NCD57200DR2G [ONSEMI]

Half Bridge Gate Driver (Isolated High Side & Non-Isolated Low Side);
NCD57200DR2G
型号: NCD57200DR2G
厂家: ONSEMI    ONSEMI
描述:

Half Bridge Gate Driver (Isolated High Side & Non-Isolated Low Side)

文件: 总18页 (文件大小:1583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Half Bridge Gate Driver  
(Isolated High &  
Non-Isolated Low)  
8
1
SOIC- 8 NB  
CASE 751- 07  
NCD57200  
The NCD57200 is a high voltage gate driver with one non-isolated  
low side gate driver and one galvanically isolated high or low side gate  
driver. It can directly drive two IGBTs in a half bridge configuration.  
Isolated high side driver can be powered with an isolated power supply  
or with Bootstrap technique from the low side power supply.  
The galvanic isolation for the high side gate driver guarantees  
reliable switching in high power applications for IGBTs that operate  
up to 800 V, at high dv/dt. The optimized output stages provide a mean  
of reducing IGBT losses. Its features include two independent inputs  
with deadtime and interlock, accurate asymmetric UVLOs, and short  
and matched propagation delays. The NCD57200 operates with its  
VDD/VBS up to 20 V.  
MARKING DIAGRAM  
8
NCD57200  
ALYWX  
G
1
NCD57200  
A
L
Y
W
G
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb- Free Package  
Features  
High Peak Output Current (+1.9 A/-2.3 A)  
Low Output Voltage Drop for Enhanced IGBT Conduction  
Floating Channel for Bootstrap Operation up to +800 V  
CMTI up to 100 kV/ms  
PIN CONNECTIONS  
VDD  
HIN  
VB  
Reliable Operation for V Negative Swing to -800 V  
S
HO  
VS  
VDD & VBS Supply Range up to 20 V  
3.3 V, 5 V, and 15 V Logic Input  
LIN  
Asymmetric Under Voltage Lockout Thresholds for High Side and  
Low Side  
GND  
LO  
Matched Propagation Delay 90 ns  
Built-in 20 ns Minimum Pulse Width Filter (or Input Noise Filter)  
Built-in 340 ns Dead-Time and High and Low Inputs Interlock  
Non- Inverting Output Signal  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 15 of  
this data sheet.  
This Device is Pb-Free, Halogen Free/BFR Free and is RoHS  
Compliant  
Typical Applications  
Fans, Pumps  
Home Appliances  
Consumer Electronics  
General Purpose Half Bridge Applications  
Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
November, 2022 - Rev. 2  
NCD57200/D  
NCD57200  
V
B
V
DD  
V
DD  
UVLO2  
HO  
Minimum  
Pulse  
Width  
Input  
Logic  
Output  
Logic  
HIN  
V
S
Deadtime  
and  
Interlock  
V
DD  
UVLO1  
LO  
Minimum  
Pulse  
Width  
Matching  
Delay  
LIN  
GND  
Figure 1. Simplified Block Diagram  
V
DD  
V
DD  
V
B
HIN  
LIN  
HO  
V
S
GND  
LO  
Figure 2. Simplified Application Schematics  
www.onsemi.com  
2
NCD57200  
Table 1. FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
V
1
Power  
Low side and main power supply. A good quality bypassing capacitor is required  
from this pin to GND and should be placed close to the pins for best results.  
DD  
The under voltage lockout (UVLO) circuit enables the device to operate at power  
on when a typical supply voltage higher than V  
is present. Please  
UVLO1- OUT- ON  
see Figure 5 for more details. A filter time t  
pin.  
helps to suppress noise on V  
UVF1  
DD  
HIN  
LIN  
2
3
I
I
High side non-inverting gate driver input. It has an equivalent pull- down resistor  
of 125 kW to ensure that output is low in the absence of an input signal.  
A minimum positive or negative going pulse width is required at HIN before HO  
reacts.  
It adopts 3.3 V logic signal thresholds for input voltage up to V  
.
DD  
There is deadtime and interlocking logic between HIN and LIN.  
Low side non-inverting gate driver input. It has an equivalent pull- down resistor  
of 125 kW to ensure that output is low in the absence of an input signal.  
A minimum positive or negative going pulse width is required at LIN before LO  
reacts.  
It adopts 3.3 V logic signal thresholds for input voltage up to V  
.
DD  
There is deadtime and interlocking logic between HIN and LIN.  
GND  
LO  
4
5
Power  
O
Logic ground and low side driver return.  
Low side driver output that provides the appropriate drive voltage and source/  
sink current to the IGBT gate. LO is actively pulled low during startup and under  
UVLO1 condition. There is deadtime and interlocking logic to prevent unintended  
HO and LO cross conduction.  
V
6
7
Power  
O
Bootstrap return or high side floating supply offset.  
S
HO  
Galvanically isolated high side driver output that provides the appropriate drive  
voltage and source/sink current to the IGBT gate. HO is actively pulled low  
during startup and under UVLOx condition. There is deadtime and interlocking  
logic to prevent unintended HO and LO cross conduction.  
V
B
8
Power  
Bootstrap or high side floating power supply. A good quality bypassing capacitor  
is required from this pin to V and should be placed close to the pins for best  
S
results.  
The under voltage lockout (UVLO) circuit enables the device to operate at power  
on when a typical supply voltage higher than V  
is present. Please  
UVLO2- OUT- ON  
see Figure 5 for more details. A filter time t  
pin.  
helps to suppress noise on V  
UVF2  
B
Table 2. SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Min  
-
Typ  
Max  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RMS  
RMS  
RMS  
RMS  
-
-
-
< 1000 V  
-
RMS  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
Maximum Working Insulation Voltage  
External Creepage  
600  
800  
4.0  
4.0  
8.65  
150  
75  
1335  
V
IORM  
V
PK  
E
CR  
mm  
mm  
mm  
C  
E
External Clearance  
CL  
DTI  
Insulation Thickness  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
W
S,INPUT  
P
S,OUTPUT  
9
R
IO  
Insulation Resistance at TS, V = 500 V  
IO  
10  
www.onsemi.com  
3
NCD57200  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1) Over operating free- air temperature range unless otherwise noted  
Parameter  
High- Side Offset Voltage (see Figure 2)  
High- Side Supply Voltage (see Figure 2)  
Symbol  
Minimum  
- 900  
Maximum  
900  
Unit  
V
V
S
B
V
- 900  
900  
V
Low- Side Supply Voltage  
V
V
- 0.3  
- 0.3  
25  
25  
V
V
DD  
BS  
HO  
High- Side Floating Supply Voltage  
V
V
V
+0.3  
BS  
+0.3  
DD  
+0.3  
DD  
High- Side Output Voltage (HO) (see Figure 2)  
Low- Side Output Voltage (LO)  
V
V - 0.3  
S
V
V
V
- 0.3  
- 0.3  
LO  
Logic Input Voltage (HIN, LIN)  
V
V
IN  
Allowable Offset Voltage Slew Rate (see Figure 32)  
dV /dt  
S
100  
150  
150  
±4  
V/ns  
C  
C  
kV  
kV  
-
Maximum Junction Temperature  
TJ(max)  
TSTG  
- 40  
- 65  
Storage Temperature Range  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
Moisture Sensitivity Level  
ESDHBM  
ESDCDM  
MSL  
±2  
1
Lead Temperature Soldering Reflow  
(SMD Styles Only), Pb Free Versions (Note 3)  
TSLD  
260  
C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC- Q100- 002 (EIA/JESD22- A114).  
ESD Charged Device Model tested per AEC- Q100- 011 (EIA/JESD22- C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 125C.  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Value  
Unit  
Thermal Characteristics, SOIC- 8 (Note 4)  
Thermal Resistance, Junction- to- Air (Note 5)  
C/W  
167  
RÒJA  
4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
5. Values based on copper area of 100 mm2 (or 0.16 in2) of 1 oz copper thickness and FR4 PCB substrate.  
Table 5. RECOMMENDED OPERATING RANGES (Note 6)  
Parameter  
High- Side Floating Supply Voltage  
High- Side Offset Voltage (see Figure 2)  
High- Side Output Voltage (HO) (see Figure 2)  
Low- Side Output Voltage (LO)  
Logic Input Voltage (HIN, LIN)  
Symbol  
Min  
Max  
Unit  
V
V
BS  
V +UVLO2  
S
V +20  
S
V
- 800  
800  
V
S
V
HO  
V
V
V
S
BS  
DD  
DD  
V
GND  
GND  
V
V
V
LO  
V
V
IN  
Low- Side Supply Voltage  
V
UVLO1  
- 40  
20  
+125  
V
DD  
Ambient Temperature  
T
C  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
www.onsemi.com  
4
NCD57200  
Table 6. ELECTRICAL CHARACTERISTICS V = V = 15 V.  
DD  
BS  
For typical values T = 25C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VOLTAGE SUPPLY  
V
Supply Under Voltage  
V
V
11  
10  
0.5  
12  
11  
11.5  
10.5  
1.0  
12  
11  
V
V
BS  
UVLO2- OUT  
- ON  
Output Enabled  
V
BS  
Supply Under Voltage  
UVLO2- OUT  
- OFF  
Output Disabled  
V
BS  
Supply Voltage Output  
V
1.2  
13  
12  
1.2  
V
UVLO2- HYST  
Enabled/Disabled Hysteresis  
V
DD  
Supply Under Voltage  
V
12.5  
11.5  
1.0  
V
UVLO1- OUT  
- ON  
Output Enabled  
V
DD  
Supply Under Voltage  
V
V
UVLO1- OUT  
- OFF  
Output Disabled  
V
DD  
Supply Voltage Output  
V
0.5  
V
UVLO1- HYST  
Enabled/Disabled Hysteresis  
Leakage Current Between V and  
S
GND  
V
= 800 V, T = 25C  
I
I
20  
200  
600  
nA  
S
A
HV_LEAK1  
HV_LEAK2  
VS = 800 V, TA = 40 C to 125 C  
Quiescent Current V Supply  
B
HO = Low  
I
260  
330  
380  
440  
2.4  
325  
440  
440  
500  
3
mA  
mA  
mA  
mA  
mA  
BS  
QBS1  
QBS2  
QDD1  
QDD2  
QDD3  
(V Only)  
Quiescent Current V Supply  
HO = High  
I
BS  
(V Only)  
B
Quiescent Current V Supply  
V
LIN  
V
LIN  
V
LIN  
= Float, V  
= 3.3 V, V  
= 0 V,  
= 0 V,  
I
I
I
DD  
HIN  
(V Only)  
DD  
Quiescent Current V Supply  
DD  
HIN  
(V Only)  
DD  
Quiescent Current V Supply  
= 0 V, V  
= 3.3 V,  
DD  
HIN  
(V Only)  
DD  
LOGIC INPUT  
Low Level Input Voltage  
High Level Input Voltage  
Logic “1” Input Bias Current  
Logic “1” Input Bias Current  
V
0.9  
V
V
IL  
V
IH  
2.4  
V
= 3.3 V, V  
= 3.3 V  
= 20 V,  
I
I
, I  
LIN1+ HIN1+  
25  
50  
mA  
mA  
LIN  
HIN  
V
LIN  
V
DD  
= 20 V, V  
, I  
LIN2+ HIN2+  
100  
150  
HIN  
= V  
= 20 V  
BS  
Logic “0” Input Bias Current  
DRIVER OUTPUT  
V
= 0 V, V  
= 0 V  
I
, I  
40  
100  
nA  
V
LIN  
HIN  
LIN- HIN-  
Output Low State  
V
0.2  
0.3  
0.5  
I
I
= 200 mA, T = 25 C  
A
SINK  
OL1  
= 200 mA,  
40 C to 125 C  
V
SINK  
T
OL2  
=
A
Output High State  
V
14.4  
14  
14.5  
V
A
A
I
I
= 200 mA, T = 25 C  
A
SOURCE  
OH1  
OH2  
= 200 mA,  
40 C to 125 C  
V
SOURCE  
T
A
=
Peak Driver Current, Sink  
(Note 7)  
V
V
= V = 15 V  
I
I
2.3  
2.1  
HO  
LO  
PK SNK1  
= V = 9 V  
HO  
LO  
PK SNK2  
(near Miller Plateau)  
Peak Driver Current, Source  
(Note 7)  
V
V
= V = 0 V  
I
I
1.9  
1.5  
HO  
LO  
PK SRC1  
= V = 9 V  
HO  
LO  
PK SRC2  
(near Miller Plateau)  
www.onsemi.com  
5
NCD57200  
Table 6. ELECTRICAL CHARACTERISTICS V = V = 15 V.  
DD  
BS  
For typical values T = 25C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
IGBT SHORT CIRCUIT CLAMPING  
Clamping Voltage  
I
= 100 mA, I = 100 mA  
V
0.8  
1.3  
V
HO  
LO  
CLAMP- OUT  
(V – V ) / (V – V  
)
(pulse test, t  
= 10 ms)  
HO  
B
LO  
DD  
CLPmax  
DYNAMIC CHARACTERISTIC  
HO High Propagation Delay  
C
= 1 nF, V to 10% of Output  
t
PD- ON- H  
50  
50  
90  
90  
0
110  
110  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LOAD  
IH  
Change for PW > 150 ns  
HO Low Propagation Delay  
C
LOAD  
= 1 nF, V to 90% of Output  
t
IL  
PD- OFF- H  
DISTORT- H  
Change for PW > 150 ns  
Propagation Delay Distortion(HS)  
PW >150 ns  
t
- 25  
50  
(= t  
t
)
PD- ON- H  
PD- OFF- H  
LO High Propagation Delay  
LO Low Propagation Delay  
Propagation Delay Distortion(LS)  
CLOAD = 1 nF, VIH to 10% of Output  
Change for PW > 150 ns  
t
90  
90  
0
110  
110  
25  
PD- ON- L  
CLOAD = 1 nF, VIL to 90% of Output  
Change for PW > 150 ns  
t
50  
PD- OFF- L  
DISTORT- L  
PW >150 ns  
PW > 150 ns  
PW > 150 ns  
t
- 25  
- 25  
- 25  
(= t  
t
)
PD- ON- L  
PD- OFF- L  
High Propagation Delay Distortion  
between High and Low Sides  
t
0
25  
DISTORT- HL- H  
Low Propagation Delay Distortion  
between High and Low Sides  
t
0
25  
DISTORT- HL- L  
Rise Time (HO) (see Figure 3)  
Fall Time (HO) (see Figure 3)  
Rise Time (LO) (see Figure 3)  
Fall Time (LO) (see Figure 3)  
C
LOAD  
= 1 nF,  
t
t
13  
8
RISE- H  
FALL- H  
10% to 90% of Output Change  
C
LOAD  
= 1 nF,  
90% to 10% of Output Change  
C
LOAD  
= 1 nF,  
t
13  
8
RISE- L  
FALL- L  
10% to 90% of Output Change  
C
LOAD  
= 1 nF,  
t
90% to 10% of Output Change  
Deadtime, HO Delays (see Figure 6)  
Deadtime, LO Delays (see Figure 6)  
Deadtime Matching  
V
V
= 0 V and 3.3 V  
= 0 V and 3.3 V  
t
t
340  
350  
10  
ns  
ns  
ns  
ns  
LIN/HIN  
DT1  
LIN/HIN  
DT2  
t
MDT  
Minimum Pulse Width Filtering Time  
(see Figure 3)  
T
A
= 25 C  
t
, t  
MIN1 MIN2  
10  
40  
UVLO Fall Delay (HO and LO)  
UVLO Rise Delay (HO and LO)  
t
t
1300  
1100  
ns  
ns  
UVF1, UVF2  
t
t
UVR1, UVR2  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Values based on design and/or characterization.  
www.onsemi.com  
6
NCD57200  
V
IH  
V
IL  
HIN/LIN  
t
t
MIN2  
t
RISE- X  
FALL- X  
90%  
t
PD- ON- X  
t
MIN1  
t
PD- OFF- X  
HO/LO  
10%  
Figure 3. Propagation Delay, Rise and Fall Time  
V
DD  
HIN  
LIN  
Clamping  
Circuit  
Figure 4. Input Pin Structure  
HIN/LIN  
V
UVLOx- OUT- ON  
V
UVLOx- OUT- OFF  
t
t
UVFX  
V /V  
DD BS  
UVRX  
V
V
UVLOx- OUT- ON  
UVLOx- OUT- OFF  
HO/LO  
Figure 5. UVLO  
www.onsemi.com  
7
NCD57200  
Figure 6. Deadtime, Interlock and Output Minimum Pulse Width  
HIN  
t
t
MIN1  
MIN2  
t
t
DT1  
DT2  
t
t
MIN1  
LIN  
MIN2  
Figure 7. Input Circuit  
www.onsemi.com  
8
NCD57200  
TYPICAL CHARACTERISTICS  
0.5  
0.5  
0.45  
0.45  
(2)  
0.4  
0.4  
0.35  
0.3  
(2)  
(1)  
(1)  
0.35  
0.3  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
Temperature [C]  
Temperature [C]  
(1) V = 20 V, V = 15 V, LIN = FLOAT, HIN = LOW  
(1) V = 15 V, V = 15 V, LIN = FLOAT, HIN = LOW  
DD  
BS  
DD  
BS  
(2) V = 20 V, V = 15 V, LIN = 3.3 V, HIN = LOW  
(2) V = 15 V, V = 15 V, LIN = 3.3 V, HIN = LOW  
DD  
BS  
DD  
BS  
Figure 8. IDD Supply Current VDD = 15 V  
Figure 9. IDD Supply Current VDD = 20 V  
0.5  
8
7
(3)  
6
5
4
3
2
1
0
0.45  
0.4  
(3)  
(2)  
(1)  
(2)  
0.35  
0.3  
(1)  
- 40 - 20  
- 40 - 20  
0
20  
Temperature [C]  
(1) V = 15 V, V = 15 V, LIN = FLOAT, HIN = LOW  
40  
60  
80  
100  
120 125  
0
20  
Temperature [C]  
(1) V = 15 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
40  
60  
80  
100  
120 125  
DD  
BS  
DD  
BS  
(2) V = 20 V, V = 15 V, LIN = FLOAT, HIN = LOW  
(2) V = 20 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
DD  
BS  
DD  
BS  
(3) V = 25 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
(3) V = 25 V, V = 15 V, LIN = FLOAT, HIN = LOW  
DD  
BS  
DD  
BS  
Figure 10. IDD Supply Current VDD = 15–25 V, Input Float  
Figure 11. IDD Supply Current VDD = 15–25 V,  
LIN = HIN = 20 kHz / 50%  
1
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
(3)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
(3)  
0.8  
0.6  
0.4  
0.2  
0
(2)  
(1)  
(2)  
(1)  
0.1  
0
- 40 - 20  
0
20  
Temperature [C]  
(1) V = 15 V, V = 15 V, LIN = LOW, HIN = LOW  
40  
60  
80  
100  
120 125  
- 40 - 20  
0
20  
40  
Temperature [C]  
(1) V = 15 V, V = 25 V, LIN = LOW, HIN = LOW  
60  
80  
100  
120 125  
DD  
BS  
DD  
DD  
DD  
BS  
(2) V = 15 V, V = 15 V, LIN = LOW, HIN = 3.3V  
(3) V = 15 V, V = 15 V, LIN = LOW, HIN = 50%  
(2) V = 15 V, V = 25 V, LIN = LOW, HIN = 3.3 V  
(3) V = 15 V, V = 25 V, LIN = LOW, HIN = 20 kHz / 50%  
DD  
BS  
BS  
BS  
DD  
BS  
Figure 12. IBS Supply Current VBS = 15 V  
Figure 13. IBS Supply Current VBS = 25 V  
www.onsemi.com  
9
NCD57200  
TYPICAL CHARACTERISTICS (continued)  
2
2.2  
1.8  
(2)  
2
(1)  
(3)  
(2)  
(1)  
1.6  
1.4  
1.2  
1.8  
1
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
(3)  
1.2  
(4)  
1
- 40 - 20  
0
20  
Temperature [C]  
(1) V = 15 V, V = 15 V, LIN = LOW, HIN = 50%  
40  
60  
80  
100 120 125  
- 40 - 20  
0
20  
Temperature [C]  
(1) V , LIN = HIGH  
40  
60  
80  
100 120 125  
(2) V , HIN = HIGH  
DD  
BS  
IH  
IH  
(2) V = 15 V, V = 20 V, LIN = LOW, HIN = 50%  
DD  
BS  
(3) V , LIN = LOW  
(4) V , HIN = LOW  
IL  
IL  
(3) V = 15 V, V = 25 V, LIN = LOW, HIN = 50%  
DD  
BS  
Figure 14. IBS Supply Current VBS = 15–25 V,  
HIN = 20 kHz / 50%  
Figure 15. Input Voltage Level  
1.2  
1.1  
1
13  
(1)  
12.5  
12  
(2)  
(3)  
11.5  
11  
0.9  
0.8  
0.7  
0.6  
(2)  
(1)  
(4)  
10.5  
10  
- 40 - 20  
0
20  
40  
60  
80  
100 120 125  
- 40 - 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [C]  
Temperature [C]  
(1) V  
(2) V  
UVLO1- HYST  
(1) V  
(2) V  
(3) V  
UVLO1- OUT- ON  
UVLO1- OUT- OFF  
UVLO2- OUT- ON  
UVLO2- OUT- OFF  
(4) V  
UVLO2- HYST  
Figure 16. UVLO Hysteresis  
Figure 17. UVLO Threshold Voltage  
28  
27  
26  
25  
24  
105  
100  
95  
(2)  
(1)  
(2)  
(1)  
90  
- 40 - 20  
0
20  
40  
60  
80  
100 120 125  
- 40 - 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [C]  
Temperature [C]  
(1) I  
, LIN = 3.3 V, V = V = 15V  
DD BS  
(1) I  
(2) I  
, LIN = 20 V, V = V = 20 V  
DD BS  
LIN1+  
LIN2+  
(2) I  
, HIN = 3.3 V, V = V = 15V  
DD BS  
, HIN = 20 V, V = V = 20 V  
HIN1+  
HIN2+  
DD  
BS  
Figure 18. Input Current VDD = VBS = 15 V  
Figure 19. Input Current VDD = VBS = 20 V  
www.onsemi.com  
10  
NCD57200  
TYPICAL CHARACTERISTICS (continued)  
1
100  
95  
(2)  
(1)  
0.9  
(4)  
(2)  
90  
85  
80  
0.8  
(1)  
(3)  
0.7  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
Temperature [C]  
Temperature [C]  
(1) t  
V
= 15 V  
= 15 V  
(3) t  
V
= 20 V  
PD- ON- H BS  
PD- ON- H BS  
(1) V - V  
(2) V - V  
LO DD  
HO BS  
(2) t  
V
(4) t  
V = 20 V  
PD- OFF- H BS  
PD- OFF- H BS  
Figure 20. IGBT Short Circuit CLAMP Voltage Drop  
Figure 21. HO Propagation Delay  
24  
22  
20  
18  
16  
14  
12  
10  
8
100  
95  
90  
85  
80  
(3)  
(1)  
(4)  
(2)  
(2)(4)  
(1)(3)  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
- 50  
- 25  
0
25  
50  
75  
100  
V
125  
Temperature [C]  
Temperature [C]  
(1) t  
(2) t  
V
= 15 V  
= 15 V  
(3) t  
V
= 20 V  
RISE- H BS  
(3) t  
(4) t  
= 20 V  
RISE- H BS  
(1) t  
(2) t  
V
= 15 V  
= 15 V  
PD- ON- L DD  
PD- ON- L DD  
V
V
(4) t  
V
= 20 V  
V
= 20 V  
FALL- H BS  
FALL- H BS  
PD- OFF- L DD  
PD- OFF- L DD  
Figure 23. HO Rise – Fall Time  
Figure 22. LO Propagation Delay  
18  
17  
16  
15  
14  
13  
12  
380  
370  
360  
350  
340  
330  
(2)  
(1)  
(1)(3)  
(2)(4)  
11  
10  
- 50  
- 25  
0
25  
50  
75  
100  
125  
- 40 - 20  
0
20  
40  
Temperature [C]  
(1) t = 15 V, V = 15 V  
60  
80  
100  
120 125  
Temperature [C]  
V
DTX DD  
BS  
(3) t  
(4) t  
V
= 20 V  
(1) t  
(2) t  
V
= 15 V  
= 15 V  
RISE- L DD  
RISE- L DD  
(2) t  
V
= 20 V, V = 20 V  
DTX DD BS  
V
= 20 V  
V
FALL- L DD  
FALL- L DD  
Figure 24. LO Rise – Fall Time  
Figure 25. Deadtime  
www.onsemi.com  
11  
NCD57200  
TYPICAL CHARACTERISTICS (continued)  
24  
26  
(4)  
25  
23.5 (3)  
(3)  
(4)  
23  
24  
23  
22.5  
22  
22  
(1)  
21  
(2)  
21.5  
(1)  
20  
(2)  
21  
- 40 - 20  
19  
0
20  
40  
60  
80  
100  
120 125  
- 40 - 20  
0
20  
40  
60  
80  
100  
V
120 125  
Temperature [C]  
Temperature [C]  
(3) t  
(4) t  
= 15 V  
(1) t  
(2) t  
V
= 15 V  
= 20 V  
(3) t  
V
= 15 V  
(1) t V = 15 V  
MIN1- H BS  
MIN2- H BS  
MIN1- L DD  
MIN2- L DD  
(2) t  
V
= 20 V  
V
= 20 V  
MIN1- H BS  
MIN2- H BS  
V
(4) t  
V
= 20 V  
MIN1- L DD  
MIN2- L DD  
Figure 26. Minimum Pulse Width Filtering  
Time (LO)  
Figure 27. Minimum Pulse Width Filtering  
Time (HO)  
1.9  
(4)  
20  
18  
16  
14  
12  
10  
8
(3)  
(2)  
(1)  
1.8  
(1)  
1.7  
(2)  
1.6  
(3)  
1.5  
6
1.4  
1.3  
1.2  
4
2
0
1
10  
100  
1000  
- 40 - 20  
0
20  
40  
60  
80  
100  
120 125  
Frequency [kHz]  
Temperature [C]  
(1) C = 1 nF  
(2) C = 10 nF  
G
G
(1) t  
(3) t  
(2) t  
(4) t  
UVF1  
UVR1  
(3) C = 100 nF  
G
UVF2  
UVR2  
Figure 28. UVLO Delay  
Figure 29. Power Supply Current vs. Switching  
Frequency (Duty Cycle 50%)  
www.onsemi.com  
12  
NCD57200  
Under Voltage Lockout (UVLO)  
UVLO ensures correct switching of IGBT connected to  
the driver output.  
For reliable high output current suitable external power  
capacitors are required. Parallel combination of 100 nF +  
4.7 mF ceramic capacitors is optimal for a wide range of  
applications using IGBT. For reliable driving of IGBT  
modules (containing several parallel IGBTs) a higher  
capacitance is required (typically 100 nF + 10 mF).  
Capacitors should be as close as possible to the driver’s  
power pins.  
The IGBT is turned-off, if the supply V drops below  
DD  
V
V
or V drops below  
BS  
UVLO1-OUT-OFF  
UVLO2-OUT-OFF  
The driver output does not start to react to the input  
signal on HIN or LIN until the V or V rises above  
DD  
BS  
Powersupply ofisolated(HO)channelcanbeprovidedby  
an external DC power supply or Bootstrap circuit.  
the V  
UVLOX-OUT-ON  
Power Supply (VDD, VBS  
)
NCD57200 is designed to support unipolar power supply  
on both individual channels.  
V
V
B
DD  
V
DD  
10 mF  
V
BS  
100 n  
HIN  
HO  
+
-
+
-
LIN  
V
S
10 mF  
100 n  
LO  
GND  
Figure 30. Unipolar Power Supply  
V
DD  
V
B
R
R
10 mF  
100 n  
GH  
HIN  
HO  
V
DD  
+
-
LIN  
V
S
10 mF  
100 n  
LO  
GND  
GL  
Figure 31. Bootstrap Power Supply  
Signal Inputs (HIN, LIN)  
Inputs of NCD57200 are active high. Outputs are in phase  
with inputs signals respecting internal logic (see Figure 5, 6,  
7).  
WARNING: When the application uses an independent or  
separate power supply for the control unit on  
the input side of the driver, all inputs should  
be protected by a serial resistor (In case of  
a power failure of the driver, the driver may  
be damaged due to overloading of the input  
protection circuits).  
www.onsemi.com  
13  
NCD57200  
Common Mode Transient Immunity (CMTI)  
10 mF  
+
15 V  
V
DD  
V
B
+
-
S1  
-
HIN  
LIN  
HO  
HO must remain stable  
V
S
GND  
LO  
15 V  
+
-
10 mF  
HV PULSE  
FLOATING  
Figure 32. CMTI Test Setup  
(Test Conditions: HV PULSE = 900 V, dV/dt = 1- 100 V/ns, V = 15 V, V = 15 V)  
DD  
B
NOTE: Purple - recommended isolation gap.  
Figure 33. Recommended Layout  
High-speed signals  
Ground plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Keep this space free  
40 mils  
1 mm  
40 mils  
1 mm  
from traces, pads and  
vias  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Low-speed signals  
157 mils  
(4 mm)  
Figure 34. Recommended Layer Stack  
www.onsemi.com  
14  
NCD57200  
ORDERING INFORMATION  
Device  
Package  
Shipping  
2500 / Tape & Reel  
NCD57200DR2G  
SOIC- 8 (Pb- Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
15  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCD57201DR2G

Half Bridge Gate Driver (Isolated High Side & Non-Isolated Low Side)
ONSEMI

NCD57252DWR2G

Isolated Dual-Channel IGBT Gate Driver
ONSEMI

NCD57253DWR2G

Isolated Dual-Channel IGBT Gate Driver
ONSEMI

NCD57255DR2G

Isolated Dual-Channel IGBT Gate Driver
ONSEMI

NCD57530DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCD57540DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCD5R1J1KN150TRF

Ceramic Capacitor, Ceramic, 1000V, 5% +Tol, 5% -Tol, N150, -150ppm/Cel TC, 0.0000051uF,
NICHICON

NCD5R6M500SLJ.1LSTBF

Ceramic Capacitor, Ceramic, 500V, 20% +Tol, 20% -Tol, SL, -330ppm/Cel TC, 0.0000056uF,
NICHICON

NCD6

CIT SWITCH
CIT

NCD680C2KVNPOCTBF

Ceramic Capacitor, Ceramic, 2000V, 0.37% +Tol, 0.37% -Tol, C0G, 30ppm/Cel TC, 0.000068uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
NICHICON

NCD680D50N1500K.1LSTBF

Ceramic Capacitor, Ceramic, 50V, 0.7353% +Tol, 0.7353% -Tol, N1500, -1500ppm/Cel TC, 0.000068uF,
NICHICON

NCD680D5KVNPOETRF

Ceramic Capacitor, Ceramic, 5000V, 0.74% +Tol, 0.74% -Tol, C0G, 30ppm/Cel TC, 0.000068uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
NICHICON