NCID9211R2 [ONSEMI]

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator;
NCID9211R2
型号: NCID9211R2
厂家: ONSEMI    ONSEMI
描述:

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator

文件: 总12页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
High Speed Dual-Channel,  
Bi-Directional Ceramic  
Digital Isolator  
SOIC16 W  
CASE 751EN  
NCID9211  
Description  
The NCID9211 is a galvanically isolated full duplex, bidirectional,  
highspeed dualchannel digital isolator with output enable. This  
device supports isolated communications thereby allowing digital  
signals to communicate between systems without conducting ground  
loops or hazardous voltages.  
It utilizes onsemi’s patented galvanic offchip capacitor isolation  
technology and optimized IC design to achieve high insulation and  
high noise immunity, characterized by high common mode rejection  
and power supply rejection specifications. The thick ceramic substrate  
yields capacitors with ~25 times the thickness of thin film onchip  
capacitors and coreless transformers. The result is a combination of  
the electrical performance benefits that digital isolators offer with the  
safety reliability of a >0.5 mm insulator barrier similar to what has  
historically been offered by optocouplers.  
MARKING DIAGRAM  
AWLYWW  
9211  
A
= Assembly Location  
WL = Wafer Lot / Assembly Lot  
= Year  
Y
WW = Work Week  
9211 = Specific Device Code  
The device is housed in a 16pin wide body small outline package.  
Features  
OffChip Capacitive Isolation to Achieve Reliable High Voltage  
Insulation  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 10 of  
this data sheet.  
DTI (Distance Through Insulation): 0.5 mm  
Maximum Working Insulation Voltage: 2000 V  
Full Duplex, Bidirectional Communication  
100 KV/ms Minimum Common Mode Rejection  
peak  
High Speed:  
50 Mbit/s Data Rate (NRZ)  
25 ns Maximum Propagation Delay  
10 ns Maximum Pulse Width Distortion  
8 mm Creepage and Clearance Distance to Achieve Reliable High  
Voltage Insulation.  
Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage and  
40°C to 125°C Extended Temperature Range  
Over Temperature Detection  
Output Enable Function (Primary and Secondary Side)  
NCIV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable (Pending)  
Safety and Regulatory Approvals  
UL1577, 5000 V  
for 1 Minute  
RMS  
DIN EN/IEC 6074717 (Pending)  
Typical Applications  
Isolated PWM Control  
Programmable Logic Control  
Isolated Data Acquisition System  
Voltage Level Translator  
Industrial Fieldbus Communications  
2
Microprocessor System Interface (SPI, I C, etc.)  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
NCID9211/D  
September, 2021 Rev. 3  
NCID9211  
PIN CONFIGURATION  
BLOCK DIAGRAM  
1
16  
15  
VDD1  
VDD2  
2
GND 1  
GND 2  
NC  
EN1  
VOA  
3
4
5
6
7
8
14 NC  
EN 2  
13  
12  
11  
10  
9
VINA  
VOB  
VINB  
NC  
NC  
GND 2  
GND 1  
Figure 2. Functional Block Diagram  
Figure 1. Pin and Channel Configuration  
PIN DEFINITIONS  
Pin No.  
Name  
Description  
Power Supply, Primary Side  
Ground, Primary Side  
No Connect  
1
2
V
DD1  
GND1  
NC  
3
4
EN1  
Enable, Primary Side  
Output, Channel A  
Input, Channel B  
5
V
OA  
6
V
INB  
7
NC  
GND1  
GND2  
NC  
No Connect  
8
Ground, Primary Side  
Ground, Secondary Side  
No Connect  
9
10  
11  
12  
13  
14  
15  
16  
V
OB  
Output, Channel B  
Input, Channel A  
V
INA  
EN2  
NC  
Enable, Secondary Side  
No Connect  
GND2  
Ground, Secondary Side  
V
DD2  
Power Supply, Secondary Side  
TRUTH TABLE (Note 1)  
V
INX  
EN  
V
DDI  
V
DDO  
V
OX  
Comment  
X
H
H / NC  
H / NC  
L
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
H
L
Normal Operation  
Normal Operation  
L
X
X
HiZ  
L
H / NC  
Power  
Down  
Default low; V return to normal operation when V  
OX  
DDI  
change to Power Up  
X
H / NC  
Power Up  
Power  
Down  
Undetermined  
(Note 2)  
V
return to normal operation when V  
change to  
OX  
DDO  
Power Up  
1. V  
= Input signal of a given channel (A or B). EN = Enable pin for primary or secondary side (1 or 2). V = Output signal of a given channel  
X OX  
INX  
(A or B). V  
= Inputside V . V  
= Outputside V . X = Irrelevant. H = High level. L = Low level. NC = No Connection.  
DDI  
DD  
DDO DD  
2. The outputs are in undetermined state when V  
< V  
.
DDO  
UVLO  
www.onsemi.com  
2
 
NCID9211  
SAFETY AND INSULATION RATINGS  
As per DIN EN/IEC 6074717, this digital isolator is suitable for “safe electrical insulation” only within the safety limit data. Compliance with  
the safety ratings must be ensured by means of protective circuits.  
Symbol  
Parameter  
Min.  
Typ.  
I–IV  
Max.  
Units  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
I–IV  
I–IV  
I–IV  
< 1000 V  
I–III  
RMS  
Climatic Classification  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
CTI  
600  
V
PR  
InputtoOutput Test Voltage, Method b, V  
x 1.875 = V , 100% Production  
3750  
V
V
IORM  
PR  
peak  
Test with t = 1 s, Partial Discharge < 5 pC  
m
InputtoOutput Test Voltage, Method a, V  
x 1.6 = V , Type and Sample  
3200  
IORM  
PR  
peak  
Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
2000  
8000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
mm  
mm  
mm  
°C  
External Clearance  
8.0  
Insulation Thickness  
0.50  
150  
T
Safety Limit Values – Maximum Values in Failure;  
Case Temperature  
Case  
P
Safety Limit Values – Maximum Values in Failure;  
Input Power  
100  
600  
mW  
mW  
Ω
S,INPUT  
P
Safety Limit Values – Maximum Values in Failure;  
Output Power  
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
10  
IO  
IO  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
Units  
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
55 to +150  
40 to +125  
40 to +150  
260 for 10sec  
0.5 to 6  
0.5 to 6  
15  
°C  
°C  
°C  
°C  
V
STG  
OPR  
T
T
J
T
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Supply Voltage (V  
SOL  
V
)
DDx  
DD  
V
Voltage (V , V , ENx)  
V
INx  
Ox  
I
O
Average Output Current  
Power Dissipation  
mA  
mW  
PD  
210  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
www.onsemi.com  
3
NCID9211  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min.  
40  
2.5  
Max.  
+125  
5.5  
Unit  
°C  
V
T
A
Ambient Operating Temperature  
Supply Voltage (Notes 3, 4)  
High Level Input Voltage  
V
V
DD1 DD2  
V
INH  
0.7 x V  
0
V
DDI  
V
DDI  
V
INL  
Low Level Input Voltage  
0.1 x V  
V
DDI  
V
V
Supply Voltage UVLO Rising Threshold  
Supply Voltage UVLO Falling Threshold  
Supply Voltage UVLO Hysteresis  
High Level Output Current  
2.2  
2.0  
0.1  
2  
V
UVLO+  
V
UVLO  
UVLO  
V
HYS  
I
mA  
mA  
Mbps  
OH  
I
OL  
Low Level Output Current  
2
DR  
Signaling Rate  
0
50  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
3. During power up or down, ensure that both the input and output supply voltages reach the proper recommended operating voltages to avoid  
any momentary instability at the output state.  
4. For reliable operation at recommended operating conditions, V supply pins require at least a pair of external bypass capacitors, placed  
DD  
within 2 mm from V pins 1 and 16 and GND pins 2 and 15. Recommended values are 0.1 mF and 1 mF.  
DD  
ISOLATION CHARACTERISTICS  
Apply over all recommended conditions. All typical values are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
V
ISO  
InputOutput Isolation Voltage  
T = 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
A
t = 1.0 minute, I  
(Notes 5, 6, 7)  
v 10 mA, 50 Hz  
IO  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
IO  
V
IO  
= 500 V (Note 5)  
10  
ISO  
ISO  
= 0 V, Frequency = 1.0 MHz (Note 5)  
1
pF  
5. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
6. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
7. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN EN/IEC 6074717 Safety and Insulation  
Ratings Table on page 3.  
ELECTROSTATIC DISCHARGE RATINGS  
Symbol  
HBM  
Parameter  
Human Body Model  
Charged Device Model  
Contact Discharge  
Air Discharge  
Conditions  
Ratings  
3000  
Units  
JS0012017; AECQ100002Rev E (Note 9)  
JS0022018; AECQ100011Rev D (Note 10)  
IEC 6100042 Insulation Barrier Withstand Test (Note 8)  
V
CDM  
1000  
ESDI  
8000  
15000  
8. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
9. ESD Human Body Model for NCID9211 tested per JEDEC JS0012017 standard; NCIV9211 tested per AECQ100002Rev E standard.  
10.ESD Charged Device Model for NCID9211 tested per JEDEC JS0022018 standard; NCIV9211 tested per AECQ100011Rev D  
standard.  
www.onsemi.com  
4
 
NCID9211  
ELECTRICAL CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C, V  
= V  
= 2.5 V to 5.5 V, unless otherwise specified. All typical values  
A
DD1  
DD2  
are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
= –4 mA  
Min. Typ.  
– 0.4 V – 0.1  
DDO  
Max.  
Units Figure  
V
OH  
High Level Output Voltage  
Low Level Output Voltage  
Rising Input Voltage Threshold  
Falling Input Voltage Threshold  
Input Threshold Voltage Hysteresis  
High Level Input Current  
I
I
V
DDO  
V
V
7
8
OH  
V
OL  
= 4 mA  
0.11  
0.4  
OL  
V
INT+  
0.7 x V  
V
DDI  
V
INT−  
0.1 x V  
0.1 x V  
V
DDI  
V
0.2 x V  
V
INT(HYS)  
DDI  
DDI  
I
V
V
= V  
DDI  
1
μA  
μA  
kV/ms  
pF  
INH  
IH  
I
Low Level Input Current  
= 0 V  
1  
INL  
IL  
CMTI  
Common Mode Transient Immunity V = V  
or 0 V, V = 1500 V  
100  
150  
2
12  
I
DDI  
CM  
C
Input Capacitance  
V
= V /2 + 0.4 x sin (2pft),  
IN  
IN DDI  
f = 1MHz, V = 5 V  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
SUPPLY CURRENT CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
V
V
V
V
V
V
A
Symbol  
Parameter  
Conditions  
= 5 V, EN = 0 V / 5 V, V = 0 V  
Min.  
Typ.  
4.5  
Max.  
Units Figure  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DC Supply Current  
Input Low  
6.3  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
IN  
5.0  
= 3.3 V, EN = 0 V / 3.3 V, V = 0 V  
4.4  
6.1  
6
IN  
4.9  
= 2.5 V, EN = 0 V / 2.5 V, V = 0 V  
4.3  
IN  
4.8  
DC Supply Current  
Input High  
= 5 V, EN = 0 V / 5 V, V = 5 V  
11.8  
12.1  
11.7  
11.9  
11.6  
11.8  
8.3  
14.5  
14.3  
14.3  
10.5  
10.3  
10.1  
12  
mA  
IN  
= 3.3 V, EN = 0 V / 3.3 V, V = 3.3 V  
IN  
= 2.5 V, EN = 0 V / 2.5 V, V = 2.5 V  
IN  
AC Supply Current  
1 Mbps  
V
V
= 5 V, EN = 5 V, C = 15 pF  
mA  
mA  
mA  
3,4  
L
= 5 V Square Wave  
IN  
8.7  
V
V
= 3.3 V, EN = 3.3 V, C = 15 pF  
8.1  
DD  
IN  
L
= 3.3 V Square Wave  
8.5  
V
V
= 2.5 V, EN = 2.5 V, C = 15 pF  
8.0  
DD  
IN  
L
= 2.5 V Square Wave  
8.4  
AC Supply Current  
10 Mbps  
V
V
= 5 V, EN = 5 V, C = 15 pF  
9.9  
DD  
IN  
L
= 5 V Square Wave  
10.2  
8.9  
V
V
= 3.3 V, EN = 3.3 V, C = 15 pF  
11  
DD  
IN  
L
= 3.3 V Square Wave  
9.3  
V
V
= 2.5 V, EN = 2.5 V, C = 15 pF  
8.6  
10.5  
17.5  
14.3  
13  
DD  
IN  
L
= 2.5 V Square Wave  
9.0  
AC Supply Current  
50 Mbps  
V
V
= 5 V, EN = 5 V, C = 15 pF  
14.8  
15.2  
12.1  
12.6  
11.1  
11.6  
DD  
IN  
L
= 5 V Square Wave  
V
V
= 3.3 V, EN = 3.3 V, C = 15 pF  
L
= 3.3 V Square Wave  
DD  
IN  
V
V
= 2.5 V, EN = 2.5 V, C = 15 pF  
L
= 2.5 V Square Wave  
DD  
IN  
www.onsemi.com  
5
NCID9211  
SWITCHING CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Conditions  
= EN = 5 V, V Square Wave, C = 15 pF  
Min.  
Typ.  
17.0  
18.3  
20.0  
13.0  
14.5  
16.0  
3.6  
Max.  
Units Figure  
t
Propagation Delay  
to Logic Low Output  
(Note 8)  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
6,9  
PHL  
IN  
L
= EN = 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= EN = 2.5 V, V Square Wave, C = 15 pF  
IN  
L
t
Propagation Delay  
to Logic High Output  
(Note 9)  
= EN = 5 V, V Square Wave, C = 15 pF  
25  
10  
10  
PLH  
IN  
L
= EN = 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= EN = 2.5 V, V Square Wave, C = 15 pF  
IN  
L
PWD  
Pulse Width Distor-  
= EN = 5 V, V Square Wave, C = 15 pF  
IN L  
tion | t  
– t  
PLH  
|
PHL  
= EN = 3.3 V, V Square Wave, C = 15 pF  
3.8  
IN  
L
(Note 10)  
= EN = 2.5 V, V Square Wave, C = 15 pF  
3.8  
IN  
L
t
Propagation Delay  
Skew (Part to Part)  
(Note 11)  
= EN = 5 V, V Square Wave, C = 15 pF  
10  
PSK(PP)  
IN  
L
= EN = 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= EN = 2.5 V, V Square Wave, C = 15 pF  
IN  
L
t
R
Output Rise Time  
(10% to 90%)  
= EN = 5 V, V Square Wave, C = 15 pF  
1.1  
1.5  
IN  
L
= EN = 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= EN = 2.5 V, V Square Wave, C = 15 pF  
2.2  
IN  
L
t
F
Output Fall Time  
(90% to 10%)  
= EN = 5 V, V Square Wave, C = 15 pF  
1.1  
IN  
L
= EN = 3.3 V, V Square Wave, C = 15 pF  
1.4  
IN  
L
= EN = 2.5 V, V Square Wave, C = 15 pF  
3.0  
IN  
L
t
t
High Impedance to  
Logic Low Output  
Delay (Note 12)  
8.1  
25  
25  
1
10  
11  
= 5 V, R = 1 kW  
PZL  
L
= 3.3 V, R = 1 kW  
9.7  
L
= 2.5 V, R = 1 kW  
12.0  
10.4  
12.2  
16.5  
0.54  
0.51  
0.50  
11.0  
12.3  
14.0  
L
Logic Low to High  
Impedance Output  
Delay (Note 13)  
= 5 V, R = 1 kW  
PLZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
t
t
High Impedance to  
Logic High Output  
Delay (Note 14)  
= 5 V, R = 1 kW  
PZH  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
Logic High to High  
Impedance Output  
Delay (Note 15)  
25  
= 5 V, R = 1 kW  
PHZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
11. Propagation delay t  
12.Propagation delay t  
is measured from the 50% level of the falling edge of the input pulse to the 50% level of the falling edge of the V signal.  
O
PHL  
PLH  
is measured from the 50% level of the rising edge of the input pulse to the 50% level of the rising edge of the V signal.  
O
13.PWD is defined as | t  
– t  
PLH  
| for any given device.  
PHL  
14.Parttopart propagation delay skew is the difference between the measured propagation delay times of a specified channel of any two parts  
at identical operating conditions and equal load.  
15.Enable delay t  
is measured from the 50% level of the rising edge of the EN pulse to the 50% of the falling edge of the VO signal as it  
PZL  
switches from high impedance state to low state.  
16.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to 0.5 V level of the rising edge of the V signal as  
PLZ  
O
it switches from low state to high impedance state.  
17.Enable delay t is measured from the 50% level of the rising edge of the EN pulse to the 50% of the rising edge of the VO signal as it switches  
PZH  
from high impedance state to high state.  
18.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to V 0.5 V level of the falling edge of the V signal  
PHZ  
OH  
O
as it switches from high state to high impedance state.  
www.onsemi.com  
6
NCID9211  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
15  
10  
5
20  
T
A = 25°C  
T
A = 25°C  
IDD1  
IDD2  
IDD1  
IDD2  
LOAD = No Load  
LOAD = 15 pF  
15  
10  
5
VDD = 3.3 V  
VDD = 3.3 V  
VDD = 5 V  
VDD = 5 V  
VDD = 2.5 V  
VDD = 2.5 V  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 3. Supply Current vs. Data Rate (No Load)  
Figure 4. Supply Current vs. Data Rate  
(Load = 15 pF)  
25  
20  
15  
10  
5
3.0  
tPHL VDD = 2.5 V  
tPHL VDD = 3.3 V  
tPHL VDD = 5 V  
2.5  
VUVLO+  
VUVLO  
tPLH VDD = 5 V  
tPLH VDD = 3.3 V  
2.0  
tPLH VDD = 2.5 V  
1.5  
40  
40  
20  
0
20  
40  
60  
80  
100  
120  
20  
0
20  
40  
60  
80  
100  
120  
TA - AMBIENT TEMPERATURE (°C )  
TA - AMBIENT TEMPERATURE (°C)  
Figure 5. Supply Voltage UVLO Threshold vs.  
Ambient Temperature  
Figure 6. Propagation Delay vs. Ambient  
Temperature  
6
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T
A = 25 °C  
T
A = 25 °C  
VDD = 5 V  
5
4
3
2
1
0
VDD = 3.3 V  
VDD = 2.5 V  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
10  
8  
6  
4  
2  
0
0
2
4
6
8
10  
I
OH - HIGH LEVEL OUTPUT CURRENT (mA )  
I
OL - LOW LEVEL OUTPUT CURRENT (mA )  
Figure 7. High Level Output Voltage vs. Current  
Figure 8. Low Level Output Voltage vs. Current  
www.onsemi.com  
7
NCID9211  
TEST CIRCUITS  
50%  
VI  
tPLH  
VDDI  
VDDO  
V
VO  
+
+
tPHL  
90%  
VIN  
VEN  
CL  
50%  
+
VO  
10%  
tR  
tF  
Figure 9. VIN to VO Propagation Delay Test Circuit and Waveform  
RL  
50%  
VI  
VDDI  
VDDO  
VO  
+
+
tPZL  
tPLZ  
VI  
VIN  
VO  
0.5 V  
CL  
+
50%  
VEN  
Figure 10. EN to Logic Low VO Propagation Delay Test Circuit and Waveform  
50%  
VI  
tPZH  
VDDI  
VDDO  
VO  
+
+
tPHZ  
VI  
VIN  
CL  
RL  
0.5 V  
+
50%  
VO  
VEN  
Figure 11. EN to Logic High VO Propagation Delay Test Circuit and Waveform  
1
VDDI  
VDDO  
S at 0, VO remain consistently low  
S at 1, VO remain consistently high  
S at 2, VO data same as VIN data  
VIN  
VO  
2
S
0
VCM  
Figure 12. Common Mode Transient Immunity Test Circuit  
www.onsemi.com  
8
NCID9211  
APPLICATIONS INFORMATION  
Theory of Operation  
below the components, power plane below the ground plane,  
signal lines and power fill on top, and signal lines and ground  
fill at the bottom. The alternating polarities of the layers  
creates interplane capacitances that aids the bypass  
capacitors required for reliable operation at digital  
switching rates.  
In the layout with digital isolators, it is required that the  
isolated circuits have separate ground and power planes. The  
section below the device should be clear with no power,  
ground or signal traces. Maintain a gap equal to or greater  
than the specified minimum creepage clearance of the  
device package.  
NCID9211 is a dualchannel digital isolator that enables  
bidirectional communication between two isolated  
circuits. It uses offchip ceramic capacitors that serve both  
as the isolation barrier and as the medium of transmission for  
signal switching using onoff keying (OOK) technique,  
illustrated in the single channel operational block diagram  
in Figure 13.  
At the transmitter side, the V input logic state is  
IN  
modulated with a high frequency carrier signal. The  
resulting signal is amplified and transmitted to the isolation  
barrier. The receiver side detects the barrier signal and  
demodulates it using an envelope detection technique. The  
output signal determines the V output logic state when the  
O
Signal Lines / VDD2 Fill  
GND2 Plane  
Signal Lines / VDD1 Fill  
GND1 Plane  
output enable control EN is at high. When EN is at low,  
output V is at high impedance state. V is at default state  
No Trace  
O
O
VDD1 Plane  
VDD2 Plane  
low when the power supply at the transmitter side is turned  
off or the input V is disconnected.  
Signal Lines / GND1 Fill  
Signal Lines / GND2 Fill  
IN  
Figure 16. 4Layer PCB for Digital Isolator  
ISOLATION  
TRANSMITTER  
EN  
VO  
RECEIVER  
BARRIER  
For NCID9211, it is highly advised to connect at least a  
pair of low ESR supply bypass capacitors, placed within  
2mm from the power supply pins 1 and 16 and ground pins  
2 and 15. Recommended values are 1 mF and 0.1 mF,  
TX  
Amplif ier  
OOK  
Modulator  
RX  
Amplif ier  
Envelope  
Detec tor  
IO  
VIN  
OFFCHIP  
CAPACITORS  
OSC  
Figure 13. Operational Block Diagram of  
Single Channel  
respectively. Place them between the V pins of the device  
DD  
and the via to the power planes, with the higher frequency,  
lower value capacitor closer to the device pins. Directly  
connect the device ground pins 1, 8, 9 and 15 by via to their  
corresponding ground planes.  
VIN  
ISOLATION  
BARRIER  
1μF 0.1μF  
0.1μF 1μF  
VDD1  
VDD2  
GND2  
GND1  
VO  
Figure 14. OnOff Keying Modulation Signals  
OFFCHIP CAPACITIVE  
ISOLATION BARRIER  
GND1  
GND2  
EN1  
VOA  
VINA  
IO  
+
VTX  
RX  
TX  
IO  
IO  
TX  
RX  
Figure 17. Placement of Bypass Capacitors  
OSC  
EN2  
VOB  
VINB  
Over Temperature Detection  
+
VTX  
IO  
NCID9211 has a builtin Over Temperature Detection  
(OTD) feature that protects the IC from thermal damage.  
The output pins will automatically switch to default state  
when the ambient temperature exceeds the maximum  
junction temperature at threshold of approximately 160°C.  
The device will return to normal operation when the  
temperature decreases approximately 20°C below the OTD  
threshold.  
OSC  
Figure 15. NCID9211 Operational Block Diagram  
Layout Recommendation  
Layout of the digital circuits relies on good suppression of  
unwanted noise and electromagnetic interference. It is  
recommended to use 4layer FR4 PCB, with ground plane  
www.onsemi.com  
9
NCID9211  
ORDERING INFORMATION  
Part Number  
Grade  
Package  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
Shipping  
NCID9211  
Industrial  
Industrial  
Automotive  
Automotive  
50 Units / Tube  
750 Units / Tape & Reel  
50 Units / Tube  
NCID9211R2  
NCIV9211* (pending)  
NCIV9211R2* (pending)  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*NCIV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE A  
DATE 24 AUG 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
A
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AWLYWW  
XXXXXXXXXX  
XXXXXXXXXX  
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13751G  
SOIC16 W  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY