NCD57090D [ONSEMI]

Isolated High Current IGBT/MOSFET Gate Driver;
NCD57090D
型号: NCD57090D
厂家: ONSEMI    ONSEMI
描述:

Isolated High Current IGBT/MOSFET Gate Driver

栅 双极性晶体管
文件: 总25页 (文件大小:1979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated High Current  
IGBT/MOSFET Gate Driver  
NCx57090y, NCx57091y  
(x = D or V, y = A, B, C, D, E or F)  
NCx57090y, NCx57091y are highcurrent single channel  
IGBT/MOSFET gate drivers with 5 kVrms internal galvanic isolation,  
designed for high system efficiency and reliability in high power  
applications. The devices accept complementary inputs and depending  
on the pin configuration, offer options such as Active Miller Clamp  
(version A/D/F), negative power supply (version B) and separate high  
and low (OUTH and OUTL) driver outputs (version C/E) for system  
design convenience. The driver accommodate wide range of input  
bias voltage and signal levels from 3.3 V to 20 V and they are  
available in widebody SOIC8 package.  
www.onsemi.com  
SOIC8 WB  
CASE 751EW  
Features  
MARKING DIAGRAM  
High Peak Output Current (+6.5 A/6.5 A)  
Low Clamp Voltage Drop Eliminates the Need of Negative Power  
Supply to Prevent Spurious Gate Turnon (Version A/D/F)  
Short Propagation Delays with Accurate Matching  
IGBT/MOSFET Gate Clamping during Short Circuit  
IGBT/MOSFET Gate Active Pull Down  
Tight UVLO Thresholds for Bias Flexibility  
Wide Bias Voltage Range including Negative V  
3.3 V, 5 V, and 15 V Logic Input  
5 kVrms Galvanic Isolation  
High Transient Immunity  
High Electromagnetic Immunity  
8
5709zy  
ALYW  
G
(Version B)  
EE2  
1
5709zy  
= Specific Device Code  
z = 0/1  
y = A/B/C/D/E/F  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
A
L
Y
W
G
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
PIN CONNECTIONS  
See detailed pin connection information on page 2 of this  
data sheet.  
Typical Applications  
Motor Control  
Uninterruptible Power Supplies (UPS)  
Automotive Applications  
Industrial Power Supplies  
Solar Inverters  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 23 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
April, 2021 Rev. 0  
NCD57090A/D  
NCx57090y, NCx57091y  
PIN CONNECTIONS  
V
V
V
IN+  
IN−  
GND1  
GND2  
CLAMP  
OUT  
V
IN+  
IN−  
DD1  
IN+  
IN−  
GND2  
OUTL  
OUTH  
EE2  
DD1  
DD1  
GND2  
OUT  
V
GND1  
V
DD2  
GND1  
DD2  
V
DD2  
NCx57090A, NCx57091A  
NCx57090B, NCx57091B  
NCx57090C, NCx57091C  
V
IN+  
IN−  
CLAMP  
OUT  
V
IN+  
IN−  
V
DD1  
IN+  
IN−  
OUTL  
OUTH  
DD1  
V
OUT  
CLAMP  
GND2  
DD1  
DD2  
V
DD2  
V
DD2  
GND1  
GND2  
GND2  
GND1  
GND1  
NCx57090D  
NCx57090E  
NCx57090F  
NOTE: x = D or V  
Figure 1. Pin Connections  
BLOCK DIAGRAM AND APPLICATION SCHEMATIC VERSION A/D/F  
V
DD1  
V
DD2  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUT  
IN+  
Logic  
Logic  
2
GND1  
VCLAMPTHR  
1
+
CLAMP  
GND2  
2
Figure 2. Simplified Block Diagram, NCD57090A/D/F  
V
DD2  
V
DD1  
V
DD2  
V
DD1  
IN+  
OUT  
IN−  
CLAMP  
GND2  
GND1  
Figure 3. Simplified Application Schematics, Version A/D/F  
www.onsemi.com  
2
NCx57090y, NCx57091y  
BLOCK DIAGRAM AND APPLICATION SCHEMATIC NCx57090B, NCx57091B  
V
DD1  
V
DD2  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUT  
IN+  
V
EE2  
Logic  
Logic  
GND1  
1
GND2  
2
Figure 4. Simplified Block Diagram, NCx57090B, NCx57091B  
V
DD2  
V
DD1  
V
DD2  
V
DD1  
IN+  
OUT  
IN−  
GND2  
GND1  
V
EE2  
Figure 5. Simplified Application Schematics, NCx57090B, NCx57091B  
www.onsemi.com  
3
NCx57090y, NCx57091y  
BLOCK DIAGRAM AND APPLICATION SCHEMATIC VERSION C/E  
V
DD1  
V
DD2  
UVLO1  
UVLO2  
V
DD2  
V
DD1  
IN−  
OUTH  
OUTL  
IN+  
Logic  
Logic  
GND2  
GND1  
2
1
Figure 6. Simplified Block Diagram, Version C/E  
V
DD1  
V
DD2  
V
DD2  
V
DD1  
IN+  
OUTH  
OUTL  
GND2  
IN−  
GND1  
Figure 7. Simplified Application Schematics, Version C/E  
www.onsemi.com  
4
NCx57090y, NCx57091y  
Table 1. FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
V
DD1  
1
Power  
Input side power supply. A good quality bypassing capacitor is required from this pin to GND1  
and should be placed close to the pins for best results.  
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
is present.  
UVLO1OUTON  
Please see Figures 9A and 9B for more details.  
IN+  
2
3
I
I
Non inverted gate driver input. It is internally clamped to V  
and has an equivalent  
DD1  
pulldown resistor of 125 kW to ensure that output is low in the absence of an input signal.  
A minimum positive or negative pulsewidth is required at IN+ before OUT or OUTH/OUTL  
responds.  
IN−  
Inverted gate driver input. It is internally clamped to V  
and has an equivalent pullup  
DD1  
resistor of 50 kW to ensure that output is low in the absence of an input signal. A minimum  
positive or negative pulsewidth is required at INbefore OUT or OUTH/OUTL responds.  
GND1  
4
5
Power  
Power  
Input side ground reference.  
V
DD2  
Output side positive power supply. The operating range for this pin is from UVLO2 to its  
maximum allowed value. A good quality bypassing capacitor is required from this pin to GND2  
and should be placed close to the pins for best results.  
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
for more details.  
is present. Please see Figure 9C and 9D  
UVLO2OUTON  
GND2  
(NCD57090A,  
NCD57090C)  
8
Power  
Output side gate drive reference connecting to IGBT emitter or MOSFET source.  
GND2  
7
5
(NCD57090B)  
GND2  
(NCD57090D,  
NCD57090E,  
NCD57090F)  
OUT  
(NCD57090A,  
NCD57090B)  
6
7
O
Driver output that provides the appropriate drive voltage and source/sink current to the IGBT/  
MOSFET gate. OUT is actively pulled low during startup.  
OUT  
(NCD57090D,  
NCD57090F)  
OUTH  
6
7
7
8
7
8
6
8
O
O
O
Driver high output that provides the appropriate drive voltage and source current to the IGBT/  
MOSFET gate.  
(NCD57090C)  
OUTH  
(NCD57090E)  
OUTL  
(NCD57090C)  
Driver low output that provides the appropriate drive voltage and sink current to the IGBT/  
MOSFET gate. OUTL is actively pulled low during startup.  
OUTL  
(NCD57090E)  
CLAMP  
(NCD57090A)  
Provides clamping for the IGBT/MOSFET gate during the off period to protect it from parasitic  
turnon. Its internal N FET is turned on when the voltage of this pin falls below V  
.
CLAMPTHR  
It is to be tied directly to IGBT/MOSFET gate with minimum trace length for best results.  
CLAMP  
(NCD57090D)  
CLAMP  
(NCD57090F)  
V
EE2  
Power  
Output side negative power supply. A good quality bypassing capacitor is required from this pin  
to GND2 and should be placed close to the pins for best results.  
(NCD57090B)  
www.onsemi.com  
5
 
NCx57090y, NCx57091y  
Table 2. SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Value  
I IV  
I IV  
I IV  
I IV  
I III  
600  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
Table 1 Rated Mains  
Voltage  
< 1000 V  
RMS  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
Climatic Classification  
40/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
V
InputtoOutput Test Voltage, Method b, V  
× 1.875 = V  
,
2250  
V
V
PR  
IORM  
PR  
pk  
100% Production Test with tm = 1 s, Partial Discharge < 5 pC  
Maximum Repetitive Peak Voltage  
Maximum Working Voltage  
V
IORM  
1200  
870  
8400  
8.0  
pk  
V
IOWM  
V
RMS  
V
IOTM  
Highest Allowable Over Voltage  
External Creepage  
V
pk  
E
CR  
mm  
mm  
mm  
°C  
E
External Clearance  
8.0  
CL  
DTI  
Insulation Thickness  
17.3  
150  
121  
1349  
T
Case  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
P
mW  
mW  
W
S,INPUT  
P
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
10  
IO  
IO  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1)  
Over operating freeair temperature range unless otherwise noted.  
Symbol  
Parameter  
Minimum  
0.3  
0.3  
18  
Maximum  
Unit  
V
V
V
GND1  
Supply Voltage, Input Side  
22  
32  
0.3  
36  
DD1  
DD2  
GND2  
GND2  
Positive Power Supply, Output Side  
V
V
Negative Power Supply, Output Side  
V
EE2  
V
V  
MAX2  
Differential Power Supply, Output Side (NCD57090B)  
0
V
DD2  
EE2  
(V  
)
Gatedriver Output High Voltage  
NCD57090A/B/D/F  
V
V
A
A
A
V
OUTH  
GND2  
V
+ 0.3  
OUT  
DD2  
V
GND2  
NCD57090C/E  
Gatedriver Output Low Voltage  
NCD57090A/B/D/F  
NCD57090C/E  
V
OUTL  
GND2  
GND2  
0.3  
OUT  
V
I
Gatedriver Output Sourcing Current  
6.5  
6.5  
2.5  
10  
PKSRC  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
DD2  
= 15 V, V  
= 0 V)  
EE2  
I
Gatedriver Output Sinking Current  
PKSNK  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
DD2  
= 15 V, V  
= 0 V)  
EE2  
I
Clamp Sinking Current  
PKCLAMP  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
= 2.5 V)  
CLAMP  
t
Maximum Short Circuit Clamping Time (I  
= 500 mA)  
OUT_CLAMP  
0.3  
0.3  
ms  
V
CLP  
V
GND1  
Voltage at IN+, IN−  
V
DD1  
V
DD2  
+ 0.3  
LIM  
V
GND2  
Clamp Voltage  
+ 0.3  
V
CLAMP  
P
D
Power Dissipation (SOIC8 Wide Package)  
1470  
mW  
www.onsemi.com  
6
 
NCx57090y, NCx57091y  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1) (continued)  
Over operating freeair temperature range unless otherwise noted.  
Symbol Parameter  
T (max) Maximum Junction Temperature  
Minimum  
Maximum  
Unit  
°C  
°C  
kV  
kV  
40  
65  
150  
150  
2
J
T
STG  
Storage Temperature Range  
ESDHBM  
ESDCDM  
MSL  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
Moisture Sensitivity Level  
2
1
T
SLD  
Lead Temperature Soldering Reflow, PbFree (Note 3)  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 25°C.  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Value  
Unit  
RqJA  
Thermal Characteristics, SOIC8 wide body (Note 4)  
Thermal Resistance, JunctiontoAir (Note 5)  
156 (1Layer)  
85 (4Layer)  
°C/W  
4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
5. Values based on copper area of 100 mm2 (or 0.16 in2) of 1 oz copper thickness and FR4 PCB substrate.  
Table 5. OPERATING RANGES (Note 6)  
Symbol  
Parameter  
Supply Voltage, Input Side  
Min  
UVLO1  
UVLO2  
15  
Max  
20  
30  
0
Unit  
V
V
V
GND1  
DD1  
DD2  
GND2  
GND2  
Positive Power Supply, Output Side  
V
V
Negative Power Supply, Output Side (NCD57090B)  
Differential Power Supply, Output Side (NCD57090B)  
Low Level Input Voltage at IN+, IN(Note 7)  
High Level Input Voltage at IN+, IN(Note 7)  
Common Mode Transient Immunity (Note 8)  
Ambient Temperature  
V
EE2  
V
VEE2 (V  
)
0
32  
V
DD2  
MAX2  
V
IL  
0
0.3 × V  
V
DD1  
DD1  
V
IH  
0.7 × V  
V
V
DD1  
|dV /dt|  
100  
125  
kV/ms  
°C  
ISO  
TA  
40  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
7. Table values are valid for 3.3 V and 5 V VDD1, for higher VDD1 voltages, the threshold values are maintained at the 5 V VDD1 levels.  
8. Was tested by 1500 V pulses up to 100 kV/ms.  
Table 6. ISOLATION CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Value  
Unit  
V
InputOutput Isolation  
Voltage  
T = 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
ISO, inputoutput  
A
t = 1.0 minute, I  
< 30 mA, 50 Hz  
IO  
(Note 9, 10, 11)  
11  
R
Isolation Resistance  
V
IO  
= 500 V (Note 9)  
10  
W
ISO  
9. Device is considered a twoterminal device: pins 1 to 4 are shorted together and pins 5 to 9 are shorted together.  
10.5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
11. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN VDE V 088411 Safety and Insulation  
Ratings Table.  
www.onsemi.com  
7
 
NCx57090y, NCx57091y  
ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57090B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
UVLO1 Output Enabled  
UVLO1 Output Disabled  
UVLO1 Hysteresis  
2.4  
0.1  
12.4  
8.7  
11.5  
7.7  
0.7  
3.1  
V
V
UVLO1OUTON  
V
UVLO1OUTOFF  
V
V
UVLO1HYST  
V
UVLO2 Output Enabled  
NCx57090y  
12.9  
9
13.4  
9.3  
12.5  
8.3  
V
UVLO2OUTON  
NCx57091y  
NCx57090y  
NCx57091y  
V
V
UVLO2 Output Disabled  
12  
8
V
UVLO2OUTOFF  
V
V
UVLO2 Hysteresis  
1
V
UVLO2HYST  
I
Input Supply Quiescent Current  
IN+ = Low, IN= Low, V  
IN+ = Low, IN= Low  
IN+ = Low, IN= Low, V  
IN+ = High, IN= Low  
= 3.3 V  
= 15 V  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD103.3  
DD1  
I
2
DD105  
I
2
DD1015  
DD1  
I
5.5  
2
DD11005  
I
Output Positive Supply  
Quiescent Current  
IN+ = Low, IN= Low, no load  
IN+ = High, IN= Low, no load  
IN+ = Low, IN= Low, no load,  
DD20  
I
2
DD2100  
I
Output Negative Supply  
Quiescent Current (NCD57090B)  
2
EE20  
V
EE2  
= 8 V  
I
IN+ = High, IN= Low, no load, V  
= 8 V  
2
mA  
EE2100  
EE2  
LOGIC INPUT AND OUTPUT  
V
IN+, IN, Low Input Voltage  
IN+, IN, High Input Voltage  
Input Hysteresis Voltage  
INInput Current  
Level scale for V  
= 3.3 to 5 V  
0.3 ×  
V
V
V
IL  
DDI  
for V  
> 5 V is the same as for  
V
DD1  
DDI  
= 5 V  
V
DDI  
V
IH  
Level scale for V  
= 3.3 to 5 V  
0.7 ×  
V
DD1  
DDI  
for V  
> 5 V is the same as for  
DDI  
V
= 5 V  
DDI  
V
Level scale for V  
= 3.3 to 5 V  
0.15 ×  
V
DD1  
INHYST  
DDI  
for V  
> 5 V is the same as for  
DDI  
V
DDI  
V
IN−  
V
IN−  
V
IN−  
V
IN−  
V
IN+  
V
IN+  
V
IN+  
V
IN+  
= 5 V  
I
= 0 V, V  
= 0 V  
= 3.3 V  
100  
100  
100  
100  
100  
100  
100  
100  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ns  
INL3.3  
DD1  
I
INL5  
I
= 0 V, V  
= 0 V, V  
= 15 V  
= 20 V  
INL15  
INL20  
DD1  
DD1  
I
I
IN+ Input Current  
= V  
= V  
= V  
= V  
= 3.3 V  
= 5 V  
IN+H3.3  
DD1  
DD1  
DD1  
DD1  
I
IN+H5  
I
= 15 V  
= 20 V  
IN+H15  
IN+H20  
I
t
Input Pulse Width of IN+, INfor  
Guaranteed No Response at  
Output  
ONMIN1  
t
Input Pulse Width of IN+, INfor  
Guaranteed Response at Output  
40  
ns  
ONMIN2  
www.onsemi.com  
8
NCx57090y, NCx57091y  
ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57090B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
0.15  
Max  
Unit  
DRIVER OUTPUT  
V
V
Output Low State  
(V – GND2 for  
NCD57090A/D/F)  
I
I
I
I
= 200 mA  
0.3  
V
OUTL1  
OUTL2  
OUTH1  
OUTH2  
SINK  
SINK  
SRC  
SRC  
OUT  
(V  
(V  
– V  
for NCD57090B)  
OUT  
OUTL  
EE2  
= 1.0 A, T = 25°C  
0.8  
A
– GND2 for  
NCD57090C/E)  
V
V
Output High State  
= 200 mA  
0.2  
0.35  
1.0  
V
(V  
DD2  
– V  
for  
OUT  
NCD57090A/B/D/F)  
(V  
DD2  
(V  
DD2  
– V  
– V  
for NCD57090B)  
OUTL  
OUT  
= 1.0 A, T = 25°C  
A
for  
NCD57090C/E)  
I
Peak Driver Current, Sink  
(Note 12)  
6.5  
6.5  
A
A
PKSNK1  
I
Peak Driver Current, Source  
(Note 12)  
PKSRC1  
MILLER CLAMP (NCD57090A)  
V
Clamp Voltage  
I
I
= 2.5 A, T = 25°C  
2
V
CLAMP  
CLAMP  
A
= 2.5 A,  
T = 40°C to 125°C  
3.5  
CLAMP  
A
V
Clamp Activation Threshold  
1.5  
2
2.5  
0.9  
V
V
CLAMPTHR  
IGBT SHORT CIRCUIT CLAMPING  
V
Clamping Voltage, Sourcing  
IN+ = Low, IN= High,  
0.7  
CLAMPOUTH  
(V / V – V  
)
I
= 500 mA,  
OUT  
OUTH  
DD2  
CLAMPOUT/OUTH  
(pulse test, t  
= 10 ms)  
CLPmax  
V
Clamping Voltage, Sinking  
(V V  
IN+ = High, IN= Low,  
I = 500 mA,  
CLAMPOUTL  
0.8  
1.1  
1.5  
1.7  
V
V
CLAMPOUTL  
)
OUTL  
DD2  
(pulse test, t  
= 10 ms)  
CLPmax  
V
Clamping Voltage, Clamp  
(V V  
IN+ = High, IN= Low,  
I = 500 mA  
CLAMPCLAMP  
CLAMPCLAMP  
)
CLAMP  
DD2  
(NCD57090A/D/F)  
(pulse test, t  
= 10 ms)  
CLPmax  
DYNAMIC CHARACTERISTIC  
IN+, INto Output High  
Propagation Delay  
C
IH  
= 10 nF  
LOAD  
V
to 10% of output change  
Pulse Width > 150 ns.  
t
V
V
V
V
= V  
= V  
= V  
= V  
= 3.3V, V = 0 V  
IN−  
40  
40  
40  
40  
60  
60  
60  
60  
90  
90  
90  
90  
ns  
ns  
ns  
ns  
PDON3.3  
DD1  
DD1  
DD1  
DD1  
IN+  
IN+  
IN+  
IN+  
t
= 5 V, V  
= 0 V  
PDON5  
IN−  
t
= 15 V, V  
= 20 V, V  
= 0 V  
= 0 V  
PDON15  
PDON20  
IN−  
t
IN−  
IN+, INto Output Low  
Propagation Delay  
C
= 10 nF  
LOAD  
to 10% of output change  
V
IH  
Pulse Width > 150 ns.  
t
V
V
V
V
= V  
= V  
= V  
= V  
= 3.3 V, V  
= 0 V  
40  
40  
60  
60  
60  
60  
0
90  
90  
90  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PDOFF3.3  
DD1  
DD1  
DD1  
DD1  
IN+  
IN+  
IN+  
IN+  
IN−  
t
= 5 V, V  
= 0 V  
PDOFF5  
IN−  
t
= 15 V, V  
= 20 V, V  
= 0 V  
= 0 V  
40  
PDOFF15  
PDOFF20  
IN−  
t
40  
IN−  
t
Propagation Delay Distortion  
T = 25°C, PW > 150 ns  
A
DISTORT  
(= t  
t  
)
PDON  
PDOFF  
T = 40°C to 125°C, PW > 150 ns  
A
25  
30  
25  
30  
t
Prop Delay Distortion between  
Parts  
PW > 150 ns  
0
DISTORT_TOT  
t
Rise Time (see Figure 8)  
C
= 1 nF,  
LOAD  
13  
ns  
RISE  
10% to 90% of Output Change  
www.onsemi.com  
9
NCx57090y, NCx57091y  
ELECTRICAL CHARACTERISTICS V  
= 5 V, V  
= 15 V, (V  
= 0 V for NCD57090B).  
DD1  
DD2  
EE2  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
DYNAMIC CHARACTERISTIC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
Fall Time (see Figure 8)  
C
= 1 nF,  
LOAD  
13  
ns  
FALL  
90% to 10% of Output Change  
t
UVLO1 Fall Delay (Note 12)  
1500  
770  
ns  
ns  
ns  
ns  
UVF1  
UVR1  
t
UVLO1 Rise Delay (Note 12)  
UVLO2 Fall Delay (Note 12)  
UVLO2 Rise Delay (Note 12)  
t
1000  
1000  
UVF2  
UVR2  
t
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
12.Values based on design and/or characterization.  
www.onsemi.com  
10  
 
NCx57090y, NCx57091y  
V
IH  
V
IL  
IN+  
t
t
t
FALL  
ONMIN1  
RISE  
t
ONMIN2  
90%  
t
PDON  
t
ONMIN1  
t
PDOFF  
OUT/OUTH  
10%  
Figure 8. Propagation Delay, Rise and Fall time  
V
DD2  
V
UVLO1HYST  
V
V
UVLO1OUTON  
UVLO1OUTOFF  
V
DD1  
t
t
t
t
UVR1  
t
t
UVR1spread  
UVF1  
UVF1  
UVR1  
UVR2  
IN+  
OUT/OUTH  
Output Rampup and Rampdown Times during UVLO1  
Figure 9A. UVLO1 and Associated Timing Waveforms  
www.onsemi.com  
11  
 
NCx57090y, NCx57091y  
V
DD2  
V
V
UVLO1OUTON  
UVLO1OUTOFF  
V
DD1  
t
t
t
t
t
UVR1  
t
UVR1  
UVF1  
UVF1  
UVR1  
UVR1spread  
IN+  
OUT/OUTH  
V
DD1  
Glitch Filtering  
Figure 9B. UVLO1 Waveforms Depicting VDD1 Glitch Filtering  
V
DD1  
V
UVLO2HYST  
V
V
UVLO2OUTON  
UVLO2OUTOFF  
V
DD2  
t
t
t
t
UVF2  
t
UVR2  
UVF2  
UVR2  
t
UVR2  
UVR2spread  
IN+  
OUT/OUTH  
Output Rampup and Rampdown Times during UVLO2  
Figure 9C. UVLO2 and Associated Timing Waveforms  
www.onsemi.com  
12  
NCx57090y, NCx57091y  
V
DD1  
V
V
UVLO2OUTON  
UVLO2OUTOFF  
V
DD2  
t
t
t
t
t
UVR2  
UVR2  
UVF2  
UVR2  
UVR2  
t
UVR2spread  
IN+  
OUT/OUTH  
V
DD2  
Glitch Filtering  
Figure 9D. UVLO2 Waveforms Depicting VDD2 Glitch Filtering  
V
DD1  
Clamping  
Circuit  
IN+  
V
V
DD1 DD1  
Clamping  
Circuit  
IN−  
Figure 10. Input Pin Structure  
www.onsemi.com  
13  
NCx57090y, NCx57091y  
TYPICAL CHARACTERISTICS  
6
5
4
3
2
1
0
5
(3)  
(2)  
(3)  
4
3
(2)  
2
(1)  
(1)  
1
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
DD103.3  
Temperature [°C]  
DD105  
(1) I  
(2) I  
(3) I  
(1) I  
(2) I  
(3) I  
, IN+ = 3.3 V/200 kHz/50%  
, IN+ = 5 V/200 kHz/50%  
DD1503.3  
DD1505  
DD11003.3  
DD11005  
Figure 11. IDD1 Supply Current VDD1 = 3.3 V  
Figure 12. IDD1 Supply Current VDD1 = 5 V  
20  
15  
10  
5
5
4
3
2
1
0
(3)  
(3)  
(2)  
(1)  
(2)  
(1)  
0
40 20  
0
20  
40  
60  
80  
100 120  
1
10  
100  
Frequency [kHz]  
1000  
Temperature [°C]  
(1) C = 1 nF  
(1) I  
(2) I  
(3) I  
G
DD1020  
, IN+ = 20 V/200 kHz/50%  
(2) C = 10 nF  
DD15020  
G
(3) C = 100 nF  
DD110020  
G
Figure 13. IDD1 Supply Current VDD1 = 20 V  
Figure 14. IDD2 vs. Switching Frequency  
2.5  
2.5  
2
(2)  
(1)  
2
1.5  
1
1.5  
1
(2)  
(1)  
0.5  
0
0.5  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
(1) I  
(2) I  
(1) I  
DD2030  
DD2015  
(2) I  
DD210015  
DD210030  
Figure 15. IDD2 Supply Current VDD2 = 15 V  
Figure 16. IDD2 Supply Current VDD2 = 30 V  
www.onsemi.com  
14  
NCx57090y, NCx57091y  
TYPICAL CHARACTERISTICS (continued)  
1.5  
1.4  
2.9  
2.8  
2.7  
2.6  
(2)  
(1)  
1.3  
1.2  
1.1  
1
(1)  
(2)  
0.9  
0.8  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
(1) V  
(2) V  
(1) V  
(2) V  
UVLO1OUTON  
CLAMPOUTH  
CLAMPCLAMP  
UVLO1OUTOFF  
Figure 17. UVLO1 Threshold Voltage  
Figure 18. IGBT Short Circuit CLAMP  
Voltage Drop  
3
2.5  
2
2.00  
1.98  
1.96  
1.94  
1.5  
1
1.92  
1.90  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 19a. Miller Clamp Voltage (2.5 A)  
Figure 19b. Miller Clamp Activation  
Voltage Threshold  
13.5  
13  
9.5  
9
(1)  
(2)  
(1)  
12.5  
8.5  
(2)  
12  
8
11.5  
7.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
(1) V  
(2) V  
(1) V  
(2) V  
UVLO2OUTON  
UVLO2OUTOFF  
UVLO2OUTON  
UVLO2OUTOFF  
Figure 20. NCx57090 UVLO2 Threshold Voltage  
Figure 21. NCx57091 UVLO2 Threshold Voltage  
www.onsemi.com  
15  
 
NCx57090y, NCx57091y  
TYPICAL CHARACTERISTICS (continued)  
72  
70  
68  
66  
64  
62  
71  
69  
(1)  
(2)  
(1)  
67  
(2)  
65  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
(1) t  
(2) t  
, IN+  
, IN−  
(1) t  
, IN+  
, IN−  
PDON5  
PDOFF5  
(2) t  
PDON5  
PDOFF5  
Figure 22. Propagation Delay Turnon  
Figure 23. Propagation Delay Turnoff  
15  
14  
13  
12  
14  
13  
(1)  
(2)  
(1)  
(2)  
12  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
(1) t  
(2) t  
, IN+  
, IN−  
(1) t  
(2) t  
, IN+  
, IN−  
RISE  
FALL  
RISE  
FALL  
Figure 24. Rise Time, VDD1 = 5 V  
Figure 25. Fall Time, VDD1 = 5 V  
35  
50  
40  
30  
20  
(1)  
(2)  
35  
40  
(3)  
(4)  
(2)  
45  
50  
55  
60  
(3)(4)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
(1) I  
(2) I  
(3) I  
(4) I  
(1) I  
(2) I  
(3) I  
(4) I  
IN+H3.3  
INL3.3  
IN+H5  
INL5  
IN+H15  
IN+H20  
INL15  
INL20  
Figure 26. Input Current – Positive Input  
Figure 27. Input Current – Negative Input  
www.onsemi.com  
16  
NCx57090y, NCx57091y  
Under Voltage Lockout (Refer to Figure 9x)  
UVLO ensures correct switching of IGBT/MOSFET  
connected to the driver output.  
of minimal value of 2 W has to be used in order to avoid  
interference of the high di/dt with internal circuitry (e.g.  
UVLO2).  
After the poweron of the driver there has to be a rising  
edge applied to the IN+ or falling edge to the INin order  
for the output to start following the inputs. This serves as a  
protection against producing partial pulses at the output if  
The IGBT/MOSFET is turnedoff and the output is  
disabled if the supply V  
drops below  
drops below  
DD1  
DD2  
V
V
or V  
UVLO1OUTOFF  
.
UVLO2OUTOFF  
The driver output does not follow the input signal on  
the V  
or V  
is applied in the middle of the input PWM  
DD1  
DD2  
IN+ or INuntil the V rises above the  
DDX  
pulse.  
If the V  
V
and the input signal rising edge is  
UVLOXOUTON  
rises over V  
level the PWM  
UVLO2OUTON  
DD2  
applied to the IN+ or IN−  
will appear on the output after t  
+ t  
. The  
UVR2  
UVR2spread  
V  
is not monitored (NCx5709zB)  
EE2  
t
time is variable and is defined as a time from  
UVR2spread  
end of t  
to first rising edge on IN+ input. If the V  
UVR2  
DD2  
With high loading gate capacitances over 10 nF it is  
important to follow the decoupling capacitor routing  
guidelines as shown on Figure 35/36. The decoupling  
capacitor value should be at least 10 mF. Also gate resistor  
is starting from 0 V the time until PWM is at the output of  
the driver is longer than t + t . This is caused  
by start up time of internal circuits of the driver.  
UVR2 UVR2spread  
www.onsemi.com  
17  
NCx57090y, NCx57091y  
ACTIVE MILER CLAMP PROTECTION (CLAMP)  
NCx5709yB supports bipolar power supply to prevent  
unintentional turning on.  
For operation with unipolar supply, typically,  
V = 15 V with respect to GND2, and V = GND2. In  
DD2  
EE2  
For operation with bipolar supplies, the IGBT/MOSFET  
is turned off with a negative voltage through OUT with  
respect to its emitter. This prevents the IGBT/MOSFET  
from unintentionally turning on because of current induced  
from its collector to its gate due to Miller effect. Typical  
this case, the IGBT/MOSFET can turn on due to additional  
charge from IGBT/MOSFET Miller capacitance caused by  
a high voltage slew rate transition on the IGBT collector/  
MOSFET drain. To prevent IGBT/MOSFET to turn on, the  
CLAMP pin is connected directly to IGBT/MOSFET gate  
and Miller current is sinked through a low impedance  
CLAMP transistor. When the IGBT/MOSFET is turnedoff  
values for bipolar operation are V  
V with respect to GND2.  
= 15 V and V  
= 5  
DD2  
EE2  
Driver version A/D/F supports unipolar power supply  
with active Miller clamp.  
and the gate voltage transitions below V  
output is activated.  
, the CLAMP  
CLAMP  
OUT/OUTH  
OUT/OUTH  
Figure 28. Current Path with Miler Clamp Protection  
Figure 29. Current Path without Miler Clamp Protection  
Noninverting and Inverting Input Pin (IN+, IN)  
The driver has two possible input modes to control  
IGBT/MOSFET. Both inputs have defined minimum input  
pulse width to filter occasional glitches.  
WARNING: When the application uses an independent  
or separate power supply for the control  
unit and the input side of the driver, all  
inputs should be protected by a serial  
resistor (In case of a power failure of the  
driver, the driver may be damaged due to  
overloading of the input protection circuits)  
Noninverting input IN+ controls the driver output  
while inverting input INis set to LOW  
Inverting input INcontrols the driver output while  
noninverting input IN+ is set to HIGH  
www.onsemi.com  
18  
 
NCx57090y, NCx57091y  
Power Supply (VDD1, VDD2, VEE2  
The driver variant A/C/D/E and F are designed to support  
unipolar power supply.  
The driver variant B is designed to support bipolar power  
supply.  
)
In bipolar power supply the driver is typically supplied  
with a positive voltage of 15 V at V and negative  
DD2  
voltage 5 V at V  
(Figure 30). Negative power supply  
EE2  
prevents a dynamic turn on through the internal  
IGBT/MOSFET input capacitance  
Suitable external power capacitors are required for  
reliable driving of IGBT/MOSFET gate with high current.  
Parallel combination of 100 nF + 4.7 mF low ESR ceramic  
capacitors is optimal for a wide range of applications using  
IGBT/MOSFET. For reliable driving of IGBT modules  
(containing several parallel IGBT’s) with a gate capacitance  
over 10 nF a higher decoupling capacity is required  
(typically 100 nF + 10 mF). Capacitors should be as close as  
possible to the driver’s power pins. The recommended  
layout is provided in the Figure 35 and 36.  
In Unipolar power supply the driver is typically supplied  
with a positive voltage of 15 V at V  
. Unwanted  
DD2  
turnon caused by the internal IGBT/MOSFET Miller  
capacitance could be prevented by Active Miler Clamp  
function (variant A/D/F). CLAMP output should be  
directly connected to IGBT/MOSFET gate (Figure 28)  
V
V
EE2  
DD1  
V
IN+  
IN  
GND2  
OUT  
10 mF  
DD1  
100nF  
V
EE2  
+
+
10mF  
GND1  
V
DD2  
100nF  
V
10mF  
100nF  
DD2  
+
Figure 30. Bipolar Power Supply (Variant B)  
V
GND2  
CLAMP  
OUT  
DD1  
V
DD1  
IN+  
+
IN  
100nF  
10mF  
V
DD2  
GND1  
V
DD2  
10mF  
100nF  
+
Figure 31. Unipolar Power Supply (Variant A/D/F)  
V
DD1  
GND2  
OUTL  
V
DD1  
IN+  
+
OUTH  
IN−  
100nF  
10mF  
V
DD2  
GND1  
V
DD2  
10 mF  
100nF  
+
Figure 32. Unipolar Power Supply (Variant C/E)  
www.onsemi.com  
19  
 
NCx57090y, NCx57091y  
Common Mode Transient Immunity (CMTI)  
10μF  
+
VDD1  
IN+  
GND2  
CLAMP  
OUT  
5V  
+
S1  
OUT must remain stable  
-
-
IN-  
GND1  
VDD2  
15V  
+
-
10μF  
HV PULSE  
FLOATING  
10μF  
5V  
+
VDD1  
IN+  
GND2  
OUTL  
OUTH  
VDD2  
+
-
S1  
OUT must remain stable  
-
IN-  
GND1  
15V  
+
-
10μF  
HV PULSE  
FLOATING  
10μF  
+
VDD1  
IN+  
VEE2  
GND2  
OUT  
5V  
+
-
S1  
-
IN-  
OUT must remain stable  
GND1  
VDD2  
15V  
+
10μF  
-
HV PULSE  
FLOATING  
Figure 33. CommonMode Transient Immunity Test Circuit  
High-speed signals  
Ground plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Keep this space free  
40 mils  
1 mm  
40 mils  
1 mm  
from traces, pads and  
vias  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Low-speed signals  
314 mils  
(8 mm)  
Figure 34. Recommended Layer Stack  
www.onsemi.com  
20  
NCx57090y, NCx57091y  
Figure 35. Recommended Layout for Version A/B/C  
www.onsemi.com  
21  
NCx57090y, NCx57091y  
Figure 36. Recommended Layout for Version D/E/F  
www.onsemi.com  
22  
NCx57090y, NCx57091y  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCD57090ADWR2G  
2500 / Tape & Reel  
SOIC8 Wide Body  
(PbFree)  
NCD57090BDWR2G  
NCD57090CDWR2G  
NCD57090DDWR2G  
NCD57090EDWR2G  
NCD57090FDWR2G  
NCV57090ADWR2G*  
NCV57090BDWR2G*  
2500 / Tape & Reel  
SOIC8 Wide Body  
(PbFree)  
NCV57090CDWR2G*  
NCV57090DDWR2G*  
NCV57090EDWR2G*  
NCV57090FDWR2G*  
NCD57091ADWR2G (In Development)  
NCD57091BDWR2G (In Development)  
NCD57091CDWR2G (In Development)  
2500 / Tape & Reel  
2500 / Tape & Reel  
SOIC8 Wide Body  
(PbFree)  
NCV57091ADWR2G* (In Development)  
NCV57091BDWR2G* (In Development)  
NCV57091CDWR2G* (In Development)  
SOIC8 Wide Body  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
23  
NCx57090y, NCx57091y  
PACKAGE DIMENSIONS  
SOIC8 WB  
CASE 751EW  
ISSUE A  
q
q
www.onsemi.com  
24  
NCx57090y, NCx57091y  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY