NCID9311R2 [ONSEMI]

High Speed 3-Channel Digital Isolator;
NCID9311R2
型号: NCID9311R2
厂家: ONSEMI    ONSEMI
描述:

High Speed 3-Channel Digital Isolator

文件: 总16页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
High Speed 3-Channel  
Digital Isolator  
NCID9301, NCID9311  
Description  
The NCID9301 and NCID9311 are galvanically isolated  
highspeed 3channel digital isolator with output enable. This device  
supports isolated communications thereby allowing digital signals to  
communicate between systems without conducting ground loops or  
hazardous voltages.  
SOIC16 W  
CASE 751EN  
MARKING DIAGRAM  
It utilizes onsemi’s patented galvanic offchip capacitor isolation  
technology and optimized IC design to achieve high insulation and  
high noise immunity, characterized by high common mode rejection  
and power supply rejection specifications. The thick ceramic substrate  
yields capacitors with ~25 times the thickness of thin film onchip  
capacitors and coreless transformers. The result is a combination of  
the electrical performance benefits that digital isolators offer with the  
safety reliability of a >0.5 mm insulator barrier similar to what has  
historically been offered by optocouplers.  
A
WL  
Y
= Assembly Location  
= Wafer Lot / Assembly Lot  
= Year  
The device is housed in a 16pin wide body small outline package.  
Features  
WW  
9301 / 9311  
= Work Week  
= Specific Device Code  
OffChip Capacitive Isolation to Achieve Reliable High Voltage  
Insulation  
DTI (Distance Through Insulation): 0.5 mm  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 14 of  
this data sheet.  
Maximum Working Insulation Voltage: 2000 V  
Bidirectional Communication  
peak  
100 kV/ms Minimum Common Mode Rejection  
8 mm Creepage and Clearance Distance to Achieve Reliable High  
Voltage Insulation  
Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage  
and 40°C to 125°C Extended Temperature Range  
Over Temperature Detection  
Output Enable Function (Primary and Secondary side)  
NCIV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable (Pending)  
Safety and Regulatory Approvals  
UL1577, 5000 V  
for 1 Minute  
RMS  
DIN EN/IEC 6074717 (Pending)  
Typical Applications  
Isolated PWM Control  
Industrial Fieldbus Communications  
2
Microprocessor System Interface (SPI, I C, etc.)  
Programmable Logic Control  
Isolated Data Acquisition System  
Voltage Level Translator  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
January, 2022 Rev. 0  
NCID9301/D  
NCID9301, NCID9311  
BLOCK DIAGRAM  
VDD1  
GND1  
VDD2  
GND2  
SYNC  
SER  
ENCODER  
TX  
RX  
DECODER  
DES  
IO A  
IO B  
IO C  
NC  
IO A  
IO B  
IO C  
NC  
IO  
SWITCH  
IO  
SWITCH  
SYNC  
DES  
DECODER  
RX  
TX  
ENCODER  
SER  
EN1  
EN2  
GND1  
GND2  
Figure 1. Functional Block Diagram  
www.onsemi.com  
2
NCID9301, NCID9311  
PIN CONFIGURATION  
NCID9301  
NCID9311  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
1
16  
15  
14  
13  
12  
V
V
V
V
DD2  
DD1  
DD2  
DD1  
2
3
4
5
6
7
8
GND1  
GND2  
GND1  
GND2  
V
V
V
V
V
V
V
V
V
V
INA  
INB  
OA  
OB  
INA  
INB  
OA  
OB  
V
V
OC  
INC  
OC  
INC  
NC  
NC  
NC  
NC  
EN1  
11 NC  
10  
10 EN2  
GND2  
EN2  
GND1  
GND1  
GND2  
9
9
Figure 2. Pin and Channel Configuration  
PIN DEFINITIONS  
Pin No.  
Pin No.  
NCID9301  
NCID9311  
Name  
Description  
V
1
2
1
2
Power Supply, Side 1  
Ground Connection for V  
Input, Channel A  
DD1  
GND1  
DD1  
V
3
3
INA  
V
INB  
4
4
Input, Channel B  
V
5
12  
6
Input, Channel C  
INC  
NC  
EN1  
NC  
6
No Connect  
7
Output Enable 1  
7
No Connect  
GND1  
GND2  
EN2  
NC  
8
8
Ground Connection for V  
Ground Connection for V  
Output Enable 2  
DD1  
9
9
DD2  
10  
11  
12  
13  
14  
15  
16  
10  
11  
5
No Connect  
V
OC  
Output, Channel C  
Output, Channel B  
Output, Channel A  
Ground Connection for V  
Power Supply, Side 2  
V
OB  
13  
14  
15  
16  
V
OA  
GND2  
DD2  
V
DD2  
www.onsemi.com  
3
NCID9301, NCID9311  
SPECIFICATIONS  
TRUTH TABLE (Note 1)  
V
EN  
V
V
V
OX  
Comment  
Normal Operation  
Normal Operation  
INX  
X
DDI  
DDO  
H
H/NC  
H/NC  
L
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
H
L
L
X
X
Power Up  
HiZ  
L
H/NC  
Power Down  
Default low; V return to normal operation  
OX  
when V  
change to Power Up  
DDI  
X
H/NC  
Power Up  
Power Down  
Undetermined  
(Note 2)  
V
return to normal operation when V  
OX DDO  
change to Power Up  
1. VINX = Input signal of a given channel (A, B or C). EN = Enable pin for primary or secondary side (1 or 2). V = Output signal of a given  
X
OX  
channel (A, B or C). V  
= Inputside V . V  
= Outputside V . X = Irrelevant. H = High level. L = Low level. NC = No Connection.  
DDO  
DDI  
DD DDO DD  
2. The outputs are in undetermined state when V  
< V  
.
UVLO  
SAFETY AND INSULATION RATINGS  
As per DIN EN/IEC 6074717, this digital isolator is suitable for “safe electrical insulation” only within the safety limit data. Compliance with  
the safety ratings must be ensured by means of protective circuits.  
Symbol  
Parameter  
Min  
Typ  
I–IV  
I–IV  
I–IV  
I–IV  
I–III  
40/125/21  
2
Max  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
< 1000 V  
RMS  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
InputtoOutput Test Voltage, Method b, V × 1.875 = V , 100%  
600  
3750  
V
PR  
V
peak  
IORM  
PR  
Production Test with t = 1 s, Partial Discharge < 5 pC  
m
InputtoOutput Test Voltage, Method a, V  
× 1.6 = V , Type  
3200  
V
peak  
IORM  
PR  
and Sample Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
2000  
8000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
E
External Creepage  
mm  
mm  
mm  
°C  
CR  
E
External Clearance  
8.0  
CL  
DTI  
Insulation Thickness  
0.50  
150  
100  
600  
109  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
W
S,INPUT  
P
S,OUTPUT  
R
Insulation Resistance at TS, V = 500 V  
IO  
IO  
www.onsemi.com  
4
 
NCID9301, NCID9311  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
55 to +150  
40 to +125  
40 to +150  
260 for 10 s  
0.5 to 6  
0.5 to 6  
10  
Unit  
°C  
°C  
°C  
°C  
V
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
STG  
OPR  
T
T
J
T
SOL  
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Supply Voltage (V  
V
DD  
)
DDx  
V
Voltage (V , V , ENx)  
V
INx  
Ox  
I
O
Average Output Current  
Power Dissipation  
mA  
mW  
PD  
210  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING RANGES  
Symbol  
Parameter  
Ambient Operating Temperature  
Min  
40  
2.5  
0.7 × V  
0
Max  
+125  
5.5  
Unit  
°C  
V
T
A
V
V
Supply Voltage (Notes 3, 4)  
High Level Input Voltage  
DD1 DD2  
V
INH  
V
DDI  
V
DDI  
V
INL  
Low Level Input Voltage  
0.1 × V  
V
DDI  
V
V
Supply Voltage UVLO Rising Threshold  
Supply Voltage UVLO Falling Threshold  
Supply Voltage UVLO Hysteresis  
High Level Output Current  
Low Level Output Current  
2.2  
2.0  
0.1  
2  
V
UVLO+  
V
UVLO  
UVLO  
V
HYS  
I
mA  
mA  
Mbps  
OH  
I
OL  
2
DR  
Signaling Rate  
0
15  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
3. During power up or down, ensure that both the input and output supply voltages reach the proper recommended operating voltages to avoid  
any momentary instability at the output state.  
4. For reliable operation at recommended operating conditions, V supply pins require at least a pair of external bypass capacitors, placed  
DD  
within 2 mm from V pins 1 and 16 and GND pins 2 and 15. Recommended values are 0.1 mF and 1 mF.  
DD  
ISOLATION CHARACTERISTICS  
Apply over all recommended conditions. All typical values are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
ISO  
InputOutput Isolation  
Voltage  
T
= 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
A
t = 1.0 minute, I  
v 10 mA, 50 Hz  
IO  
(Notes 5, 6, 7)  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
V
= 500 V (Note 5)  
10  
ISO  
ISO  
IO  
= 0 V, Frequency = 1.0 MHz  
(Note 5)  
1
pF  
IO  
5. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
6. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
7. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN EN/IEC 6074717 Safety and Insulation  
Ratings Table on page 4.  
www.onsemi.com  
5
 
NCID9301, NCID9311  
ELECTRICAL CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C, V  
= V  
= 2.5 V to 5.5 V, unless otherwise specified. All typical values  
A
DD1  
DD2  
are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min  
4.5  
2.9  
2.1  
Typ  
4.8  
3.2  
2.4  
0.1  
Max  
Unit  
Figure  
V
OH  
High Level Output  
Voltage  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 5 V, I = 4 mA  
V
11  
OH  
= 3.3 V, I = 2 mA  
OH  
= 2.5 V, I = 1 mA  
OH  
V
OL  
Low Level Output  
Voltage  
= 5 V, I = 4 mA  
0.4  
V
12  
OL  
= 3.3 V, I = 2 mA  
OL  
= 2.5 V, I = 1 mA  
OL  
V
V
Rising Input Voltage  
Threshold  
0.7 × V  
V
V
V
INT+  
DDI  
Falling Input Voltage  
Threshold  
0.1 × V  
0.1 × V  
INT−  
DDI  
V
Input Threshold Voltage  
Hysteresis  
0.2 × V  
INT(HYS)  
DDI  
DDI  
I
High Level Input Current  
Low Level Input Current  
V
V
= V  
1
mA  
mA  
INH  
IH  
DDI  
I
= 0 V  
1  
INL  
IL  
CMTI  
Common Mode Transient  
Immunity  
V = V  
or 0 V,  
100  
150  
kV/ms  
16  
I
DDI  
= 1500 V  
V
CM  
C
Input Capacitance  
V
= V /2 + 0.4 × sin (2pft),  
2
pF  
IN  
IN  
DDI  
f = 1 MHz, V = 5 V  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
NCID9301, NCID9311  
SUPPLY CURRENT CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
8.6  
Max  
11.1  
12.1  
10.8  
11.8  
10.6  
11.6  
11.1  
12.1  
10.8  
11.8  
10.6  
11.6  
12.4  
14.5  
11.4  
13.1  
11.1  
12.6  
13.0  
15.7  
11.8  
13.8  
11.4  
Unit  
mA  
Figure  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DC Supply Current  
V
IN  
= 5 V, EN = 0/5 V,  
DD  
= 0/5 V  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
V
9.4  
V
V
= 3.3 V, EN = 0/3.3 V,  
= 0/3.3 V  
8.3  
DD  
IN  
9.2  
V
V
= 2.5 V, EN = 0/2.5 V,  
= 0/2.5 V  
8.2  
DD  
IN  
9.2  
AC Supply Current  
1 Mbps  
V
DD  
= 5 V, EN = 5 V,  
8.5  
mA  
3, 4,  
5, 6  
C = 15 pF,  
L
9.6  
V
IN  
= 5 V Square Wave  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
V
DD  
= 3.3 V, EN = 3.3 V,  
8.5  
C = 15 pF,  
L
9.3  
V
IN  
= 3.3 V Square Wave  
V
DD  
= 2.5 V, EN = 2.5 V,  
8.2  
C = 15 pF,  
L
9.2  
V
IN  
= 2.5 V Square Wave  
AC Supply Current  
10 Mbps  
V
DD  
= 5 V, EN = 5 V,  
9.8  
mA  
C = 15 pF,  
L
12.0  
9.1  
V
IN  
= 5 V Square Wave  
V
DD  
= 3.3 V, EN = 3.3 V,  
C = 15 pF,  
L
10.6  
8.7  
V
IN  
= 3.3 V Square Wave  
V
DD  
= 2.5 V, EN = 2.5 V,  
C = 15 pF,  
L
10.2  
10.4  
13.2  
9.5  
V
IN  
= 2.5 V Square Wave  
AC Supply Current  
15 Mbps  
V
DD  
= 5 V, EN = 5 V,  
mA  
C = 15 pF,  
L
V
IN  
= 5 V Square Wave  
V
DD  
= 3.3 V, EN = 3.3 V,  
C = 15 pF,  
L
11.3  
9.0  
V
IN  
= 3.3 V Square Wave  
V
DD  
= 2.5 V, EN = 2.5 V,  
C = 15 pF,  
L
I
10.7  
13.1  
V
IN  
= 2.5 V Square Wave  
DD2  
www.onsemi.com  
7
NCID9301, NCID9311  
SWITCHING CHARACTERISTICS – NCID9301  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Ch  
Conditions  
= 5 V, C = 15 pF  
Min  
Typ  
Max  
Unit  
Figure  
t
Propagation Delay to Logic Low  
Output (Note 8)  
All  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
115  
170  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
8, 13  
PHL  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay to Logic High  
Output (Note 9)  
All  
All  
All  
All  
All  
All  
All  
All  
All  
= 5 V, C = 15 pF  
116  
26  
170  
70  
70  
PLH  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
PWD  
Pulse Width Distortion  
= 5 V, C = 15 pF  
L
| t  
PHL  
– t  
| (Note 10)  
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay Skew  
(Part to Part) (Note 11)  
= 5 V, C = 15 pF  
70  
PSK(PP)  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
R
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
= 5 V, C = 15 pF  
3.9  
2.3  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
F
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
t
High Impedance to Logic Low  
Output Delay (Note 12)  
8.4  
25  
25  
1
14  
= 5 V, R = 1 kW  
PZL  
L
= 3.3 V, R = 1 kW  
10.0  
12.3  
10.8  
14.3  
17.5  
0.53  
0.50  
0.50  
11.6  
12.9  
14.7  
L
= 2.5 V, R = 1 kW  
L
Logic Low to High Impedance  
Output Delay (Note 13)  
= 5 V, R = 1 kW  
PLZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
t
t
High Impedance to Logic High  
Output Delay (Note 14)  
15  
= 5 V, R = 1 kW  
PZH  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
Logic High to High Impedance  
Output Delay (Note 15)  
25  
= 5 V, R = 1 kW  
PHZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
8. Propagation delay t  
is measured from the 50% level of the falling edge of the input pulse to the 50% level of the falling edge of the V signal.  
O
PHL  
9. Propagation delay t  
is measured from the 50% level of the rising edge of the input pulse to the 50% level of the rising edge of the V signal.  
PLH  
PHL  
O
10.PWD is defined as | t  
– t  
PLH  
| for any given device.  
11. Parttopart propagation delay skew is the difference between the measured propagation delay times of a specified channel of any two parts  
at identical operating conditions and equal load.  
12.Enable delay t  
is measured from the 50% level of the rising edge of the EN pulse to the 50% of the falling edge of the V signal as it switches  
PZL  
O
from high impedance state to low state.  
13.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to 0.5 V level of the rising edge of the V signal as  
PLZ  
O
it switches from low state to high impedance state.  
14.Enable delay t is measured from the 50% level of the rising edge of the EN pulse to the 50% of the rising edge of the V signal as it switches  
PZH  
O
from high impedance state to high state.  
15.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to V 0.5 V level of the falling edge of the V signal  
PHZ  
OH  
O
as it switches from high state to high impedance state.  
www.onsemi.com  
8
 
NCID9301, NCID9311  
SWITCHING CHARACTERISTICS – NCID9311  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
t
Parameter  
Ch  
Conditions  
= 5 V, C = 15 pF  
Min  
Typ  
Max  
Unit  
Figure  
Propagation Delay to Logic  
Low Output (Note 8)  
A, B  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
95  
140  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
9, 10, 13  
PHL  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
C
A,B  
C
= 5 V, C = 15 pF  
77  
96  
77  
19  
13  
110  
140  
110  
60  
40  
60  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay to Logic  
High Output (Note 9)  
= 5 V, C = 15 pF  
L
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
PWD  
Pulse Width Distortion  
A,B  
C
= 5 V, C = 15 pF  
L
| t  
PHL  
– t  
| (Note 10)  
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay Skew  
(Part to Part) (Note 11)  
All  
All  
All  
All  
All  
All  
All  
= 5 V, C = 15 pF  
60  
PSK(PP)  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
R
Output Rise Time  
(10% to 90%)  
= 5 V, C = 15 pF  
2.7  
2
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
F
Output Fall Time  
(90% to 10%)  
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
t
High Impedance to Logic  
Low Output Delay (Note 12)  
8.4  
25  
25  
1
14  
= 5 V, R = 1 kW  
PZL  
L
= 3.3 V, R = 1 kW  
10.0  
12.3  
10.8  
14.3  
17.5  
0.53  
0.50  
0.50  
11.6  
12.9  
14.7  
L
= 2.5 V, R = 1 kW  
L
Logic Low to High Impedance  
Output Delay (Note 13)  
= 5 V, R = 1 kW  
PLZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
t
t
High Impedance to Logic High  
Output Delay (Note 14)  
15  
= 5 V, R = 1 kW  
PZH  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
Logic High to High Impedance  
Output Delay (Note 15)  
25  
= 5 V, R = 1 kW  
PHZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
www.onsemi.com  
9
NCID9301, NCID9311  
TYPICAL PERFORMANCE CHARACTERISTICS  
14  
13  
12  
11  
10  
9
14  
T
A = 25°C  
T
A = 25°C  
LOAD = No Load  
LOAD = 15 pF  
13  
12  
11  
10  
9
IDD2 VDD = 5 V  
IDD2 VDD = 5 V  
IDD2 VDD  
=
3.3 V  
IDD2 VDD = 3.3 V  
IDD2 VDD = 2.5 V  
IDD2 VDD = 2.5 V  
IDD1 VDD = 3.3 V IDD1 VDD = 2.5 V  
IDD1 VDD = 3.3 V IDD1 VDD = 2.5 V  
IDD1 VDD = 5 V  
IDD1 VDD = 5 V  
8
8
7
7
0
5
10  
15  
0
5
10  
15  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 3. NCID9301 Supply Current vs. Data Rate  
(No Load)  
Figure 4. NCID9301 Supply Current vs. Data Rate  
(Load = 15 pF)  
12  
12  
T
A = 25°C  
T
A = 25°C  
IDD2 VDD = 5 V  
LOAD = No Load  
LOAD = 15 pF  
IDD2 VDD = 5 V  
11  
10  
9
11  
10  
9
IDD2 VDD = 3.3 V  
IDD2 VDD = 3.3 V  
IDD2 VDD = 2.5 V  
IDD2 VDD = 2.5 V  
IDD1 VDD = 2.5 V  
IDD1 VDD = 2.5 V  
IDD1 VDD = 3.3 V  
IDD1 VDD = 3.3 V  
8
8
IDD1 VDD = 5 V  
IDD1 VDD = 5 V  
7
7
0
5
10  
15  
0
5
10  
15  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 5. NCID9311 Supply Current vs. Data Rate  
(No Load)  
Figure 6. NCID9311 Supply Current vs. Data Rate  
(Load = 15 pF)  
3.0  
130  
VDD = 2.5 V to 5 V  
Ch A/B/C  
125  
2.5  
120  
VUVLO+  
tPHL  
115  
110  
105  
100  
VUVLO  
tPLH  
2.0  
1.5  
40  
20  
0
20  
40  
60  
80  
100  
120  
40  
20  
0
20  
40  
60  
80  
100  
120  
T
A
Ambient Temperature (5C)  
T
A
Ambient Temperature (5C)  
Figure 7. Supply Voltage UVLO Threshold vs.  
Ambient Temperature  
Figure 8. NCID9301 Propagation Delay vs. Ambient  
Temperature  
www.onsemi.com  
10  
NCID9301, NCID9311  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
110  
105  
100  
95  
90  
VDD = 2.5 V to 5 V  
Ch A/B  
VDD = 2.5 V to 5 V  
Ch C  
85  
80  
tPHL  
tPHL  
75  
tPLH  
tPLH  
90  
70  
65  
60  
85  
80  
40  
20  
0
20  
40  
60  
80  
100  
120  
40  
20  
0
20  
40  
60  
80  
100  
120  
T
A
Ambient Temperature (5C)  
T
A
Ambient Temperature (5C)  
Figure 9. NCID9311 Channel A/B Propagation Delay vs. Figure 10. NCID9311 Channel C Propagation Delay vs.  
Ambient Temperature  
Ambient Temperature  
6
5
4
3
2
1
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T
A = 25 °C  
T
A = 25 °C  
VDD = 5 V  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 3.3 V  
VDD = 2.5 V  
VDD = 5 V  
10  
8  
6  
4  
2  
0
0
2
4
6
8
10  
I
High Level Output Current (mA)  
I
Low Level Output Current (mA)  
OH  
OL  
Figure 11. High Level Output Voltage vs. Current  
Figure 12. Low Level Output Voltage vs. Current  
www.onsemi.com  
11  
NCID9301, NCID9311  
TEST CIRCUITS  
50%  
V
I
V
DDI  
V
DDO  
V
I
V
O
+
+
t
t
PHL  
PLH  
V
IN  
90%  
10%  
V
EN  
50%  
+
C
L
V
O
t
R
t
F
Figure 13. VIN to VO Propagation Delay Test Circuit and Waveform  
R
1 kW  
L
50%  
V
I
V
DDI  
V
DDO  
V
O
+
+
t
t
PZL  
PLZ  
V
I
V
IN  
0.5 V  
V
O
+
50%  
C
L
V
EN  
Figure 14. EN to Logic Low VO Propagation Delay Test Circuit and Waveform  
50%  
V
I
V
DDO  
V
DDI  
V
O
+
+
t
t
PZH  
PHZ  
V
I
V
IN  
1 kW  
R
C
L
+
L
0.5 V  
50%  
V
O
V
EN  
Figure 15. EN to Logic High VO Propagation Delay Test Circuit and Waveform  
1
V
V
DDI  
S at 0, V remain consistently low  
DDO  
V
V
O
O
IN  
2
S at 1, V remain consistently high  
O
S
0
S at 2, V data same as V data  
O IN  
SCOPE  
V
CM  
Figure 16. Common Mode Transient Immunity Test Circuit  
www.onsemi.com  
12  
NCID9301, NCID9311  
APPLICATION INFORMATION  
Theory of Operation  
and Figure 19. At the transmitter side, the V T input logic  
I
X
NCID9301 and NCID9311 are 3channel digital  
isolators. The chip to chip galvanic isolation are provided by  
a pair of offchip capacitors. Digital circuits are used for  
processing signals through the 0.5 mm thick isolation  
barrier.  
state is modulated with a high frequency carrier signal. The  
resulting signal is amplified and transmitted to the isolation  
barrier. The receiver side detects the barrier signal and  
demodulates it using an envelope detection technique and  
output V R .  
O
X
Pins are trimmed internally as input or output at IO  
Switch. Each direction of communication between two  
isolated circuits are achieved by implementing a pair of  
Serializer/Deserializer and Manchester Encoder/Decoder  
functional blocks as shown in Figure 17. The Serializer  
circuit converts the parallel data from the IO Switch into a  
serial (one bit) stream and the Manchester Encoder converts  
this data stream into coded data making it more robust,  
efficient and accurate for transmission. After encoding, all  
inputs signals are coded as V T and transmitted across the  
The output signal of the transceiver V R will go to the  
O
X
Manchester Decoder. This decoder is used along with the  
receiver to recover the original data from the coded form and  
the Deserializer converts the serial stream back to the  
original, parallel data and redistributed back to the  
corresponding output pins. Both the Serializer/Deserializer  
and Manchester Encoder/Decoder are functional blocks on  
the transmitting and receiving chips.  
The output enable pin EN controls the impedance of the  
V
. When EN is at LOW, output V  
is set to high  
I
X
OX  
OX  
isolation barrier via Transceiver.  
impedance state. The V will only follow the V  
when  
OX  
INX  
The offchip ceramic capacitors that serve both as the  
isolation barrier and as the medium of transmission for  
signal switching using OnOff keying (OOK) technique,  
illustrated in the transceiver block diagram in Figure 18  
EN is set to HIGH. V is at default state LOW when the  
power supply at the transmitter side is turned off or the input  
OX  
V
INX  
is disconnected.  
V
V
INA  
INB  
V
V
OA  
OB  
Transceiver  
V T  
I
V R  
O X  
IO  
Switch  
X
Manchester  
Decoder  
Manchester  
Encoder  
IO  
Switch  
Serializer  
Deserializer  
V
INn  
V
On  
EN  
Figure 17. Operational Block Diagram of MultiChannels for Forward Direction  
ISOLATION  
RECEIVER  
BARRIER  
TRANSMITTER  
V T  
I
X
TX  
Amplifier  
OOK  
Modulator  
RX  
Amplifier  
Envelope  
Detector  
ISOLATION  
BARRIER  
SIGNAL  
V T  
I
V R  
O X  
X
OFFCHIP  
CAPACITORS  
OSC  
V R  
O
X
Figure 18. Block Diagram of Transceiver  
Layout Recommendation  
Figure 19. OnOff Keying Modulation Signals  
power supply pins 1 and 16 and ground pins 2 and 15 as  
Layout of the digital circuits relies on good suppression of  
unwanted noise and electromagnetic interference. It is  
recommended to use 4layer FR4 PCB, with ground plane  
below the components, power plane below the ground plane,  
signal lines and power fill on top, and signal lines and ground  
fill at the bottom as shown in Figure 20. The alternating  
polarities of the layers creates interplane capacitances that  
aids the bypass capacitors required for reliable operation at  
digital switching rates.  
In the layout with digital isolators, it is required that the  
isolated circuits have separate ground and power planes. The  
section below the device should be clear with no power,  
ground or signal traces. Maintain a gap equal to or greater  
than the specified minimum creepage clearance of the  
device package.  
shown in Figure 21. Recommended values are 1 mF and  
0.1 mF, respectively. Place them between the V pins of the  
DD  
device and the via to the power planes, with the higher  
frequency, lower value capacitor closer to the device pins.  
Directly connect the device ground pins 2, 8, 9 and 15 by via  
to their corresponding ground planes.  
Over Temperature Detection  
NCID9301 and NCID9311 have builtin Over  
Temperature Detection (OTD) feature that protects the IC  
from thermal damage. The output pins will automatically  
switch to default state when the ambient temperature  
exceeds the maximum junction temperature at threshold of  
approximately 160°C. The device will return to normal  
operation when the temperature decreases approximately  
20°C below the OTD threshold.  
It is highly advised to connect at least a pair of low ESR  
supply bypass capacitors, placed within 2 mm from the  
www.onsemi.com  
13  
 
NCID9301, NCID9311  
1 mF 0.1 mF  
0.1 mF 1 mF  
Signal Lines / VDD2 Fill  
Signal Lines / VDD1 Fill  
V
V
DD2  
GND2  
DD1  
GND1  
Plane  
GND2  
Plane  
GND1  
No Trace  
VDD1 Plane  
VDD2 Plane  
Signal Lines / GND2 Fill  
Signal Lines / GND1 Fill  
Figure 20. 4Layer PCB for Digital Isolator  
GND1  
GND2  
Figure 21. Placement of Bypass Capacitors  
ORDERING INFORMATION  
Part Number  
NCID9301  
Grade  
Package  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
Shipping  
Industrial  
50 Units / Tube  
NCID9301R2  
Industrial  
750 Units / Tape & Reel  
50 Units / Tube  
NCID9311  
Industrial  
NCID9311R2  
Industrial  
750 Units / Tape & Reel  
50 Units / Tube  
NCIV9301* (pending)  
NCIV9301R2* (pending)  
NCIV9311* (pending)  
NCIV9311R2* (pending)  
Automotive  
Automotive  
Automotive  
Automotive  
750 Units / Tape & Reel  
50 Units / Tube  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCIV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
14  
NCID9301, NCID9311  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE O  
www.onsemi.com  
15  
NCID9301, NCID9311  
2
ON Semiconductor is licensed by the Philips Corporation to carry the I C bus protocol.  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY