NCL30083_15 [ONSEMI]

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back;
NCL30083_15
型号: NCL30083_15
厂家: ONSEMI    ONSEMI
描述:

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back

文件: 总35页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCL30083  
Dimmable Quasi-Resonant  
Primary Side Current-Mode  
Controller for LED Lighting  
with Thermal Fold-back  
www.onsemi.com  
The NCL30083 is a PWM current mode controller targeting isolated  
flyback and non−isolated constant current topologies. The controller  
operates in a quasi−resonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to precisely regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, biasing and an optocoupler.  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device is specifically intended for very compact space  
efficient designs. It supports step dimming by monitoring the AC line  
and detecting when the line has been toggled on−off−on by the user to  
reduce the light intensity in 5 steps down to 5% dimming.  
8
8
1
1
Micro8  
SOIC−8  
D SUFFIX  
CASE 751  
DM SUFFIX  
CASE 846A  
MARKING DIAGRAM  
8
AAx  
AYWG  
G
Features  
Quasi−resonant Peak Current−mode Control Operation  
Primary Side Sensing (no optocoupler needed)  
1
AAx  
x
A
= Specific Device Code  
= E or F  
= Assembly Location  
= Year  
Wide V Range  
CC  
Source 300 mA/Sink 500 mA Totem Pole Driver with 12 V Gate Clamp  
Precise LED Constant Current Regulation 1% Typical  
Line Feed−forward for Enhanced Regulation Accuracy  
Low LED Current Ripple  
Y
W
G
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
8
250 mV 2% Guaranteed Voltage Reference for Current Regulation  
~ 0.9 Power Factor with Valley Fill Input Stage  
Low Start−up Current (13 mA typ.)  
L30083x  
ALYW  
G
1
5 State Quasi−log Dimmable  
L30083x = Specific Device Code  
x
Thermal Fold−back  
= B  
Programmable soft−start  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Wide Temperature Range of −40 to +125°C  
Pb−free, Halide−free MSL1 Product  
Robust Protection Features  
Over Voltage / LED Open Circuit Protection  
Over Temperature Protection  
Latched and Auto−recoverable Versions  
Brown−out  
PIN CONNECTIONS  
V Under Voltage Lockout  
CC  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Shorted Current Sense Pin Fault Detection  
1
Thermal Shutdown  
SD  
SS  
ZCD  
CS  
GND  
VIN  
VCC  
DRV  
Typical Applications  
Integral LED Bulbs  
LED Power Driver Supplies  
LED Light Engines  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 35 of this data sheet.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
January, 2015 − Rev. 2  
NCL30083/D  
NCL30083  
.
.
Aux  
.
1
2
3
4
8
7
6
5
Figure 1. Typical Application Schematic for NCL30083  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No  
Pin Name  
Function  
Pin Description  
1
SD  
Thermal Fold−back  
and shutdown  
Connecting an NTC to this pin allows reducing the output current down to 50%  
of its fixed value before stopping the controller. A Zener diode can also be  
used to pull−up the pin and stop the controller for adjustable OVP protection  
2
3
4
5
ZCD  
CS  
Zero Crossing Detection  
Current sense  
Connected to the auxiliary winding, this pin detects the core reset event.  
This pin monitors the primary peak current  
The controller ground  
GND  
DRV  
Driver output  
The current capability of the totem pole gate drive (+0.3/−0.5 A) makes it suit-  
able to effectively drive a broad range of power MOSFETs.  
6
7
VCC  
VIN  
Supplies the controller  
This pin is connected to an external auxiliary voltage.  
Brown−Out  
Input voltage sensing  
This pin observes the HV rail and is used in valley selection. This pin also  
monitors and protects for low mains conditions.  
8
SS  
Soft−Start  
A capacitor connected to ground select the soft−start duration.  
www.onsemi.com  
2
NCL30083  
CS_shorted  
Enable  
V
REF  
V
DD  
STOP  
Over Voltage  
Protection  
Aux_SCP  
OFF  
VCC  
UVLO  
Latch  
Fault  
Management  
VCC Management  
Over Temperature  
Protection  
Internal  
Thermal  
Shutdown  
VCC_max  
VCC Over Voltage  
Protection  
SD  
Ipkmax  
Thermal  
Foldback  
V
TF  
WOD_SCP  
BO_NOK  
Qdrv  
V
VIN  
V
REF  
V
CC  
Clamp  
Circuit  
Zero Crossing Detection  
offset_OK  
ZCD  
Valley Selection  
Aux. Winding  
DRV  
Short Circuit Prot.  
S
R
Qdrv  
Aux_SCP  
Q
V
VIN  
offset_OK  
V
VLY  
Line  
Feedforward  
V
STOP  
V
TF  
REF  
SS  
CS  
Leading  
Edge  
Blanking  
CS_reset  
V
SST  
Constant−Current  
Control  
Soft−Start  
Enable  
Ipkmax  
STOP  
Enable  
STEP_DIM  
Ipkmax  
V
SST  
Max. Peak  
Current  
Limit  
V
VIN  
VIN  
Step  
Dimming  
Brown−Out  
BO_NOK  
STEP_DIM  
CS Short  
Protection  
CS_shorted  
V
VIN  
Winding and  
Output diode  
Short Circuit  
Protection  
WOD_SCP  
GND  
Figure 2. Internal Circuit Architecture  
www.onsemi.com  
3
NCL30083  
Table 2. MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
−0.3, +35  
V
CC(MAX)  
I
Internally limited  
mA  
CC(MAX)  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
−0.3, V  
(Note 1)  
V
DRV(MAX)  
DRV  
I
−500, +800  
mA  
DRV(MAX)  
V
Maximum voltage on low power pins (except pins ZCD, SS, DRV and VCC)  
Current range for low power pins (except pins ZCD, DRV and VCC)  
−0.3, +5.5  
−2, +5  
V
MAX  
I
mA  
MAX  
V
Maximum voltage for ZCD pin  
Maximum current for ZCD pin  
−0.3, +10  
−2, +5  
V
ZCD(MAX)  
I
mA  
ZCD(MAX)  
V
Maximum voltage for SS pin  
Thermal Resistance, Junction−to−Air  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
−0.3, +10  
289  
V
°C/W  
°C  
SST(MAX)  
R
θ
J−A  
T
150  
J(MAX)  
−40 to +125  
−60 to +150  
4
°C  
°C  
ESD Capability, HBM model (Note 2)  
ESD Capability, MM model (Note 2)  
kV  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V unless otherwise noted.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per JEDEC JESD22−A114−F and  
Machine Model Method 200 V per JEDEC JESD22−A115−A.  
3. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78 except for VIN pin which passes 60 mA.  
www.onsemi.com  
4
 
NCL30083  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
Startup Threshold  
V
increasing  
decreasing  
decreasing  
V
V
16  
8.2  
8
18  
8.8  
20  
9.4  
CC  
CC(on)  
Minimum Operating Voltage  
V
CC  
V
CC  
CC(off)  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
3.5  
4.5  
5.5  
Over Voltage Protection  
VCC OVP threshold  
V
26  
28  
30  
V
CC(OVP)  
V
V
noise filter  
t
5
ms  
CC(off)  
VCC(off)  
noise filter−  
t
I
20  
CC(reset)  
VCC(reset)  
Startup current  
I
13  
46  
30  
60  
mA  
mA  
CC(start)  
Startup current in fault mode  
CC(sFault)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
0.8  
1.2  
2.3  
2.7  
1.4  
4.0  
5.0  
CC  
CC(off)  
CC1  
CC2  
CC3  
Device Enabled/No output load on pin 5  
F
= 65 kHz  
sw  
Device Switching (F = 65 kHz)  
C
= 470 pF,  
= 65 kHz  
sw  
DRV  
F
sw  
CURRENT SENSE  
Maximum Internal current limit  
Leading Edge Blanking Duration for V  
V
0.95  
250  
1
1.05  
350  
V
ILIM  
t
300  
ns  
ILIM  
LEB  
(T = −25°C to 125°C)  
j
Leading Edge Blanking Duration for V  
t
240  
300  
350  
ns  
ILIM  
LEB  
(T = −40°C to 125°C)  
j
Input Bias Current  
DRV high  
I
0.02  
50  
1.5  
120  
150  
1.65  
mA  
ns  
V
bias  
Propagation delay from current detection to gate off−state  
Threshold for immediate fault protection activation  
t
ILIM  
V
1.35  
CS(stop)  
Leading Edge Blanking Duration for V  
t
ns  
ms  
ms  
CS(stop)  
BCS  
Blanking time for CS to GND short detection V  
= 1 V  
t
t
6
12  
4
pinVIN  
CS(blank1)  
CS(blank2)  
Blanking time for CS to GND short detection V  
= 3.3 V  
2
pinVIN  
GATE DRIVE  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive current capability  
DRV Sink (Note 4)  
DRV Source (Note 4)  
mA  
I
I
500  
300  
SNK  
SRC  
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
t
8
40  
30  
ns  
ns  
V
DRV  
DRV  
r
= 470 pF  
t
f
V
= V  
+0.2 V  
CC(off)  
V
CC  
DRV(low)  
C
= 470 pF,  
DRV  
R
= 33 kW  
DRV  
DRV High Voltage  
V
DRV  
= 30 V  
= 470 pF,  
= 33 kW  
V
10  
12  
14  
V
CC  
DRV(high)  
C
R
DRV  
4. Guaranteed by design  
5. OTP triggers when R  
= 4.7 kW  
NTC  
www.onsemi.com  
5
 
NCL30083  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
ZERO VOLTAGE DETECTION CIRCUIT  
ZCD threshold voltage  
V
increasing  
decreasing  
increasing  
V
25  
5
45  
25  
65  
45  
mV  
mV  
mV  
V
ZCD  
ZCD(THI)  
ZCD(THD)  
ZCD(HYS)  
ZCD(short)  
ZCD threshold voltage (Note 4)  
ZCD hysteresis (Note 4)  
V
ZCD  
V
V
V
ZCD  
10  
0.8  
Threshold voltage for output short circuit or aux. winding  
short circuit detection  
V
1
1.2  
Short circuit detection Timer  
Auto−recovery timer duration  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
t
recovery  
Input clamp voltage  
High state  
Low state  
V
I
= 3.0 mA  
= −2.0 mA  
V
V
−0.9  
9.5  
−0.6  
−0.3  
pin1  
CH  
I
pin1  
CL  
Propagation Delay from valley detection to DRV high  
Equivalent time constant for ZCD input (Note 4)  
Blanking delay after on−time  
V
ZCD  
decreasing  
t
20  
3
150  
ns  
ns  
ms  
ms  
DEM  
t
PAR  
t
2.25  
5
3.75  
8
BLANK  
Timeout after last demag transition  
t
6.5  
TIMO  
CONSTANT CURRENT CONTROL  
Reference Voltage at T = 25°C  
V
V
245  
250  
250  
175  
100  
62.5  
25  
255  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
j
REF  
Reference Voltage T = −40°C to 125°C  
242.5  
257.5  
j
REF  
70% reference voltage  
40% reference Voltage  
25% reference Voltage  
10% reference Voltage  
5% reference Voltage  
V
REF70  
V
REF40  
V
REF25  
V
REF10  
V
REF05  
12.5  
55  
Current sense lower threshold for detection of the  
leakage inductance reset time  
V
30  
80  
CS(low)  
LINE FEED−FORWARD  
V
to I  
conversion ratio  
K
15  
67.5  
17  
76.5  
37.5  
50  
19  
85.5  
mA/V  
mA  
VIN  
CS(offset)  
LFF  
I
offset(MAX)  
Offset current maximum value  
V
= 4.5 V  
pinVIN  
V
value below which the offset current source is turned off  
value above which the offset current source is turned on  
V
REF  
decreases  
increases  
V
V
mV  
mV  
REF  
REF  
REF(off)  
REF(on)  
V
V
REF  
VALLEY SELECTION  
Threshold for line range detection V increasing  
V
increases  
decreases  
V
HL  
2.28  
2.18  
15  
2.4  
2.3  
25  
2.52  
2.42  
35  
V
V
in  
VIN  
st  
nd  
(1 to 2 valley transition for V  
> 0.75 V)  
REF  
Threshold for line range detection V decreasing  
V
VIN  
V
LL  
in  
nd  
st  
(2 to 1 valley transition for V  
> 0.75 V)  
REF  
Blanking time for line range detection  
4. Guaranteed by design  
t
ms  
HL(blank)  
5. OTP triggers when R  
= 4.7 kW  
NTC  
www.onsemi.com  
6
NCL30083  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
VALLEY SELECTION  
Valley thresholds  
mV  
st  
nd  
nd  
rd  
1
2
2
4
4
7
7
to 2 valley transition at LL and 2 to 3 valley HL  
V
V
V
V
V
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
177.5 187.5 197.5  
185.0 195.0 205.0  
117.5 125.0 132.5  
125.0 132.5 140.0  
REF  
VLY1−2/2−3  
VLY2−1/3−2  
VLY2−4/3−5  
VLY4−2/5−3  
VLY4−7/5−8  
VLY7−4/8−5  
nd  
nd  
th  
th  
th  
th  
st  
rd  
nd  
to 1 valley transition at LL and 3 to 2 valley HL  
V
REF  
REF  
th  
rd  
th  
to 4 valley transition at LL and 3 to 5 valley HL  
nd  
th  
rd  
to 2 valley transition at LL and 5 to 3 valley HL  
V
REF  
REF  
th  
th  
th  
to 7 valley transition at LL and 5 to 8 valley HL  
75.0  
82.5  
37.5  
50.0  
15.0  
20.0  
th  
th  
th  
to 4 valley transition at LL and 8 to 5 valley HL  
V
REF  
REF  
th  
th  
th  
to 11 valley transition at LL and 8 to 12 valley HL  
V
V
VLY7−11/8−12  
VLY11−7/12−8  
th  
th  
th  
th  
11 to 7 valley transition at LL and 12 to 8 valley HL  
V
REF  
REF  
th  
th  
th  
th  
11 to 13 valley transition at LL and 12 to 15 valley HL  
V
V
VLY11−13/12−15  
VLY13−11/15−12  
th  
th  
th  
th  
13 to 11 valley transition at LL and 15 to 12 valley HL  
V
REF  
SOFT−STAT PIN  
SS pin voltage for zero output current (enable)  
SS pin voltage for 100% of output current  
Clamping voltage for SS pin  
V
0.66  
2.25  
0.7  
2.45  
7.8  
0.74  
2.65  
V
V
SST(EN)  
V
SST100  
V
V
SST(CLP)  
Soft−start current source  
I
8.5  
10  
11.5  
mA  
mA  
SST  
SST(pre)  
Pre−charge current source  
V
SST  
< V  
I
100  
SST(EN)  
THERMAL FOLD−BACK AND OVP  
SD pin voltage at which thermal fold−back starts  
SD pin voltage at which thermal fold−back stops  
V
0.9  
1
1.2  
V
V
TF(start)  
V
0.64  
0.68  
0.72  
TF(stop)  
(I = 50% I  
)
out  
out(nom)  
Reference current for direct connection of an NTC (Note 5)  
Fault detection level for OTP (Note 5)  
I
80  
85  
0.5  
90  
mA  
V
OTP(REF)  
V
decreasing  
increasing  
V
0.47  
0.64  
0.53  
0.72  
SD  
OTP(off)  
OTP(on)  
SD pin level at which controller re−start switching after OTP  
detection  
V
V
0.68  
V
SD  
Timer duration after which the controller is allowed to start  
pulsing (Note 5)  
t
180  
300  
ms  
OTP(start)  
Clamped voltage (SD pin left open)  
Clamp series resistor  
SD pin open  
V
1.13  
1.35  
1.6  
2.5  
30  
1.57  
V
kW  
V
SD(clamp)  
R
SD(clamp)  
SD pin detection level for OVP  
Delay before OVP or OTP confirmation (OVP and OTP)  
THERMAL SHUTDOWN  
V
SD  
increasing  
V
OVP  
2.35  
15  
2.65  
45  
T
ms  
SD(delay)  
Thermal Shutdown (Note 4)  
Device switching  
around 65 kHz)  
T
130  
155  
55  
170  
°C  
°C  
SHDN  
(F  
SW  
Thermal Shutdown Hysteresis (Note 4)  
BROWN−OUT  
T
SHDN(HYS)  
Brown−Out ON level (IC start pulsing)  
Brown−Out OFF level (IC shuts down)  
BO comparators delay  
V
increasing  
decreasing  
V
V
0.90  
0.85  
1
0.9  
30  
50  
1.10  
0.95  
V
V
SD  
BO(on)  
V
SD  
BO(off)  
t
ms  
ms  
nA  
BO(delay)  
BO(blank)  
Brown−Out blanking time  
t
35  
65  
Brown−out pin bias current  
4. Guaranteed by design  
I
−250  
250  
BO(bias)  
5. OTP triggers when R  
= 4.7 kW  
NTC  
www.onsemi.com  
7
 
NCL30083  
TYPICAL CHARACTERISTICS  
18.20  
18.15  
18.10  
18.05  
18.00  
8.90  
8.85  
8.80  
8.75  
8.70  
17.95  
17.90  
8.65  
8.60  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. VCC(on) vs. Junction Temperature  
Figure 4. VCC(off) vs. Junction Temperature  
27.80  
27.75  
18  
17  
16  
15  
14  
13  
12  
27.70  
27.65  
27.60  
27.55  
27.50  
11  
10  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCC(OVP) vs. Junction Temperature  
Figure 6. ICC(start) vs. Junction Temperature  
52  
50  
48  
46  
44  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
42  
40  
1.14  
1.12  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. ICC(sFault) vs. Junction Temperature  
Figure 8. ICC1 vs. Junction Temperature  
www.onsemi.com  
8
NCL30083  
TYPICAL CHARACTERISTICS  
2.40  
2.35  
2.30  
2.25  
2.20  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.15  
2.10  
2.50  
2.45  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. ICC2 vs. Junction Temperature  
Figure 10. ICC3 vs. Junction Temperature  
1.000  
0.995  
1.495  
1.490  
1.485  
0.990  
0.985  
0.980  
1.480  
1.475  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. VILIM vs. Junction Temperature  
Figure 12. VCS(stop) vs. Junction Temperature  
305  
303  
1.010  
1.005  
1.000  
0.995  
0.990  
301  
299  
297  
295  
293  
291  
289  
0.985  
0.980  
287  
285  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. tLEB vs. Junction Temperature  
Figure 14. VZCD(short) vs. Junction  
Temperature  
www.onsemi.com  
9
NCL30083  
TYPICAL CHARACTERISTICS  
3.20  
3.15  
3.10  
7.1  
7.0  
6.9  
6.8  
6.7  
3.05  
3.00  
6.6  
6.5  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. tBLANK vs. Junction Temperature  
Figure 16. tTIMO vs. Junction Temperature  
255  
254  
253  
180  
179  
178  
177  
252  
251  
176  
175  
250  
249  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. VREF vs. Junction Temperature  
Figure 18. VREF70 vs. Junction Temperature  
105  
104  
103  
102  
67.0  
66.5  
66.0  
65.5  
65.0  
101  
100  
64.5  
64.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. VREF40 vs. Junction Temperature  
Figure 20. VREF25 vs. Junction Temperature  
www.onsemi.com  
10  
NCL30083  
TYPICAL CHARACTERISTICS  
30.0  
29.5  
29.0  
28.5  
28.0  
27.5  
27.0  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
26.5  
26.0  
14.5  
14.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. VREF10 vs. Junction Temperature  
Figure 22. VREF05 vs. Junction Temperature  
16.60  
16.55  
16.50  
16.45  
16.40  
55.0  
54.5  
54.0  
53.5  
53.0  
16.35  
16.30  
52.5  
52.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. VCS(low) vs. Junction Temperature  
Figure 24. KLFF vs. Junction Temperature  
37.6  
37.5  
37.4  
37.3  
37.2  
49.0  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
45.0  
37.1  
37.0  
44.5  
44.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. VREF(off) vs. Junction Temperature  
Figure 26. VREF(on) vs. Junction Temperature  
www.onsemi.com  
11  
NCL30083  
TYPICAL CHARACTERISTICS  
2.400  
2.395  
2.300  
2.295  
2.290  
2.285  
2.280  
2.390  
2.385  
2.380  
2.375  
2.370  
2.275  
2.270  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. VHL vs. Junction Temperature  
Figure 28. VLL vs. Junction Temperature  
187.0  
186.5  
186.0  
185.5  
185.0  
28.0  
27.5  
27.0  
26.5  
26.0  
184.5  
184.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. tHL(BLANK) vs. Junction Temperature  
Figure 30. VVLY1−2/2−3 vs. Junction  
Temperature  
198  
197  
196  
195  
194  
193  
125.0  
124.5  
124.0  
123.5  
123.0  
122.5  
122.0  
192  
191  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. VVLY2−1/3−2 vs. Junction  
Temperature  
Figure 32. VVLY2−4/3−5 vs. Junction  
Temperature  
www.onsemi.com  
12  
NCL30083  
TYPICAL CHARACTERISTICS  
136  
135  
134  
133  
132  
76.0  
75.5  
75.0  
74.5  
74.0  
131  
130  
73.5  
73.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 33. VVLY4−2/5−3 vs. Junction  
Temperature  
Figure 34. VVLY4−7/5−8 vs. Junction  
Temperature  
37.7  
87  
86  
85  
37.6  
37.5  
37.4  
37.3  
37.2  
84  
83  
82  
81  
80  
37.1  
37.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 35. VVLY7−4/8−5 vs. Junction  
Temperature  
Figure 36. VVLY7−11/8−12 vs. Junction  
Temperature  
50  
49  
48  
47  
46  
45  
15.10  
15.05  
15.00  
14.95  
14.90  
14.85  
14.80  
44  
43  
14.75  
14.70  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 37. VVLY11−7/12−8 vs. Junction  
Temperature  
Figure 38. VVLY11−13/12−15 vs. Junction  
Temperature  
www.onsemi.com  
13  
NCL30083  
TYPICAL CHARACTERISTICS  
21.0  
20.5  
20.0  
19.5  
0.710  
0.705  
0.700  
19.0  
18.5  
18.0  
0.695  
0.690  
17.5  
17.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 39. VVLY13−11/15−12 vs. Junction  
Temperature  
Figure 40. VSST(EN) vs. Junction Temperature  
2.46  
2.45  
10.10  
10.05  
10.00  
9.95  
9.90  
9.85  
9.80  
2.44  
2.43  
2.42  
9.75  
9.70  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 41. VSST(100) vs. Junction Temperature  
Figure 42. ISST vs. Junction Temperature  
100  
99  
98  
97  
96  
88.0  
87.5  
87.0  
86.5  
86.0  
85.5  
85.0  
95  
94  
84.5  
84.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 43. ISST(pre) vs. Junction Temperature  
Figure 44. tOVLD vs. Junction Temperature  
www.onsemi.com  
14  
NCL30083  
TYPICAL CHARACTERISTICS  
4.55  
4.50  
4.45  
4.40  
2.500  
2.495  
2.490  
2.485  
2.480  
4.35  
4.30  
2.475  
2.470  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 45. trecovery vs. Junction Temperature  
Figure 46. VOVP vs. Junction Temperature  
86.5  
86.0  
85.5  
85.0  
84.5  
0.690  
0.688  
0.686  
0.684  
84.0  
0.682  
0.680  
83.5  
83.0  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 47. IOTP(ref) vs. Junction Temperature  
Figure 48. VOTP(on), VTF(stop) vs. Junction  
Temperature  
0.994  
0.992  
0.990  
0.988  
0.986  
0.997  
0.995  
0.993  
0.991  
0.989  
0.984  
0.982  
0.987  
0.985  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 49. VTF(start) vs. Junction Temperature  
Figure 50. VBO(on) vs. Junction Temperature  
www.onsemi.com  
15  
NCL30083  
TYPICAL CHARACTERISTICS  
0.906  
0.904  
0.902  
0.900  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
0.898  
0.896  
53.0  
52.5  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 51. VBO(off) vs. Junction Temperature  
Figure 52. tBO(BLANK) vs. Junction  
Temperature  
APPLICATION INFORMATION  
The NCL30083 implements a current−mode architecture  
operating in quasi−resonant mode. Thanks to proprietary  
circuitry, the controller is able to accurately regulate the  
secondary side current of the flyback converter without  
using any opto−coupler or measuring directly the secondary  
side current.  
Quasi−Resonance Current−Mode Operation:  
implementing quasi−resonance operation in peak  
current−mode control, the NCL30083 optimizes the  
efficiency by switching in the valley of the MOSFET  
drain−source voltage. Thanks to a smart control  
algorithm, the controller locks−out in a selected valley  
and remains locked until the input voltage or the output  
current set point significantly changes.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to take into  
account the effect of the leakage inductance of the  
transformer and allow accurate control of the secondary  
side current.  
Line Feed−forward: compensation for possible  
variation of the output current caused by system slew  
rate variation.  
temperature continues to increase, the current will be  
further reduced until the controller is stopped. The  
control will automatically restart if the temperature is  
reduced. This pin can implement a programmable OVP  
shutdown that can also auto−restart the device.  
Brown−Out: the controller includes a brown−out  
circuit which safely stops the controller in case the  
input voltage is too low. The device will automatically  
restart if the line recovers.  
Cycle−by−cycle peak current limit: when the current  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
MOSFET is turned off for the rest of the switching  
cycle.  
Winding Short−Circuit Protection: an additional  
comparator with a short LEB filter (t ) senses the CS  
BCS  
signal and stops the controller if V reaches 1.5 x  
CS  
V . For noise immunity reasons, this comparator is  
ILIM  
enabled only during the main LEB duration t  
.
LEB  
Output Short−circuit protection: If a very low  
voltage is applied on ZCD pin for 90 ms (nominal), the  
controllers assume that the output or the ZCD pin is  
shorted to ground and enters shutdown. The  
Open LED protection: if the voltage on the VCC pin  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting pulsing.  
auto−restart version (B suffix) waits 4 seconds, then the  
controller restarts switching. In the latched version (A  
suffix), the controller is latched as long as V stays  
CC  
above the V  
threshold.  
Thermal Fold−back / Over Temperature / Over  
Voltage Protection: by combining a dual threshold on  
the SD pin, the controller allows the direct connection  
of an NTC to ground plus a Zener diode to a monitored  
voltage. The temperature is monitored and the output  
current is linearly reduced in the event that the  
CC(reset)  
Soft−start: The soft−start pin can be used to slowly  
increase the output current at startup and provide a  
smooth turn−on of the LED light.  
Step dimming: Each time the IC detects a brown−out  
condition, the output current is decreased by discrete  
steps.  
temperature exceeds a prescribed level. If the  
www.onsemi.com  
16  
NCL30083  
Constant Current Control  
Figure 54 portrays the primary and secondary current of  
a flyback converter in discontinuous conduction mode  
(DCM). Figure 53 shows the basic circuit of a flyback  
converter.  
Transformer  
V
bulk  
L
leak  
N
sp  
R
clp  
V
out  
C
clp  
L
p
Clamping  
network  
DRV  
C
lump  
R
sense  
Figure 53. Basic Flyback Converter Schematic  
During the on−time of the MOSFET, the bulk voltage  
is applied to the magnetizing and leakage inductors L  
When the diode conducts, the secondary current decreases  
linearly from I to zero. When the diode current has  
V
bulk  
p
D,pk  
and L  
and the current ramps up.  
turned off, the drain voltage begins to oscillate because of  
the resonating network formed by the inductors (L +L  
leak  
When the MOSFET is turned−off, the inductor current  
first charges C . The output diode is off until the voltage  
across L reverses and reaches:  
)
leak  
p
and the lump capacitor. This voltage is reflected on the  
auxiliary winding wired in flyback mode. Thus, by looking  
at the auxiliary winding voltage, we can detect the end of the  
conduction time of secondary diode. The constant current  
control block picks up the leakage inductor current, the end  
of conduction of the output rectifier and controls the drain  
current to maintain the output current constant.  
lump  
p
ǒ
Ǔ
Nsp Vout ) Vf  
(eq. 1)  
The output diode current increase is limited by the leakage  
inductor. As a consequence, the secondary peak current is  
reduced:  
We have:  
IL,pk  
ID,pk  
t
(eq. 2)  
VREF  
2NspRsense  
Nsp  
(eq. 3)  
Iout  
+
The diode current reaches its peak when the leakage inductor  
is reset. Thus, in order to accurately regulate the output  
current, we need to take into account the leakage inductor  
current. This is accomplished by sensing the clamping  
network current. Practically, a node of the clamp capacitor  
The output current value is set by choosing the sense  
resistor:  
Vref  
(eq. 4)  
Rsense  
+
2NspIout  
is connected to R  
Then, by reading the voltage on the CS pin, we have an  
image of the primary current (red curve in Figure 54).  
instead of the bulk voltage V  
.
sense  
bulk  
From Equation 3, the first key point is that the output  
current is independent of the inductor value. Moreover, the  
leakage inductance does not influence the output current  
value as the reset time is taken into account by the controller.  
www.onsemi.com  
17  
 
NCL30083  
I
L,pk  
N
I
sp D,pk  
I
pri  
(t)  
I
(t)  
sec  
time  
t
1
t
2
t
on  
t
demag  
V
aux  
(t)  
time  
Figure 54. Flyback Currents and Auxiliary Winding Voltage in DCM  
Internal Soft−Start  
At startup or after recovering from a fault, there is a small  
internal soft−start of 40 ms.  
In addition, during startup, as the output voltage is zero  
volts, the demagnetization time is long and the constant  
current control block will slowly increase the peak current  
towards its nominal value as the output voltage grows.  
Figure 55 shows a soft−start simulation example for a 9 W  
LED power supply.  
www.onsemi.com  
18  
NCL30083  
16.0  
12.0  
8.00  
4.00  
0
V
out  
1
800m  
600m  
400m  
200m  
0
I
2
out  
800m  
600m  
400m  
200m  
0
V
V
4
3
Control  
CS  
604u  
1.47m  
2.34m  
3.21m  
4.07m  
time in seconds  
Figure 55. Startup Simulation Showing the Natural Soft−start  
Cycle−by−Cycle Current Limit  
Winding and Output Diode Short−Circuit Protection  
When the current sense voltage exceeds the internal  
In parallel with the cycle−by−cycle sensing of the CS pin,  
threshold V , the MOSFET is turned off for the rest of the  
ILIM  
another comparator with a reduced LEB (t ) and a higher  
BCS  
switching cycle (Figure 56).  
threshold (1.5 V typical) is able to sense winding  
short−circuit and immediately stops the DRV pulses. The  
controller goes into auto−recovery mode in version B.  
In version A, the controller is latched. In latch mode, the  
DRV pulses stop and VCC ramps up and down. The circuit  
un−latches when VCC pin voltage drops below V  
threshold.  
CC(reset)  
www.onsemi.com  
19  
NCL30083  
S
aux  
DRV  
Q
Vdd  
Q
latch  
VCC  
CS  
R
Vcc  
management  
LEB1  
+
PWMreset  
Ipkmax  
Rsense  
Vcontrol  
VCCstop  
UVLO  
+
grand  
reset  
8_HICC  
OVP  
V
ILIMIT  
OVP  
STOP  
LEB2  
+
WOD_SCP  
latch  
S
OFF  
WOD_SCP  
S
R
V
Q
Q
CS(stop)  
Q
Q
R
8_HICC  
grand  
reset  
from Fault Management Block  
Figure 56. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
Thermal Fold−back and Over Voltage / Over  
Temperature Protection  
If V drops below V , the controller enters into the  
auto−recovery fault mode for version B, meaning that the  
4−s timer is activated. The controller will re−start switching  
SD  
OTP  
The thermal fold−back circuit reduces the current in the  
LED string when the ambient temperature exceeds a set  
point. The current is gradually reduced to 50% of its nominal  
value if the temperature continues to rise. (Figure 58). The  
thermal foldback starting temperature depends on the  
Negative Coefficient Temperature (NTC) resistor chosen by  
the power supply designer.  
after the 4−s timer has elapsed and when V > V  
to  
SD  
OTP(on)  
provide some temperature hysteresis (around 10°C).  
For version A, this protection is latched: reset occurs when  
< V  
V
.
CC(reset)  
CC  
The thermal fold−back and OTP thresholds correspond  
roughly to the following resistances:  
Indeed, the SD pin allows the direct connection of an NTC  
to sense the ambient temperature. When the SD pin voltage  
Thermal fold−back starts when R  
11.76 kW.  
8.24 kW.  
NTC  
Thermal fold−back stops when R  
NTC  
V
SD  
drops below V  
, the internal reference for the  
TF(start)  
OTP triggers when R  
5.88 kW.  
NTC  
constant current control V  
is decreased proportionally to  
REF  
OTP is removed when R  
8.24 kW.  
NTC  
V
V
. When V reaches V  
, V  
is clamped to  
SD  
SD  
TF(stop)  
REF  
, corresponding to 50% of the nominal output  
REF50  
current.  
I
out  
I
out(nom)  
50% I  
out(nom)  
V
SD  
V
TF(start)  
V
V
V
OTP(off)  
TF(stop)  
OTP(on)  
Figure 57. Output Current Reduction versus SD Pin Voltage  
www.onsemi.com  
20  
NCL30083  
At startup, when V reaches V  
not allowed to start pulsing for at least 180 ms in order to  
, the controller is  
filtering capacitor is connected to the SD pin. This is to avoid  
flickering of the LED light in case of over temperature.  
CC  
CC(on)  
allow the SD pin voltage to reach its nominal value if a  
V
OVP  
VCC  
Vdd  
noise delay  
OVP  
Dz  
+
I
OTP(REF)  
S
OFF  
Q
Q
SD  
OTP_Timer end  
Rclamp  
Vclamp  
noise delay  
R
+
OTP  
NTC  
4−s Timer  
(OTP latched for version A)  
S
0.5 V if OTP low  
0.7 V if OTP high  
V
OTP  
Latch  
Q
Q
V
TF  
R
VCCreset  
Figure 58. Thermal Fold−back and OVP/OTP Circuitry  
In case of over voltage, the Zener diode starts to conduct  
and inject current inside the internal clamp resistor R  
thus causing the pin SD voltage to increase. When this  
voltage reaches the OVP threshold (2.5 V typ.), the  
controller shuts−down and waits for at least 4 seconds before  
restarting switching.  
clamp  
www.onsemi.com  
21  
NCL30083  
V
CC  
V
V
CC(on)  
CC(off)  
V
CC  
> V  
:
CC(on)  
DRV pulses restart  
V
CC(reset)  
V
DRV  
4−s Timer  
V
> V  
:
SD  
OVP  
4−s timer has elapsed:  
waiting for V > V  
to restart DRV pulses  
V
SD  
controller stops  
switching  
CC  
CC(on)  
V
OVP  
V
SD(clamp)  
V
out  
Figure 59. OVP with SD Pin Chronograms  
www.onsemi.com  
22  
NCL30083  
V
CC  
V
CC(on)  
V
CC(off)  
V
CC(reset)  
V
DRV  
V
V
> V  
> V  
and  
TF(stop)  
SD  
4−s Timer  
:
CC  
CC(on)  
DRV pulses restart  
V
< V  
:
4−s timer has elapsed  
SD  
OTP(off)  
V
SD  
controller stops  
switching  
but V < V  
SD  
TF(stop)  
no restart  
V
TF(start)  
V
TF(stop)  
OTP(off)  
V
I
out  
Figure 60. Thermal Fold−back / OTP Chronograms  
Soft−Start  
The NCL30083 provides a soft−start pin allowing  
increasing slowly the LEDs light at startup. An internal  
in parallel with I  
charges the soft−start capacitor until it  
SST  
reaches the V  
threshold. After that, I  
is turned  
SST(EN)  
SST(pre)  
current source I  
generated voltage ramp directly controls the amount of  
current flowing in the LEDs.  
charges the soft−start capacitor. The  
off and the soft−start capacitor keep on charging with the  
soft−start current source I  
When a fault is detected, the soft−start pin is discharged  
SST  
.
SST  
At startup, if there are no faults (except “Enable_b” high),  
down to V  
to provide a clean soft−start when the fault  
SST(EN)  
an internal pre−charging current source I  
connected  
is removed.  
SST(pre)  
VCC  
Clamp  
Circuit  
DRV  
S
R
Qdrv  
V
dd  
Q
Q
V
SST  
Output  
Buffer 1  
I
I
SST(pre)  
SST  
SST  
Enable_b  
+
CS_reset  
STOP  
V
SST(EN)  
7.4V clamp  
STOP  
Figure 61. Soft−start Pin Bloc Diagram  
www.onsemi.com  
23  
NCL30083  
Step Dimming  
Note:  
The step dimming function decreases the output current  
from 100% to 5% of its nominal value in discrete steps.  
There are 5 steps in total. Table 4 shows the different steps  
value and the corresponding output current set−point. Each  
time a brown−out is detected, the output current is decreased  
The power supply designer must ensure that V stays  
high enough when the light is turned−off to let the controller  
memorize the dimming step state.  
CC  
The power supply designer should use a split V circuit  
CC  
for step dimming with a capacitor allowing providing  
by decreasing the reference voltage V  
current value.  
setting the output  
enough V for 1 s (47 mF to 100 mF capacitor).  
The step dimming state is memorized by the controller  
REF  
CC  
When the 5% dimming step is reached, if a brown−out  
event occurs, the controller restarts at 100% of the output  
current.  
until V crosses V  
.
CC  
CC(reset)  
Table 4. DIMMING STEPS  
Dimming Step  
I
Perceived Light  
out  
ON  
1
100%  
70%  
40%  
25%  
10%  
5%  
100%  
84%  
63%  
50%  
32%  
17%  
VCC  
2
3
4
5
4.7 mF  
47 − 100 mF  
Figure 62. Split VCC Supply  
V
bulk  
V
V
bulk(on)  
bulk(off)  
V
CC  
V
CC(on)  
V
CC(off)  
V
CC(reset)  
BO  
comp  
100%  
I
out  
70%  
40%  
25%  
10%  
5%  
Figure 63. Step Dimming Chronograms  
www.onsemi.com  
24  
 
NCL30083  
VCC Over Voltage Protection (Open LED Protection)  
If no output load is connected to the LED power supply,  
the controller must be able to safely limit the output voltage  
excursion.  
In the NCL30083, when the V voltage reaches the  
CC  
V
threshold, the controller stops the DRV pulses and  
CC(OVP)  
the 4−s timer starts counting. The IC re−start pulsing after  
the 4−s timer has elapsed and when V V  
.
CC  
CC(on)  
40.0  
V
CC(OVP)  
30.0  
V
CC  
1
V
CC(on)  
20.0  
10.0  
0
V
CC(off)  
40.0  
30.0  
20.0  
10.0  
0
V
2
out  
800m  
600m  
400m  
200m  
0
I
3
4
out  
8.00  
6.00  
4.00  
2.00  
0
OVP  
1.38  
3.96  
6.54  
9.11  
11.7  
time in seconds  
Figure 64. Open LED Protection Chronograms  
Valley Lockout  
Quasi−Square wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
The NCL30083 changes valley as the input voltage  
increases and as the output current set−point is varied  
(thermal fold−back and step dimming). This limits the  
switching frequency excursion. Once a valley is selected,  
the controller stays locked in the valley until the input  
voltage or the output current set−point varies significantly.  
This avoids valley jumping and the inherent noise caused by  
this phenomenon.  
The input voltage is sensed by the VIN pin. The internal  
logic selects the operating valley according to VIN pin  
voltage (line range detector in Figure 65), SD pin voltage  
and dimming state imposed by the Step Dimming circuit.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line.  
www.onsemi.com  
25  
NCL30083  
Vbulk  
VIN  
+
LLine  
HLine  
25−ms blanking time  
2.4 V if LLine low  
2.3 V if LLine high  
Figure 65. Line Range Detector  
VIN pin voltage for valley change  
Table 5. VALLEY SELECTION  
I
value at which the  
I
value at which the  
out  
out  
V
VIN  
decreases  
2.3 V  
controller changes valley  
controller changes valley  
(I decreasing)  
out  
(I increasing)  
out  
0
−LL−  
−HL−  
5 V  
100%  
75%  
100%  
st  
nd  
1
2
78%  
nd  
rd  
2
3
50%  
30%  
15%  
6%  
53%  
33%  
20%  
8%  
th  
th  
4
5
th  
th  
7
8
th  
th  
11  
12  
th  
th  
13  
15  
0%  
0%  
0
−LL−  
2.4 V  
−HL−  
5 V  
V
VIN  
increases  
VIN pin voltage for valley change  
www.onsemi.com  
26  
NCL30083  
Zero Crossing Detection Block  
The ZCD pin allows detecting when the drain−source  
voltage of the power MOSFET reaches a valley.  
the valleys. To avoid such a situation, the NCL30083  
features a Time−Out circuit that generates pulses if the  
voltage on ZCD pin stays below the V  
threshold  
ZCD(THD)  
A valley is detected when the voltage on pin 1 crosses  
for 6.5 ms.  
below the V  
internal threshold.  
The Time−out also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations.  
ZCD(THD)  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
V
V
ZCD  
3
4
ZCD(THD)  
The 3rd valley  
is validated  
high  
low  
14  
12  
2nd, 3rd  
The 3rd valley is not detected  
by the ZCD comp  
The 2nd valley is detected  
By the ZCD comparator  
high  
ZCD comp  
TimeOut  
low  
15  
16  
high  
low  
Time−out circuit adds a pulse to  
account for the missing 3rd valley  
high  
low  
Clk  
17  
Figure 66. Time−out Chronograms  
Line Feed−forward  
Because of this time−out function, if the ZCD pin or the  
auxiliary winding is shorted, the controller will continue  
switching leading to improper regulation of the LED  
current. Moreover during an output short circuit, the  
controller will strive to maintain the constant current  
operation.  
Because of the propagation delays, the MOSFET is not  
turned−off immediately when the current set−point is  
reached. As a result, the primary peak current is higher than  
expected and the output current increases. To compensate  
the peak current increase brought by the propagation delay,  
a positive voltage proportional to the line voltage is added  
on the current sense signal. The amount of offset voltage can  
In order to avoid these scenarios, a secondary timer starts  
counting when the ZCD voltage is below the V  
ZCD(short)  
be adjusted using the R  
The offset voltage is applied only during the MOSFET  
on−time.  
resistor as shown in Figure 67.  
threshold. If this timer reaches 90 ms, the controller detects  
a fault and enters the auto−recovery fault mode (controller  
shuts−down and waits 4−s before re−starting switching).  
LFF  
This offset voltage is removed at light load during  
dimming when the output current drops below 15% of the  
programmed output current.  
www.onsemi.com  
27  
NCL30083  
Bulk rail  
V
DD  
VIN  
CS  
I
R
CS(offset)  
LFF  
R
sense  
Q_drv  
Offset_OK  
Figure 67. Line Feed−Forward Schematic  
Brown−out  
shuts−down if the VIN pin voltage decreases and stays  
below 0.9 V for 50 ms nominal. Exiting a brown−out  
In order to protect the supply against a very low input  
voltage, the NCL30083 features a brown−out circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
if a voltage higher than 1 V is applied to the VIN pin and  
condition overrides the hiccup on V (V does not wait  
CC  
CC  
to reach V ) and the IC immediately goes into startup  
CC(off)  
mode (I = I  
).  
CC  
CC(start)  
Vbulk  
VIN  
+
BO_NOK  
50−ms blanking time  
1 V if BONOK high  
0.9 V if BONOK low  
Figure 68. Brown−out Circuit  
www.onsemi.com  
28  
NCL30083  
160  
120  
80.0  
40.0  
0
V
Bulk  
1
2
18.0  
16.0  
14.0  
12.0  
10.0  
V
CC(on)  
V
CC  
V
CC(off)  
1.10  
900m  
700m  
500m  
300m  
V
V
BO(on)  
BO(off)  
V
pinVIN  
3
8.00  
6.00  
4.00  
2.00  
0
50−ms Timer  
BO_NOK low  
=> Startup mode  
BO_NOK  
4
46.1m  
138m  
231m  
time in seconds  
323m  
415m  
Figure 69. Brown−Out Chronograms (Valley Fill circuit is used)  
www.onsemi.com  
29  
NCL30083  
CS Pin Short Circuit Protection  
Normally, if the CS pin or the sense resistor is shorted to  
ground, the Driver will not be able to turn off, leading to  
potential damage of the power supply. To avoid this, the  
NCL30083 features a circuit to protect the power supply  
against a short circuit of the CS pin. When the MOSFET is  
on, if the CS voltage stays below V after the adaptive  
CS(low)  
blanking timer has elapsed, the controller shuts down and  
will attempt to restart on the next V hiccup.  
CC  
Adaptative  
Blanking Time  
V
VIN  
Q_drv  
CS  
+
S
R
V
Q
Q
CS_short  
CS(low)  
UVLO  
BO_NOK  
Figure 70. CS Pin Short Circuit Protection Schematic  
Fault Management  
In this mode, the DRV pulses are stopped. The VCC  
voltage decrease through the controller own consumption  
OFF Mode  
(I ).  
CC1  
The circuit turns off whenever a major condition prevents  
it from operating:  
For the output diode short circuit protection, the CS pin  
short circuit protection, the output / aux. winding short  
circuit protection and the OVP2, the controller waits 4  
seconds (auto−recovery timer) and then initiates a startup  
Incorrect feeding of the circuit: “UVLO high”. The  
UVLO signal becomes high when V drops below  
CC  
V
CC(off)  
and remains high until V exceeds V  
.
CC  
CC(on)  
sequence (V V  
) before re−starting switching.  
CC  
CC(on)  
OTP  
Latch Mode  
V OVP  
CC  
This mode is activated by the output diode short−circuit  
protection (WOD_SCP), the OTP and the Aux−SCP in  
version A only.  
OVP2 (additional OVP provided by SD pin)  
Output diode short circuit protection: “WOD_SCP  
high”  
In this mode, the DRV pulses are stopped and the  
Output / Auxiliary winding Short circuit protection:  
“Aux_SCP high”  
controller is latched. There are hiccups on V  
The circuit un−latches when V < V  
.
CC  
.
CC(reset)  
CC  
Die over temperature (TSD)  
Brown−Out: “BO_NOK” high  
Pin CS short circuited to GND: “CS_short high”  
www.onsemi.com  
30  
NCL30083  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
OVP2 or  
_OVP  
BO_NOK high  
or OTP  
or TSD  
V
CC  
Stop  
4−s  
Timer  
or CS_Short  
V
CC  
Disch.  
BO_NOK high  
or OTP  
or TSD  
or CS_Short  
OVP2  
or WOD_SCP  
or Aux_SCP  
or V _OVP  
CC  
Run  
V
CC  
< V  
CC(off)  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching, t  
Normal switching  
Stop  
Run  
has elapsed  
OTP(start)  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4−s Timer  
the auto−recovery timer is counting, V is ramping up and down between V  
and V  
CC(on) CC(off)  
CC  
Figure 71. State Diagram for B Version Faults  
www.onsemi.com  
31  
NCL30083  
Reset  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
V
CC  
< V  
CC(reset)  
OVP2 or  
_OVP  
BO_NOK high  
or TSD  
or CS_Short  
V
4−s  
Timer  
CC  
Stop  
V
CC  
Disch.  
OTP  
OVP2 or  
V
CC  
_OVP  
BO_NOK high  
or TSD  
or CS_Short  
Latch  
Run  
V
CC  
< V  
CC(off)  
OTP or  
WOD_SCP or  
Aux_SCP  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching, t  
Normal switching  
Stop  
Run  
has elapsed  
OTP(start)  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4−s Timer  
Latch  
the auto−recovery timer is counting, V is ramping up and down between V  
and V  
CC  
CC(on) CC(off)  
Controller is latched off, V is ramping up and down between V  
and V  
,
CC  
CC(on)  
CC(off)  
only V  
can release the latch.  
CC(reset)  
Figure 72. State Diagram for A Version Faults  
www.onsemi.com  
32  
NCL30083  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A−02  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
D
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
NOM  
−−  
MAX  
MIN  
−−  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.05  
0.25  
0.13  
2.90  
2.90  
0.08  
0.002  
0.010  
0.005  
0.114  
0.114  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
E
3.00  
0.118  
e
L
H
E
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
−T−  
A
0.038 (0.0015)  
L
A1  
c
RECOMMENDED  
SOLDERING FOOTPRINT*  
8X  
8X  
0.48  
0.80  
5.25  
0.65  
PITCH  
DIMENSION: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
33  
NCL30083  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
34  
NCL30083  
OPTIONS  
Controller  
Output SCP  
Latched  
Winding/Output Diode SCP  
Over Temperature Protection  
Latched  
NCL30083A  
NCL30083B  
Latched  
Auto−recovery  
Auto−recovery  
Auto−recovery  
ORDERING INFORMATION  
Device  
Package Marking  
Package Type  
Shipping  
NCL30083ADMR2G  
AAE  
Micro8  
(Pb−Free, Halide−Free)  
4000 / Tape & Reel  
4000 / Tape & Reel  
2500 / Tape & Reel  
NCL30083BDMR2G  
NCL30083BDR2G  
AAF  
Micro8  
(Pb−Free, Halide−Free)  
L30083B  
SOIC−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCL30083/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY