57080B)  
OUTH  
6
7
7
O
O
O
Driver high output that provides the appropriate drive voltage and source current  
to the IGBT/FET gate.  
(NCD57080C)  
OUTL  
(NCD57080C)  
Driver low output that provides the appropriate drive voltage and sink current to  
the IGBT/FET gate. OUTL is actively pulled low during startup.  
CLAMP  
(NCD57080A)  
Provides clamping for the IGBT/FET gate during the off period to protect it from  
parasitic turnon. Its internal N FET is turned on when the voltage of this pin falls  
below V  
. It is to be tied directly to IGBT/FET gate with minimum trace  
CLAMPTHR  
length for best results.  
V
8
Power  
Output side negative power supply. A good quality bypassing capacitor is re-  
quired from this pin to GND2 and should be placed close to the pins for best  
results.  
EE2  
(NCD57080B)  
www.onsemi.com  
5
NCD57080A, NCD57080B, NCD57080C  
Table 2. ABSOLUTE MAXIMUM RATINGS (Note 1) Over operating freeair temperature range unless otherwise noted.  
Parameter  
Symbol  
Minimum  
0.3  
0.3  
18  
Maximum  
Unit  
V
Supply voltage, input side  
V
V
GND1  
DD1−  
22  
32  
0.3  
36  
Positive Power Supply, output side  
GND2  
GND2  
V
DD2−  
Negative Power Supply, output side  
V
V
EE2−  
Differential Power Supply, output side (NCD57080B)  
V
V
MAX2  
0
V
DD2EE2  
(V  
)
Gatedriver output high voltage  
NCD57080A  
V
V
GND2  
GND2  
GND2  
V
DD2  
+ 0.3  
V
V
OUT  
NCD57080B  
NCD57080C  
OUT  
V
OUTH  
Gatedriver output low voltage  
NCD57080A  
V
OUT  
GND2  
0.3  
NCD57080B  
V V  
OUT EE2  
NCD57080C  
V
OUTL  
GND2  
Gatedriver output sourcing current  
I
6.5  
A
A
PKSRC  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
DD2  
= 15 V, V  
= 0 V)  
EE2  
Gatedriver output sinking current  
I
6.5  
2.5  
10  
PKSNK  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
DD2  
= 15 V, V  
= 0 V)  
EE2  
Clamp sinking current  
I
A
PKCLAMP  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
= 2.5 V)  
CLAMP  
Maximum Short Circuit Clamping Time  
(I = 500 mA)  
t
ms  
CLP  
OUT_CLAMP  
Voltage at IN+, IN−  
V
GND1  
0.3  
0.3  
V
V
+ 0.3  
V
V
LIM−  
DD1  
Clamp Voltage  
V
GND2  
+ 0.3  
CLAMP−  
DD2  
Power Dissipation (SOIC8 narrow package) with 4layer board  
Input to Output Isolation Voltage  
PD  
1315  
mW  
V
V
ISO  
1200  
40  
1200  
150  
150  
2
Maximum Junction Temperature  
T (max)  
°C  
°C  
kV  
kV  
J
Storage Temperature Range  
T
STG  
65  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
Moisture Sensitivity Level  
ESDHBM  
ESDCDM  
MSL  
2
1
Lead Temperature Soldering Reflow, PbFree (Note 3)  
T
SLD  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 25°C.  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
6
 
NCD57080A, NCD57080B, NCD57080C  
Table 3. THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Value  
Unit  
95 (4layer board)  
175 (1layer board)  
RqJA  
°C/W  
Thermal Characteristics, SOIC8 narrow body (Note 4)  
Thermal Resistance, JunctiontoAir (Note 5)  
4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
5. Values based on copper area of 100 mm2 (or 0.16 in2) of 1 oz copper thickness and FR4 PCB substrate.  
Table 4. OPERATING RANGES (Note 6)  
Parameter  
Symbol  
Min  
UVLO1  
UVLO2  
15  
Max  
20  
30  
0
Unit  
Supply voltage, input side  
V
V
V
V
DD1GND1  
DD2GND2  
Positive Power Supply, output side  
Negative Power Supply, output side (NCD57080B)  
Differential Power Supply, output side (NCD57080B)  
Low level input voltage at IN+, IN(Note 7)  
High level input voltage at IN+, IN(Note 7)  
Common Mode Transient Immunity  
V
V
EE2GND2  
V
(V  
MAX2  
)
0
32  
V
DD2VEE2  
V
IL  
0
0.3 x V  
V
DD1  
DD1  
V
IH  
0.7 x V  
V
V
DD1  
|dV /dt|  
100  
kV/ms  
°C  
ISO  
Ambient Temperature  
T
A
40  
125  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
7. Table values are valid for 3.3 V and 5 V V  
, for higher V  
voltages, the threshold values are maintained at the 5 V V  
levels.  
DD1  
DD1  
DD1  
www.onsemi.com  
7
 
NCD57080A, NCD57080B, NCD57080C  
Table 5. ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57080B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VOLTAGE SUPPLY  
UVLO1 Output Enabled  
UVLO1 Output Disabled  
UVLO1 Hysteresis  
V
3.1  
V
V
UVLO1OUTON  
V
2.4  
0.1  
UVLO1OUTOFF  
V
V
UVLO1HYST  
UVLO2 Output Enabled  
UVLO2 Output Disabled  
UVLO2 Hysteresis  
V
12.4  
11.5  
12.9  
12  
1
13.4  
12.5  
V
UVLO2OUTON  
UVLO2OUTOFF  
V
V
V
V
UVLO2HYST  
Input Supply Quiescent Current  
IN+ = Low, IN= Low, V  
IN+ = Low, IN= Low  
IN+ = Low, IN= Low, V  
IN+ = High, IN= Low  
= 3.3 V  
= 15 V  
I
2
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD103.3  
I
DD105  
I
2
DD1  
DD1015  
I
5.5  
2
DD11005  
Output Positive Supply  
Quiescent Current  
IN+ = Low, IN= Low, no load  
IN+ = High, IN= Low, no load  
IN+ = Low, IN= Low, no load,  
I
DD20  
I
2
DD2100  
Output Negative Supply  
Quiescent Current  
(NCD57080B)  
I
2
EE20  
V
EE2  
= 8 V  
IN+ = High, IN= Low, no load,  
I
2
mA  
EE2100  
V
EE2  
= 8 V  
LOGIC INPUT AND OUTPUT  
IN+, IN, Low Input Voltage  
V
0.3 x  
DD1  
V
V
V
IL  
(Note 7)  
V
IN+, IN, High Input Voltage  
(Note 7)  
V
IH  
0.7 x  
DD1  
V
Input Hysteresis Voltage  
(Note 7)  
V
I
0.15 x  
DD1  
INHYST  
V
INInput Current  
V
IN−  
V
IN−  
V
IN−  
V
IN−  
V
IN+  
V
IN+  
V
IN+  
V
IN+  
= 0 V, V  
= 0 V  
= 3.3 V  
100  
100  
100  
100  
100  
100  
100  
100  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ns  
DD1  
INL3.3  
I
INL5  
= 0 V, V  
= 0 V, V  
= 15 V  
= 20 V  
I
DD1  
DD1  
INL15  
INL20  
I
IN+ Input Current  
= V  
= 3.3 V  
= 5 V  
I
IN+H3.3  
DD1  
= V  
= V  
= V  
I
IN+H5  
DD1  
DD1  
DD1  
= 15 V  
= 20 V  
I
IN+H15  
IN+H20  
I
Input Pulse Width of IN+, INfor  
Guaranteed No Response at  
Output  
t
ONMIN1  
Input Pulse Width of IN+, INfor  
t
40  
ns  
V
ONMIN2  
Guaranteed Response at Output  
DRIVER OUTPUT  
Output Low State  
I
I
= 200 mA  
V
V
0.15  
0.3  
0.8  
SINK  
OUTL1  
(V  
(V  
(V  
– GND2 for NCD57080A)  
OUT  
OUT  
OUTL  
– V  
for NCD57080B)  
EE2  
= 1.0 A, T = 25°C  
SINK  
A
OUTL2  
– GND2 for  
NCD57080C)  
www.onsemi.com  
8
 
NCD57080A, NCD57080B, NCD57080C  
Table 5. ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57080B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DRIVER OUTPUT  
Output High State  
I
I
= 200 mA  
V
V
0.2  
0.35  
1.0  
V
SRC  
OUTH1  
(V  
DD2  
(V  
DD2  
(V  
DD2  
– V  
– V  
– V  
for NCD57080A)  
for NCD57080B)  
for NCD57080C)  
OUT  
OUT  
OUTL  
= 1.0 A, T = 25°C  
SRC  
A
OUTH2  
Peak Driver Current, Sink  
Peak Driver Current, Source  
MILLER CLAMP (NCD57080A)  
Clamp Voltage  
I
6.5  
6.5  
A
A
PKSNK1  
I
PKSRC1  
I
I
= 2.5 A, T = 25°C  
V
CLAMP  
2
V
CLAMP  
A
= 2.5 A,  
T = 40°C to 125°C  
3.5  
2.5  
CLAMP  
A
Clamp Activation Threshold  
IGBT SHORT CIRCUIT CLAMPING  
Clamping Voltage, Sourcing  
V
1.5  
2
V
V
CLAMPTHR  
IN+ = Low, IN= High,  
V
0.7  
0.9  
1.5  
1.7  
CLAMPOUTH  
(V  
OUT  
/ V  
OUTH  
– V  
)
I
= 500 mA,  
DD2  
CLAMPOUT/OUTH  
(pulse test, t  
= 10 ms)  
CLPmax  
Clamping Voltage, Sinking  
(V V  
IN+ = High, IN= Low,  
I = 500 mA,  
CLAMPOUTL  
(pulse test, t  
V
0.8  
1.1  
V
V
CLAMPOUTL  
)
OUTL  
DD2  
= 10 ms)  
CLPmax  
Clamping Voltage, Clamp  
(V V ) (NCD57080A)  
IN+ = High, IN= Low,  
= 500 mA  
V
CLAMPCLAMP  
I
CLAMPCLAMP  
CLAMP  
DD2  
(pulse test, t  
= 10 ms)  
CLPmax  
DYNAMIC CHARACTERISTIC  
IN+, INto Output High  
Propagation Delay  
C
IH  
= 10 nF  
LOAD  
V
to 10% of output change  
Pulse Width > 150 ns.  
V
DD1  
V
DD1  
V
DD1  
V
DD1  
= V  
= V  
= V  
= V  
= 3.3V, V  
= 0 V  
t
PDON3.3  
40  
40  
40  
40  
60  
60  
60  
60  
90  
90  
90  
90  
ns  
ns  
ns  
ns  
IN+  
IN+  
IN+  
IN+  
IN−  
= 5 V, V  
= 0 V  
t
PDON5  
IN−  
= 15 V, V  
= 20 V, V  
= 0 V  
= 0 V  
t
IN−  
IN−  
PDON15  
PDON20  
t
IN+, INto Output Low  
Propagation Delay  
C
IH  
= 10 nF  
LOAD  
V
to 10% of output change  
Pulse Width > 150 ns.  
V
V
V
V
= V  
= V  
= V  
= V  
= 3.3 V, V  
= 0 V  
t
PDOFF3.3  
40  
40  
40  
40  
60  
60  
60  
60  
6  
90  
90  
90  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD1  
DD1  
DD1  
DD1  
IN+  
IN+  
IN+  
IN+  
IN−  
= 5 V, V  
= 0 V  
t
PDOFF5  
IN−  
= 15 V, V  
= 20 V, V  
= 0 V  
= 0 V  
t
IN−  
IN−  
PDOFF15  
PDOFF20  
t
Propagation Delay Distortion  
T = 25°C, PW > 150 ns  
A
t
DISTORT  
(= t  
t  
PDOFF  
)
PDON  
T = 40°C to 125°C, PW > 150 ns  
A
25  
30  
25  
30  
Prop Delay Distortion between  
Parts  
PW > 150 ns  
t
0
13  
DISTORT_TOT  
Rise Time (see Fig. 3)  
Fall Time (see Fig. 3)  
UVLO1 Fall Delay  
C
= 1 nF,  
ns  
ns  
ns  
LOAD  
10% to 90% of Output Change  
C
= 1 nF,  
13  
LOAD  
90% to 10% of Output Change  
t
1500  
UVF1  
www.onsemi.com  
9
NCD57080A, NCD57080B, NCD57080C  
Table 5. ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57080B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC CHARACTERISTIC  
UVLO1 Rise Delay  
UVLO2 Fall Delay  
UVLO2 Rise Delay  
t
770  
1000  
1000  
ns  
ns  
ns  
UVR1  
t
UVF2  
UVR2  
t
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. Values based on design and/or characterization.  
V
IH  
V
IL  
IN+  
t
t
tOFF-MIN1  
FALL  
RISE  
t
ONMIN2  
90%  
t
PDON  
t
ONMIN1  
t
PDOFF  
OUT/OUTH  
10%  
Figure 7. Propagation Delay, Rise and Fall time  
V
DD2  
V
UVLO1 OUT ON  
V
UVLO1 OUT OFF  
V
DD1  
t
t
UVF1  
t
UVF1  
UVR1  
t
t
UVR1  
UVR1  
t
UVR1spread  
IN+  
OUT/OUTH  
Figure 8A. UVLO1 and Associated Timing Waveforms  
www.onsemi.com  
10  
 
NCD57080A, NCD57080B, NCD57080C  
V
DD2  
V
UVLO1 OUT ON  
V
UVLO1 OUT OFF  
t
V
DD1  
UVF1  
t
UVR1  
t
t
UVR1  
UVR1  
t
t
UVR1spread  
UVR1  
IN+  
OUT/OUTH  
Figure 8B. UVLO1 Waveforms Depicting VDD1 Glitch Filtering  
V
DD1  
V
UVLO2 OUT ON  
V
UVLO2 OUT OFF  
V
DD2  
t
t
UVF2  
t
UVF2  
UVR2  
t
t
UVR2  
UVR2  
t
UVR2spread  
IN+  
OUT/OUTH  
Figure 8C. UVLO2 and Associated Timing Waveforms  
www.onsemi.com  
11  
NCD57080A, NCD57080B, NCD57080C  
V
DD1  
V
UVLO2 OUT ON  
V
UVLO2 OUT OFF  
V
DD2  
t
UVF2  
t
UVR2  
t
t
UVR2  
UVR2  
t
t
UVR2spread  
UVR2  
IN+  
OUT/OUTH  
Figure 8D. UVLO2 Waveforms Depicting VDD2 Glitch Filtering  
V
DD1  
Clamping  
Circuit  
IN+  
Figure 9. Input Pin Structure  
www.onsemi.com  
12  
NCD57080A, NCD57080B, NCD57080C  
TYPICAL CHARACTERISTICS  
5
4
3
2
1
0
5
4
3
2
1
0
50  
25  
0
25  
50  
75  
100 125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
V
= 3V3, IN+ = 0%  
= 3V3, IN+ = 100%  
= 3V3, IN+ = 50%  
V
V
V
= 20 V, IN+ = 0%  
= 20 V, IN+ = 50%  
= 20 V, IN+ = 100%  
DD1  
DD1  
DD1  
DD1  
V
V
DD1  
DD1  
Figure 10. IDD1 Supply Current VDD1 = 3.3 V  
Figure 11. IDD1 Supply Current VDD1 = 20 V  
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100 125  
Temperature [°C]  
Temperature [°C]  
V
V
V
= 5V, IN+ = 0%  
= 5 V, IN+ = 100%  
= 5 V, IN+ = 50%  
V
V
= 15 V, IN+ = LOW  
DD1  
DD2  
DD2  
= 15 V, IN+ = V  
DD1  
DD1  
DD1  
Figure 12. IDD1 Supply Current VDD1 = 5 V  
Figure 13. IDD2 Supply Current VDD2 = 15 V  
2.5  
20  
15  
10  
5
2
1.5  
1
0.5  
0
50  
0
25  
0
25  
Temperature [°C]  
= 30 V, IN+ = LOW  
50  
75  
100  
125  
1
10  
100  
1000  
f [kHz]  
V
V
DD2  
DD2  
CG = 100 nF  
CG = 10 nF  
CG = 1 nF  
= 30 V,IN+ = V  
DD1  
Figure 14. IDD2 Supply Current VDD2 = 30 V  
Figure 14a. IDD2 vs. Switching Frequency  
www.onsemi.com  
13  
NCD57080A, NCD57080B, NCD57080C  
TYPICAL CHARACTERISTICS (continued)  
13.5  
2.9  
2.8  
2.7  
2.6  
13  
12.5  
12  
11.5  
50  
25  
0
25  
50  
75  
100 125  
50  
25  
0
25  
50  
75  
100 125  
Temperature [°C]  
Temperature [°C]  
UVLO2 ON Threshold  
UVLO2 OFF Threshold  
UVLO1 ON Threshold  
UVLO1 OFF Threshold  
Figure 15. UVLO1 Threshold Voltage  
Figure 16. UVLO2 Threshold Voltage  
3
2.1  
2.5  
2
2
1.9  
1.8  
1.5  
1
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 17a. Miller Clamp Voltage (2.5 A)  
Figure 17b. Miller Clamp Activation  
Voltage Threshold  
1.5  
1.4  
1.3  
1.2  
1.1  
1
72  
70  
68  
66  
64  
62  
0.9  
0.8  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
125  
125  
Temperature [°C]  
Temperature [°C]  
IN+, V  
= 5 V  
DD1  
VOUTV  
SCKT CLAMPING  
DD2  
IN,V  
= 5 V  
DD1  
VCLAMPV  
SCKT CLAMPING  
DD2  
Figure 19. Propagation Delay Turnon  
Figure 18. IGBT Short Circuit CLAMP  
Voltage Drop  
www.onsemi.com  
14  
NCD57080A, NCD57080B, NCD57080C  
TYPICAL CHARACTERISTICS (continued)  
15  
71  
69  
67  
65  
14  
13  
12  
50  
25  
0
25  
Temperature [°C]  
= 5 V  
50  
75  
100  
125  
50  
25  
0
25  
Temperature [°C]  
= 5 V  
50  
75  
100  
125  
IN+, V  
DD1  
IN+, V  
IN, V  
DD1  
DD1  
IN, V  
= 5 V  
DD1  
= 5 V  
Figure 20. Propagation Delay Turnoff  
Figure 21. Rise Time  
14  
50  
40  
30  
20  
13  
12  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
IN+, V  
= 5 V  
= 5 V  
DD1  
V
DD1  
V
DD1  
= 3V3  
= 5 V  
V
V
= 15 V  
= 20 V  
DD1  
IN, V  
DD1  
DD1  
Figure 22. Fall Time  
Figure 23. Input Current – Positive Input  
30  
35  
40  
45  
50  
55  
60  
125  
50  
25  
0
25  
50  
75  
100  
Temperature [°C]  
V
DD1  
V
DD1  
= 3V3  
= 5 V  
V
V
= 15 V  
= 20 V  
DD1  
DD1  
Figure 24. Input Current – Negative Input  
www.onsemi.com  
15  
NCD57080A, NCD57080B, NCD57080C  
Under Voltage Lockout (Refer to Figure 8A/8B/8C/8D)  
UVLO ensures correct switching of IGBT connected to  
the driver output.  
value of 2 W has to be used in order to avoid interference of  
the high di/dt with internal circuitry (e.g. UVLO2).  
After the poweron of the driver there has to be a rising  
edge applied to the IN+ or falling edge to the INin order  
for the output to start following the inputs. This serves as a  
protection against producing partial pulses at the output if  
The IGBT is turnedoff and the output is disabled, if  
the supply V  
drops below V  
or  
DD1  
UVLO1OUTOFF  
V
DD2  
drops below V  
.
UVLO2OUTOFF  
The driver output does not follow the input signal on  
the V  
or V  
is applied in the middle of the input PWM  
DD1  
DD2  
IN+ or INuntil the V rises above the  
DDX  
pulse.  
If the V  
V
and the input signal rising edge is  
UVLOXOUTON  
rises over V  
level the PWM  
DD2  
UVLOOUTON  
applied to the IN+ or IN−  
will appear on the output after t  
+ t  
. The  
UVR2  
UVR2spread  
V  
is not monitored (NCD57080B)  
EE2  
t
time is variable and is defined as a time from  
UVR2spread  
end of t  
to first rising edge on IN+ input. If the V  
UVR2  
DD2  
With high loading gate capacitances over 10 nF it is  
important to follow the decoupling capacitor routing  
guidelines as shown on Figure 32. The decoupling capacitor  
value should be at least 10 mF. Also gate resistor of minimal  
is starting from 0 V the time until PWM is at the output of  
the driver is longer than t + t . This is caused  
by start up time of internal circuits of the driver.  
UVR2 UVR2spread  
www.onsemi.com  
16  
NCD57080A, NCD57080B, NCD57080C  
ACTIVE MILER CLAMP PROTECTION (CLAMP)  
NCD57080B supports bipolar power supply to prevent  
unintentional turning on.  
For operation with unipolar supply, typically,  
V = 15 V with respect to GND2, and V = GND2. In  
DD2  
EE2  
For operation with bipolar supplies, the IGBT is turned off  
with a negative voltage through OUT with respect to its  
emitter. This prevents the IGBT from unintentionally  
turning on because of current induced from its collector to  
its gate due to Miller effect. Typical values for bipolar  
this case, the IGBT can turn on due to additional charge from  
IGBT Miller capacitance caused by a high voltage slew rate  
transition on the IGBT collector. To prevent IGBT to turn on,  
the CLAMP pin is connected directly to IGBT gate and  
Miller current is sinked through a low impedance CLAMP  
transistor. When the IGBT is turnedoff and the gate voltage  
operation are V  
GND2.  
= 15 V and V  
= 5 V with respect to  
DD2  
EE2  
transitions below V , the CLAMP output is activated  
CLAMP  
NCD57080A supports unipolar power supply with active  
Miller clamp.  
OUT/OUTH  
OUT/OUTH  
Figure 25. Current Path with Miler Clamp Protection  
Figure 26. Current Path without Miler Clamp Protection  
Noninverting and Inverting Input Pin (IN+, IN)  
NCD57080x has two possible input modes to control  
IGBT. Both inputs have defined minimum input pulse width  
to filter occasional glitches.  
Noninverting input IN+ controls the driver output  
while inverting input INis set to LOW  
NCD57080B is designed to support bipolar power supply.  
For reliable high output current delivery suitable external  
power capacitors are required. Parallel combination of  
100 nF + 4.7 mF ceramic capacitors is optimal for a wide  
range of applications using IGBT. For reliable driving of  
IGBT modules (containing several parallel IGBTs) a higher  
capacity is required (typically 100 nF + 10 mF). Capacitors  
should be as close as possible to the drivers power pins.  
In bipolar power supply the driver is typically supplied  
Inverting input INcontrols the driver output while  
noninverting input IN+ is set to HIGH  
WARNING: When the application uses an independent  
or separate power supply for the control  
unit and the input side of the driver, all  
inputs should be protected by a serial  
with a positive voltage of 15 V at V  
and negative  
DD2  
voltage 5 V at V  
(Figure 27). Negative power  
EE2  
supply prevents a dynamic turn on through the internal  
IGBT input capacitance  
resistor (In case of a power failure of the  
driver, the driver may be damaged due to  
overloading of the input protection circuits)  
In Unipolar power supply the driver is typically  
supplied with a positive voltage of 15 V at V  
.
DD2  
Dynamic turn on through the internal IGBT input  
capacitance could be prevented by Active Miler Clamp  
function (NCD57080A). CLAMP output should be  
directly connected to IGBT gate (Figure 25)  
Power Supply (VDD1, VDD2, VEE2  
NCD57080A and NCD57080C are designed to support  
unipolar power supply.  
)
www.onsemi.com  
17  
 
NCD57080A, NCD57080B, NCD57080C  
V
DD1  
V
EE2  
V
DD1  
IN+  
IN-  
GND2  
OUT  
10 µF  
100 n  
V
EE2  
-
+
-
+
100 n 10 µF  
GND 1  
V
DD2  
V
DD2  
10 µF  
100 n  
+
-
Figure 27. Bipolar Power Supply NCD57080B  
V
GND2  
CLAMP  
OUT  
DD1  
V
DD1  
IN+  
IN-  
+
100 n  
10 µF  
-
GND1  
V
DD2  
V
DD2  
10µF  
100 n  
+
-
Figure 28. Unipolar Power Supply NCD57080A  
V
GND2  
OUTL  
OUTH  
DD1  
V
DD1  
IN+  
IN-  
+
-
100 n  
10 µF  
GND1  
V
DD2  
V
DD2  
10 µF  
100 n  
+
-
Figure 29. Suggested Bypassing Scheme for NCD57080x  
www.onsemi.com  
18  
NCD57080A, NCD57080B, NCD57080C  
Common Mode Transient Immunity (CMTI)  
10µF  
+
GND2  
CLAMP  
OUT  
V
DD1  
+
-
IN+  
IN-  
S1  
5V  
OUT must remain stable  
-
V
DD2  
GND1  
15V  
+
10µF  
-
HV PULSE  
10µF  
+
GND2  
OUTL  
OUTH  
V
DD1  
+
-
IN+  
IN-  
S1  
5V  
OUT must remain stable  
-
V
DD2  
GND1  
15V  
+
-
10µF  
HV PULSE  
10µF  
+
V
EE2  
V
DD1  
+
GND2  
OUT  
IN+  
IN-  
S1  
5V  
-
-
OUT must remain stable  
V
DD2  
GND1  
15V  
+
-
10µF  
HV PULSE  
Figure 30. CommonMode Transient Immunity Test Circuit  
High-speed signals  
Ground plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Keep this space free  
40 mils  
1 mm  
40 mils  
1 mm  
from traces, pads and  
vias  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Low-speed signals  
157 mils  
(4 mm)  
Figure 31. Recommended Layer Stack  
www.onsemi.com  
19  
NCD57080A, NCD57080B, NCD57080C  
Figure 32. Recommended Layout  
www.onsemi.com  
20  
NCD57080A, NCD57080B, NCD57080C  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCD57080ADR2G  
2500 / Tape & Reel  
2500 / Tape & Reel  
SOIC8 Narrow Body, (PbFree)  
SOIC8 Narrow Body, (PbFree)  
NCD57080BDR2G  
(In Development)  
NCD57080CDR2G  
2500 / Tape & Reel  
SOIC8 Narrow Body, (PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
21  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY