NCL30088ADR2G [ONSEMI]

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller;
NCL30088ADR2G
型号: NCL30088ADR2G
厂家: ONSEMI    ONSEMI
描述:

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller

文件: 总26页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCL30088  
Power Factor Corrected  
Quasi-Resonant Primary  
Side Current-Mode  
Controller for LED Lighting  
with Thermal Foldback  
www.onsemi.com  
The NCL30088 is a power factor corrected flyback controller  
targeting isolated and non−isolated constant current LED drivers. The  
controller operates in a quasi−resonant mode to provide optimal  
efficiency. Thanks to a novel control method, the device is able to  
tightly regulate a constant LED current from the primary side. This  
removes the need for secondary side feedback circuitry, biasing and an  
optocoupler.  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device is specifically intended for very compact,  
space efficient designs.  
8
1
SOIC−8 NB  
CASE 751  
MARKING DIAGRAM  
8
L30088x  
ALYW  
G
1
Features  
L30088x = Specific Device Code  
x = A, B, C, D  
Quasi−resonant Peak Current−mode Control Operation  
Constant Current Control with Primary Side Feedback  
Tight LED Constant Current Regulation of 2% Typical  
Power Factor Correction  
Line Feedforward for Enhanced Regulation Accuracy  
Low Start−up Current (13 mA typ.)  
Wide V Range  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= Pb-Free Package  
PIN CONNECTIONS  
cc  
1
V
ZCD  
VS  
CC  
300 mA / 500 mA Totem Pole Driver with 12 V Gate Clamp  
Robust Protection Features  
DRV  
GND  
CS  
OVP on V  
CC  
COMP  
SD  
Programmable Over Voltage / LED Open Circuit Protection  
Cycle−by−cycle Peak Current Limit  
Winding Short Circuit Protection  
(Top View)  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Shorted Current Sense Protection  
User Programmable NTC Based Thermal Foldback  
Thermal Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 25 of this data sheet.  
V Undervoltage Lockout  
cc  
Brown−out Protection  
Pb−Free, Halide−Free Product  
Four Versions: NCL30088A, B, C and D (See Table 1)  
Typical Applications  
Integral LED Bulbs and Tubes  
LED Light Engines  
LED Drivers/Power Supplies  
Electronic Control Gear for LED Lighting  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
April, 2015 − Rev. 4  
NCL30088/D  
NCL30088  
.
Aux  
.
.
NCL30088  
1
2
3
4
8
7
6
5
Rsense  
Figure 1. Typical Application Schematic in a Flyback Converter  
Aux  
.
.
NCL30088  
1
2
3
4
8
7
6
5
Rsense  
Figure 2. Typical Application Schematic in a Buck−Boost Converter  
www.onsemi.com  
2
 
NCL30088  
Table 1. FOUR NCL30088 VERSIONS  
Current Regulation  
Reference Voltage  
Part Number  
Protection Mode  
Recommended for (*):  
(V  
REF  
)
Isolated converters.  
Non−isolated converters with  
NCL30088A  
Latching−off  
250 mV  
250 mV  
Ǹ
Vout v 2 @ (Vin,rms LL  
)
Isolated converters.  
Non−isolated converters with  
NCL30088B  
Auto−recovery  
Ǹ
Vout v 2 @ (Vin,rms LL  
)
Non−isolated converters with  
NCL30088C  
NCL30088D  
Latching−off  
200 mV  
200 mV  
Ǹ
Vout u 2 @ (Vin,rms LL  
)
Non−isolated converters with  
Auto−recovery  
Ǹ
Vout u 2 @ (Vin,rms LL  
)
*(V  
)
designates the lowest line rms voltage. Refer to AND9200/D for more details.  
in,rms LL  
(http://www.onsemi.com/pub_link/Collateral/AND9200−D.PDF).  
Table 2. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
ZCD  
Function  
Pin Description  
1
2
Zero Crossing Detection  
Input Voltage Sensing  
Connected to the auxiliary winding, this pin detects the core reset event.  
VS  
This pin observes the input voltage rail and protects the LED driver in case of  
too low mains conditions (brown−out).  
This pin also observes the input voltage rail for:  
− Power Factor Correction  
− Valley lockout  
3
4
COMP  
SD  
Filtering Capacitor  
This pin receives a filtering capacitor for power factor correction. Typical values  
ranges from 1 − 4.70 mF  
Thermal Foldback and  
Shutdown  
Connecting an NTC to this pin allows the user to program thermal current fold-  
back threshold and slope. A Zener diode can also be used to pull−up the pin  
and stop the controller for adjustable OVP protection.  
5
6
7
8
CS  
Current Sense  
This pin monitors the primary peak current.  
Controller ground pin.  
GND  
DRV  
Driver Output  
IC Supply Pin  
The driver’s output to an external MOSFET  
V
CC  
This pin is the positive supply of the IC. The circuit starts to operate when V  
CC  
exceeds 18 V and turns off when V goes below 8.8 V (typical values). After  
CC  
start−up, the operating range is 9.4 V up to 25.5 V (V  
minimum level).  
CC(OVP)  
www.onsemi.com  
3
NCL30088  
Internal Circuit Architecture  
Enable  
STOP  
V
V
REF  
DD  
Over Voltage Protection  
(Auto−recovery or Latched)  
Aux_SCP  
OFF  
VCC  
UVLO  
Latch  
Fault  
Management  
VCC Management  
Over Temp. Protection  
(Auto−recovery or Latched)  
Internal  
Thermal  
Shutdown  
VCC_max  
VCC Over Voltage  
Protection  
SD  
Thermal  
Foldback  
V
TF  
WOD_SCP  
BO_NOK  
FF_mode  
DRV  
V
V
VS  
REF  
VCC  
FF_mode  
Zero Crossing Detection Logic  
(ZCD Blanking, Time−Out, ...)  
ZCD  
Clamp  
Circuit  
Valley Selection  
Frequency Foldback  
Aux. Winding Short Circuit Prot.  
DRV  
Aux_SCP  
S
V
Q
Q
TF  
CS_ok  
V
VS  
R
Line  
feed−forward  
V
REF  
V
VS  
STOP  
V
TF  
CS  
Power Factor and  
Constant−Current  
Control  
Leading  
Edge  
Blanking  
CS_reset  
Maximum  
on time  
Ipkmax STOP  
t
on,max  
COMP  
Ipkmax  
CS_ok  
Max. Peak  
Current  
Limit  
V
VS  
CS Short  
VS  
BO_NOK  
Protection  
Brown−Out  
UVLO  
t
on,max  
Winding and  
Output diode  
Short Circuit  
Protection  
WOD_SCP  
GND  
Figure 3. Internal Circuit Architecture  
www.onsemi.com  
4
 
NCL30088  
Table 3. MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, V pin, continuous voltage  
−0.3 to 30  
V
CC(MAX)  
CC  
I
Maximum current for V pin  
Internally limited  
mA  
CC(MAX)  
CC  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
−0.3, V  
(Note 1)  
V
DRV(MAX)  
DRV  
I
−300, +500  
mA  
DRV(MAX)  
V
Maximum voltage on low power pins (except DRV and V pins)  
−0.3, 5.5 (Notes 2 and 5)  
−2, +5  
V
MAX  
CC  
I
Current range for low power pins (except DRV and V pins)  
mA  
MAX  
CC  
R
Thermal Resistance Junction−to−Air  
Maximum Junction Temperature  
Operating Temperature Range  
180  
150  
°C/W  
°C  
θ
J−A  
T
J(MAX)  
−40 to +125  
−60 to +150  
3.5  
°C  
Storage Temperature Range  
°C  
ESD Capability, HBM model (Note 3)  
ESD Capability, MM model (Note 3)  
ESD Capability, CDM model (Note 3)  
kV  
V
250  
2
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5−V Zener diode. More positive and negative voltages can  
be applied if the pin current stays within the −2−mA / 5−mA range.  
3. This device contains ESD protection and exceeds the following tests: Human Body Model 3500 V per JEDEC Standard JESD22−A114E,  
Machine Model Method 250 V per JEDEC Standard JESD22−A115B, Charged Device Model 2000 V per JEDEC Standard JESD22−C101E.  
4. This device contains latch−up protection and has been tested per JEDEC Standard JESD78D, Class I and exceeds 100 mA  
5. Recommended maximum V voltage for optimal operation is 4 V. 0.3 V to +4.0 V is hence, the V pin recommended range.  
S
S
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
CS  
= 0 V,  
J
CC  
ZCD  
V
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
Startup Threshold  
V
V
rising  
rising  
falling  
V
V
16.0  
8.2  
8
18.0  
8.8  
20.0  
9.4  
CC  
CC  
CC  
CC(on)  
Minimum Operating Voltage  
CC(off)  
Hysteresis V  
– V  
V
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
4
5
6
V
Over Voltage Protection Threshold  
V
25.5  
26.8  
28.5  
V
CC  
CC(OVP)  
VCC(off)  
V
V
noise filter  
t
5
ms  
CC(off)  
noise filter  
t
20  
CC(reset)  
VCC(reset)  
Startup current  
I
13  
58  
30  
75  
mA  
mA  
CC(start)  
Startup current in fault mode  
I
CC(sFault)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
0.8  
1.0  
2.6  
3.0  
1.2  
4.0  
4.5  
CC  
CC(off)  
CC1  
CC2  
CC3  
Device Enabled/No output load on pin 7  
F
= 65 kHz  
sw  
Device Switching (F  
= 65 kHz)  
C
= 470 pF, F = 65 kHz  
SW  
DRV  
sw  
CURRENT SENSE  
Maximum Internal current limit  
Leading Edge Blanking Duration for V  
6. Guaranteed by Design  
V
0.95  
240  
1.00  
300  
1.05  
360  
V
ILIM  
t
ns  
ILIM  
LEB  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
5
 
NCL30088  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
CS  
= 0 V,  
J
CC  
ZCD  
V
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE  
Propagation delay from current detection to gate  
off−state  
t
100  
150  
ns  
ILIM  
Maximum on−time  
t
26  
1.35  
36  
1.50  
150  
500  
65  
46  
1.65  
ms  
V
on(MAX)  
Threshold for immediate fault protection activation  
V
CS(stop)  
Leading Edge Blanking Duration for V  
t
ns  
mA  
mV  
CS(stop)  
BCS  
Current source for CS to GND short detection  
I
400  
30  
600  
100  
CS(short)  
Current sense threshold for CS to GND short de-  
tection  
V
CS  
rising  
V
CS(low)  
GATE DRIVE  
Drive Resistance  
DRV Sink  
W
R
R
13  
30  
SNK  
DRV Source  
SRC  
Drive current capability  
DRV Sink (Note 6)  
mA  
I
500  
300  
SNK  
DRV Source (Note 6)  
I
SRC  
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
= 470 pF  
t
8
40  
30  
ns  
ns  
V
DRV  
r
t
DRV  
f
V
= V  
+0.2 V  
CC(off)  
V
CC  
DRV(low)  
C
C
= 470 pF, R  
=33 kW  
DRV  
DRV  
DRV High Voltage  
V
CC  
= V  
V
10  
12  
14  
V
CC(MAX)  
DRV(high)  
= 470 pF, R  
=33 kW  
DRV  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
Upper ZCD threshold voltage  
Lower ZCD threshold voltage  
ZCD hysteresis  
V
rising  
V
35  
15  
90  
55  
150  
mV  
mV  
mV  
ns  
ZCD  
ZCD(rising)  
V
ZCD(falling)  
V
ZCD  
falling  
V
ZCD(HYS)  
Propagation Delay from valley detection to DRV high  
Blanking delay after on−time  
V
ZCD  
falling  
T
100  
1.50  
6.5  
200  
300  
1.88  
8.0  
DEM  
ZCD(blank1)  
T
1.12  
5.0  
ms  
Timeout after last DEMAG transition  
Pulling−down resistor  
T
TIMO  
ms  
V
= V  
R
kW  
ZCD  
ZCD(falling)  
ZCD(PD)  
CONSTANT CURRENT AND POWER FACTOR CONTROL  
Reference Voltage at T = 25°C  
A and B versions  
C and D versions  
V
245  
195  
250  
200  
255  
205  
mV  
mV  
mV  
J
REF  
Reference Voltage T = 25°C to 100°C  
A and B versions  
C and D versions  
V
REF  
242.5 250.0 257.5  
192.5 200.0 207.5  
J
Reference Voltage T = −40°C to 125°C  
A and B versions  
C and D versions  
V
REF  
240  
190  
250  
200  
260  
210  
J
Current sense lower threshold  
V
CS  
falling  
V
20  
55  
4
100  
mV  
CS(low)  
V
control  
to current setpoint division ratio  
V
ratio  
Error amplifier gain  
V
=V  
=V  
G
40  
50  
60  
60  
mS  
mA  
REFX  
REF  
EA  
EA  
Error amplifier current capability  
6. Guaranteed by Design  
V
REFX  
I
REF  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
6
NCL30088  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
CS  
= 0 V,  
J
CC  
ZCD  
V
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CONSTANT CURRENT AND POWER FACTOR CONTROL  
COMP Pin Start−up Current Source  
COMP pin grounded  
I
140  
mA  
EA_STUP  
LINE FEED FORWARD  
V
to I  
conversion ratio  
K
I
18  
35  
80  
20  
40  
22  
45  
mS  
mA  
mA  
VS  
CS(offset)  
LFF  
Line feed−forward current on CS pin  
Offset current maximum value  
DRV high, V = 2 V  
VS  
FF  
V
VS  
> 5 V  
I
100  
120  
offset(MAX)  
VALLEY LOCKOUT SECTION  
Threshold for high− line range (HL) detection  
Threshold for low−line range (LL) detection  
Blanking time for line range detection  
FAULT PROTECTION  
V
rising  
falling  
V
2.28  
2.18  
15  
2.40  
2.30  
25  
2.52  
2.42  
35  
V
V
VS  
HL  
V
VS  
V
LL  
t
ms  
HL(blank)  
Thermal Shutdown (Note 6)  
F
SW  
= 65 kHz  
T
130  
150  
50  
170  
_C  
_C  
V
SHDN  
Thermal Shutdown Hysteresis  
T
SHDN(HYS)  
Threshold voltage for output short circuit or  
auxiliary winding short circuit detection  
V
0.8  
1.0  
1.2  
ZCD(short)  
Short circuit detection Timer  
Auto−recovery timer duration  
SD pin Clamp series resistor  
Clamped voltage  
V
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD  
ZCD(short)  
t
recovery  
R
1.6  
kW  
V
SD(clamp)  
SD(clamp)  
SD pin open  
V
T
1.13  
2.35  
22.5  
1.35  
2.50  
30.0  
1.57  
2.65  
37.5  
SD pin detection level for OVP  
V
rising  
V
OVP  
V
SD  
Delay before OVP or OTP confirmation (OVP and  
OTP)  
ms  
SD(delay)  
Reference current for direct connection of an NTC  
(Note 8)  
I
80  
85  
90  
mA  
OTP(REF)  
Fault detection level for OTP (Note 7)  
V
falling  
rising  
V
V
0.47  
0.66  
0.50  
0.70  
0.53  
0.74  
V
V
SD  
OTP(off)  
SD pin level for operation recovery after an OTP  
detection  
V
SD  
OTP(on)  
OTP blanking time when circuit starts operating  
(Note 8)  
t
250  
0.94  
0.64  
370  
1.06  
0.74  
ms  
V
OTP(start)  
SD pin voltage at which thermal fold−back starts  
V
V
R
1.00  
0.69  
TF(start)  
TF(stop)  
TF(start)  
(V  
REF  
is decreased)  
SD pin voltage at which thermal fold−back stops  
V
(V  
REF  
is clamped to V  
)
REF50  
V
over I  
ratio (Note 7)  
ratio (Note 7)  
ratio (Note 7)  
ratio (Note 7)  
T = +25°C to +125°C  
10.8  
7.4  
5.4  
7.5  
40  
11.7  
8.1  
5.9  
8.1  
50  
12.6  
8.8  
6.4  
8.7  
60  
kW  
kW  
kW  
kW  
%
TF(start)  
TF(stop)  
OTP(off)  
OTP(on)  
OTP(REF)  
OTP(REF)  
OTP(REF)  
OTP(REF)  
J
V
V
V
V
over I  
over I  
over I  
T = +25°C to +125°C  
J
R
R
R
V
TF(stop)  
OTP(off)  
OTP(on)  
REF(50)  
T = +25°C to +125°C  
J
T = +25°C to +125°C  
J
@ V = 600 mV (SD pin falling no OTP  
REF  
SD  
detection) (percent of V  
)
REF  
6. Guaranteed by Design  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
7
NCL30088  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
CS  
= 0 V,  
J
CC  
ZCD  
V
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
BROWN−OUT  
Brown−Out ON level (IC start pulsing)  
Brown−Out OFF level (IC shuts down)  
BO comparators delay  
V
rising  
falling  
V
V
0.95  
0.85  
1.00  
0.90  
30  
1.05  
0.95  
V
V
S
BO(on)  
V
S
BO(off)  
t
t
ms  
ms  
nA  
BO(delay)  
BO(blank)  
Brown−Out blanking time  
15  
50  
25  
35  
V
S
pin Pulling−down Current  
V = V  
S
I
BO(bias)  
250  
450  
BO(on)  
6. Guaranteed by Design  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
TYPICAL CHARACTERISTICS  
20.0  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
8.8  
8.7  
8.6  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
8.5  
8.4  
16.5  
16.0  
8.3  
8.2  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. VCC Start−up Threshold vs.  
Temperature  
Figure 5. VCC Minimum Operating Voltage vs.  
Temperature  
11.5  
11.0  
10.5  
10.0  
9.5  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
9.0  
8.5  
8.0  
7.5  
4.2  
4.0  
−50 −25  
−50 −25  
0
25  
50  
75  
100  
125 150  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Hysteresis (VCC(on) − VCC(off)) vs.  
Temperature  
Figure 7. VCC(reset) vs. Temperature  
www.onsemi.com  
8
NCL30088  
TYPICAL CHARACTERISTICS  
28.0  
27.8  
40  
35  
30  
25  
20  
15  
10  
27.6  
27.4  
27.2  
27.0  
26.8  
26.6  
26.4  
26.2  
26.0  
5
0
25.8  
25.6  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 8. VCC Over Voltage Protection  
Threshold vs. Temperature  
Figure 9. Start−up Current vs. Temperature  
150  
125  
100  
75  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
50  
25  
0
0.6  
0.4  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 10. Start−up Current in Fault Mode vs.  
Temperature  
Figure 11. ICC1 vs. Temperature  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.6  
1.4  
1.2  
1.5  
1.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. ICC2 vs. Temperature  
Figure 13. ICC3 vs. Temperature  
www.onsemi.com  
9
NCL30088  
TYPICAL CHARACTERISTICS  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
0.96  
0.95  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 14. Maximum Internal Current Limit vs.  
Temperature  
Figure 15. Leading Edge Blanking vs.  
Temperature  
150  
140  
130  
120  
110  
100  
90  
50  
48  
46  
44  
42  
80  
40  
38  
36  
34  
70  
60  
50  
40  
30  
20  
10  
0
32  
30  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 16. Current Limit Propagation Delay vs.  
Temperature  
Figure 17. Maximum On−time vs. Temperature  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
1.46  
1.44  
1.42  
1.40  
1.38  
110  
100  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 18. VCS(stop) vs. Temperature  
Figure 19. Leading Edge Blanking Duration for  
CS(stop) vs. Temperature  
V
www.onsemi.com  
10  
NCL30088  
TYPICAL CHARACTERISTICS  
600  
580  
560  
540  
520  
500  
480  
460  
440  
100  
90  
80  
70  
60  
50  
40  
30  
20  
420  
400  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 20. ICS(short) vs. Temperature  
Figure 21. VCS(low), VCS Rising vs.  
Temperature  
40  
20  
18  
16  
14  
12  
10  
8
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
6
4
14  
12  
10  
2
0
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 22. Sink Gate Drive Resistance vs.  
Temperature  
Figure 23. Source Gate Drive Resistance vs.  
Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
5
0
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 24. Gate Drive Rise Time vs.  
Temperature  
Figure 25. Gate Drive Fall Time  
(CDRV = 470 pF) vs. Temperature  
www.onsemi.com  
11  
NCL30088  
TYPICAL CHARACTERISTICS  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
8.4  
8.2  
10.5  
10.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 26. DRV Low Voltage vs. Temperature  
Figure 27. DRV High Voltage vs. Temperature  
150  
140  
130  
120  
110  
100  
90  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
35  
30  
40  
30  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 28. Upper ZCD Threshold Voltage vs.  
Temperature  
Figure 29. Lower ZCD Threshold vs.  
Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
−50 −25  
5
0
−50 −25  
0
25  
50  
75  
100  
125 150  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. ZCD Hysteresis vs. Temperature  
Figure 31. ZCD Blanking Delay vs.  
Temperature  
www.onsemi.com  
12  
NCL30088  
TYPICAL CHARACTERISTICS  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
256  
255  
254  
253  
252  
251  
250  
249  
248  
247  
246  
6.0  
5.8  
−50 −25  
245  
244  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 32. ZCD Time−out vs. Temperature  
Figure 33. Reference Voltage vs. Temperature  
(A and B versions)  
110  
100  
90  
60  
58  
56  
54  
52  
50  
48  
80  
70  
60  
50  
40  
46  
30  
44  
42  
20  
10  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 34. Current Sense Lower Threshold  
(VCS Falling) vs. Temperature  
Figure 35. Error Amplifier Trans−conductance  
Gain vs. Temperature  
22.0  
21.5  
21.0  
44  
43  
42  
41  
40  
39  
38  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
37  
36  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 36. Feedforward VVS to ICS(offset)  
Conversion Ratio vs. Temperature  
Figure 37. Line Feedforward Current on CS  
Pin (@ VVS = 2 V) vs. Temperature  
www.onsemi.com  
13  
NCL30088  
TYPICAL CHARACTERISTICS  
120  
115  
110  
105  
100  
95  
2.55  
2.50  
2.45  
2.40  
2.35  
90  
2.30  
2.25  
85  
80  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 38. Ioffset(MAX) vs. Temperature  
Figure 39. Threshold for High−line Range  
Detection vs. Temperature  
40  
38  
36  
34  
32  
30  
28  
26  
24  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
22  
20  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 40. Threshold for Low−line Range  
Detection vs. Temperature  
Figure 41. Blanking Time for Low−line Range  
Detection vs. Temperature  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
115  
110  
105  
100  
95  
90  
85  
0.85  
0.80  
80  
75  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 42. Threshold Voltage for Output Short  
Circuit Detection vs. Temperature  
Figure 43. Short Circuit Detection Timer vs.  
Temperature  
www.onsemi.com  
14  
NCL30088  
TYPICAL CHARACTERISTICS  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
3.25  
3.00  
1.10  
1.00  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 44. Auto−recovery Timer Duration vs.  
Temperature  
Figure 45. SD Pin Clamp Series Resistor vs.  
Temperature  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
1.15  
1.10  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 46. SD Pin Clamp Voltage vs.  
Temperature  
Figure 47. SD Pin OVP Threshold Voltage vs.  
Temperature  
38  
36  
34  
32  
30  
28  
26  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
24  
22  
80  
79  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 48. TSD(delay) vs. Temperature  
Figure 49. IOTP(REF) vs. Temperature  
www.onsemi.com  
15  
NCL30088  
TYPICAL CHARACTERISTICS  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
7.6  
11.2  
11.1  
11.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 50. RTF(start) vs. Temperature  
Figure 51. RTF(stop) vs. Temperature  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
7.8  
7.7  
7.6  
5.5  
5.4  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 52. ROTP(off) vs. Temperature  
Figure 53. ROTP(on) vs. Temperature  
55  
54  
53  
52  
51  
50  
49  
48  
47  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
46  
45  
0.96  
0.95  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 54. Ratio VREF(50) over VREF vs.  
Temperature  
Figure 55. Brown−out ON Level vs.  
Temperature  
www.onsemi.com  
16  
NCL30088  
TYPICAL CHARACTERISTICS  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
0.87  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
0.86  
0.85  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 56. Brown−out OFF Level vs.  
Temperature  
Figure 57. Brown−out Blanking Time vs.  
Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
−50 −25  
0
25  
50  
75  
100  
125  
150  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 58. VS Pin Pulling−down Current vs.  
Temperature  
www.onsemi.com  
17  
NCL30088  
Application Information  
The NCL30088 is a driver for power−factor corrected  
connected to the SD pin. Note, the SD pin can also  
be used to shutdown the device by pulling this pin  
flyback and non−isolated buck−boost and SEPIC  
converters. Its current−mode, quasi−resonant architecture  
optimizes the efficiency by turning on the MOSFET when  
its drain−source voltage is minimal (valley). At high line, the  
circuit delays the MOSFET turn on until the second valley  
is detected to reduce the switching losses. A proprietary  
circuitry ensures both accurate regulation of the output  
current (without the need for a secondary−side feedback)  
and near−unity power factor correction. The circuit contains  
a suite of powerful protections to ensure a robust LED driver  
design without the need for extra components or overdesign.  
below the V  
min level. A Zener diode can  
OTP(off)  
also be used to pull−up the pin and stop the  
controller for adjustable OVP protection. Both  
protections are latching−off (A and C versions) or  
auto−recovery (the circuit can recover operation  
after 4−s delay has elapsed − B and D versions).  
Cycle−by−cycle peak current limit: when the  
current sense voltage exceeds the internal threshold  
V , the MOSFET is immediately turned off  
ILIM  
(cycle−by−cycle current limitation).  
Quasi−Resonance Current−Mode Operation:  
implementing quasi−resonance operation in peak  
current−mode control, the NCL30088 optimizes the  
efficiency by turning on the MOSFET when its  
drain−source voltage is minimal (valley). In light−load  
conditions, the circuit changes valleys to reduce the  
switching losses. For stable operation, the valley at  
which the MOSFET switches on remains locked until  
the input voltage or the output current set−point  
significantly changes.  
Primary−Side Constant−Current Control with  
Power Factor Correction: a proprietary circuitry  
allows the LED driver to achieve both near−unity  
power factor correction and accurate regulation of the  
output current without requiring any secondary−side  
feedback (no optocoupler needed). A power factor as  
high as 0.99 and an output current deviation below 2%  
are typically obtained.  
Winding or Output Diode Short−Circuit  
Protection: an additional comparator senses the CS  
signal and stops the controller if it exceeds 150% x  
VILIM for 4 consecutive cycles. This feature can  
protect the converter if a winding is shorted or if the  
output diode is shorted or simply if the transformer  
saturates. This protection is latching−off (A and C  
versions) or auto−recovery (B and D versions).  
Output Short−circuit protection: if the ZCD pin  
voltage remains low for a 90−ms time interval, the  
controller detects that the output or the ZCD pin is  
grounded and hence, stops operation. This protection  
is latching−off (A and C versions) or auto−recovery  
(B and D versions).  
Open LED protection: if the V pin voltage  
CC  
exceeds the OVP threshold, the controller shuts  
down and waits 4 seconds before restarting  
switching operation.  
Floating or Short Pin Detection: the circuit can  
detect most of these situations which helps pass  
safety tests.  
Main protection features:  
Over Temperature Thermal Fold−back /  
Shutdown/ Over Voltage Protection: the  
NCL30088 features a gradual current foldback to  
protect the driver from excessive temperature down  
to 50% of the programmed current. This represents a  
power reduction of the LED by more than 50%. If  
the temperature continues to rise after this point to a  
second level, the controller stops operating. This  
mode would only be expected to be reached if there  
is a severe fault. The first and second temperature  
thresholds depend on the value of the NTC  
Power Factor and Constant Current Control  
The NCL30088 embeds an analog/digital block to control  
the power factor and regulate the output current by  
monitoring the ZCD, V and CS pin voltages (signals ZCD,  
S
V
S
and V of Figure 59). This circuitry generates the  
CS  
current setpoint (V /4) and compares it to the  
CONTROL  
current sense signal (V ) to dictate the MOSFET turning  
CS  
off event when V exceeds V  
/4.  
CONTROL  
CS  
V
V
VS  
ZCD STOP  
REFX  
PWM Latch reset  
V
Power Factor and  
Constant−Current  
Control  
CS  
COMP  
C1  
Figure 59. Power Factor and Constant−Current Control  
www.onsemi.com  
18  
 
NCL30088  
Start−up Sequence  
As illustrated in Figure 59, the V pin provides the  
S
Generally an LED lamp is expected to emit light in < 1 sec  
and typically within 300 ms. The start−up phase consists of  
sinusoidal reference necessary for shaping the input current.  
The obtained current reference is further modulated so that  
when averaged over a half−line period, it is equal to the  
the time to charge the V capacitor, begin switching and  
CC  
the time to charge the output capacitor until sufficient  
current flows into the LED string. To speed−up this phase,  
the following defines the start−up sequence:  
output current reference (V  
). This averaging process is  
REFX  
made by an internal Operational Trans−conductance  
Amplifier (OTA) and the capacitor connected to the COMP  
pin (C1 of Figure 59). Typical COMP capacitance is 1 mF  
and should not be less than 470 nF to ensure stability. The  
COMP ripple does not affect the power factor performance  
as the circuit digitally eliminates it when generating the  
current setpoint.  
The COMP pin is grounded when the circuit is off. The  
average COMP voltage needs to exceed the V pin  
S
peak value to have the LED current properly regulated  
(whatever the current target is). To speed−up the COMP  
capacitance charge and shorten the start−up phase, an  
internal 80−mA current source adds to the OTA sourced  
current (60 mA max typically) to charge up the COMP  
capacitance. The 80−mA current source remains on until  
the OTA starts to sink current as a result of the COMP  
pin voltage sufficient rise. At that moment, the COMP  
pin being near its steady−state value, it is only driven  
by the OTA.  
If the V pin properly conveys the sinusoidal shape, power  
S
factor will be close to unity and the Total Harmonic  
Distortion (THD) will be low. In any case, the output current  
will be well regulated following the equation below:  
VREFX  
2NPSRsense  
(eq. 1)  
Iout  
+
Where:  
If V drops below the V  
threshold because the  
CC  
CC(off)  
N is the secondary to primary transformer turns  
PS  
circuit fails to start−up properly on the first attempt, a  
new try takes place as soon as V is recharged to  
N
PS  
= N /N . N is 1 in the case of non−isolated  
S P PS  
CC  
buck−boost or SEPIC converter.  
V . The COMP voltage is not reset at that  
CC(on)  
R  
is the current sense resistor (see Figure 1).  
is the output current internal reference.  
sense  
moment. Instead, the new attempt starts with the  
COMP level obtained at the end of the previous  
operating phase.  
V  
REFX  
V
= V  
(250 mV in A and B versions and  
REFX  
REF  
200 mV in C and D versions, typically) at full load.  
If the load is shorted, the circuit will operate in hiccup  
mode with V oscillating between V  
and  
The output current reference (V ) is V unless the  
CC  
CC(off)  
REFX  
REF  
V
until the AUX_SCP protection trips  
temperature is high enough to activate the thermal fold−back  
(see “protections” section).  
If a major fault is detected, the circuit enters the  
latched−off or auto−recovery mode and the COMP pin is  
grounded (except in an UVLO condition). This ensures a  
clean start−up when the circuit resumes operation.  
CC(on)  
(AUX_SCP is triggered if the ZCD pin voltage does  
not exceed 1 V within a 90−ms operation period of time  
thus indicating a short to ground of the ZCD pin or an  
excessive load preventing the output voltage from  
rising). The NCL30088A and NCL30088C latch off in  
this case. With the B and D versions, the AUX_SCP  
protection forces the 4−s auto−recovery delay to reduce  
the operation duty−ratio. Figure 60 illustrates a start−up  
sequence with the output shorted to ground, in this  
second case.  
www.onsemi.com  
19  
NCL30088  
VCC(on)  
VCC  
VCC(off)  
(‧‧)  
(‧‧‧)  
time  
time  
AUX_SCPtrips  
as t1 + t2 + t3 = tOVLD  
t
(
^90 ms  
)
DRV  
OVLD  
t1  
t3  
t1  
t3  
t2  
t2  
trecovery ^4 s  
trecovery ^4 s  
(
)
(
)
Figure 60. Start−up Sequence in a Load Short−circuit Situation (auto−recovery versions)  
Zero Crossing Detection Block  
The ZCD pin detects when the drain−source voltage of the  
power MOSFET reaches a valley by crossing below the  
55−mV internal threshold. At startup or in case of extremely  
damped free oscillations, the ZCD comparator may not be  
able to detect the valleys. To avoid such a situation, the  
NCL30088 features a time−out circuit that generates pulses  
if the voltage on ZCD pin stays below the 55−mV threshold  
for 6.5 ms. The time−out also acts as a substitute clock for the  
valley detection and simulates a missing valley in case the  
free oscillations are too damped.  
Figure 61. Zero Current Detection Block  
www.onsemi.com  
20  
 
NCL30088  
If the ZCD pin or the auxiliary winding happen to be  
After the appropriate number of “clock” pulses in  
shorted, the time−out function would normally make the  
controller keep switching and hence lead to improper LED  
current value. The “AUX_SCP” protection prevents such a  
stressful operation: a secondary timer starts counting that is  
thermal foldback mode  
For an optimal operation, the maximum ZCD level  
should be maintained below 5 V to stay safely below the  
built in clamping voltage of the pin.  
only reset when the ZCD voltage exceeds the V  
ZCD(short)  
threshold (1 V typically). If this timer reaches 90 ms (no  
ZCD voltage pulse having exceeded V for this time  
Line Range Detection  
As sketched in Figure 62, this circuit detects the low−line  
ZCD(short)  
period), the controller detects a fault and stops operation for  
4 seconds (B and D versions) or latches off (A and C  
versions).  
range if the V pin remains below the V threshold (2.3 V  
S
LL  
typical) for more than the 25−ms blanking time. High−line  
is detected as soon as the V pin voltage exceeds V (2.4 V  
S
HL  
The “clock” shown in Figure 61 is used by the “valley  
selection frequency foldback” circuitry of the block diagram  
(Figure 3), to generate the next DRV pulse (if no fault  
prevents it):  
typical). These levels roughly correspond to 184−V rms and  
192−V rms line voltages if the external resistors divider  
applied to the V pin is designed to provide a 1−V peak value  
S
at 80 V rms.  
Immediately when the clock occurs in QR mode at low  
line or valley 2 at high line (full load)  
Figure 62. Line Range Detection  
In the low-line range, conduction losses are generally  
dominant. Adding a dead-time would further increase these  
losses. Hence, only a short dead-time is necessary to reach  
the MOSFET valley. In high-line conditions, switching  
losses generally are the most critical. It is thus efficient to  
skip one valley to lower the switching frequency. Hence,  
under normal operation, the NCL30088 optimizes the  
efficiency over the line range by turning on the MOSFET at  
the first valley in low-line conditions and at the second  
valley in the high-line case. This is illustrated by Figure 63  
that sketches the MOSFET Drain-source voltage in both  
cases. In the event that thermal foldback is activated,  
additional valleys can be skipped as the power is reduced.  
Figure 63. Full−load Operation − Quasi−resonant Mode in low line (left), turn on at valley 2 when in high line (right)  
Line Feedforward  
As illustrated by Figure 64, the input voltage is sensed by  
external resistor in series between the sense resistor and the  
CS pin, a voltage offset proportional to the input voltage is  
added to the CS signal for the MOSFET on−time.  
the V pin and converted into a current. By adding an  
S
www.onsemi.com  
21  
 
NCL30088  
Bulk rail  
vDD  
VS  
CS  
RCS  
ICS(offset)  
Rsense  
Q_drv  
Figure 64. Line Feed−Forward Schematic  
In Figure 64, Q_drv designates the output of the PWM latch which is high for the on−time and low otherwise.  
Protections  
abnormally steep slope of the current, internal propagation  
delays and the MOSFET turn−off time will make possible  
the current rise up to 50% or more of the nominal maximum  
The circuit incorporates a large variety of protections to  
make the LED driver very rugged. Among them, we can list:  
value set by V  
. As illustrated in Figure 65, the circuit  
ILIM  
Output Short Circuit Situation  
An overload fault is detected if the ZCD pin voltage  
uses this current overshoot to detect a winding short circuit.  
The leading edge blanking (LEB) time for short circuit  
protection (LEB2) is significantly faster than the LEB time  
for cycle−by−cycle protection (LEB1). Practically, if four  
consecutive switching periods lead the CS pin voltage to  
remains below V  
for 90 ms. In such a situation, the  
ZCD(short)  
circuit stops generating pulses until the 4−s delay  
auto−recovery time has elapsed (B and D versions) or  
latches off (A and C versions).  
exceed (V  
=150% *V ), the controller enters  
ILIM  
CS(stop)  
auto−recovery mode in B and D versions (4−s operation  
interruption between active bursts) and latches off in A and  
C versions. Similarly, this function can also protect the  
power supply if the output diode is shorted or if the  
transformer simply saturates.  
Winding or Output Diode Short Circuit Protection  
If a transformer winding happens to be shorted, the  
primary inductance will collapse leading the current to ramp  
up in a very abrupt manner. The V  
comparator (current  
ILIM  
limitation threshold) will trip to open the MOSFET and  
eventually stop the current rise. However, because of the  
S
R
aux  
DRV  
Q
Q
Vdd  
UVLO  
TSD  
VCC  
CS  
Vcc  
management  
BONOK  
UVLO  
LEB1  
+
PWMreset  
Ipkmax  
Vcontrol / 4  
latch  
4−s timer  
VCCreset  
(grand  
reset)  
+
STOP  
VILIMIT  
AUX_SCP  
VCC(ovp)  
SD Pin OVP  
(OVP2)  
LEB2  
+
WOD_SCP  
4−pulse  
counter  
OTP  
VCS(stop)  
S
R
S
R
latch  
OFF  
Q
Q
Q
Q
AUTO − RECOVERY  
(B and D versions)  
LATCHING − OFF  
(A and C versions)  
VCCreset  
4−s timer  
Figure 65. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
www.onsemi.com  
22  
 
NCL30088  
VCC Over Voltage Protection  
Programmable Over Voltage Protection (OVP2)  
The circuit stops generating pulses if V  
exceeds  
Connect a Zener diode between V and the SD pin to set  
CC  
CC  
V
and enters auto−recovery mode. This feature  
a programmable V OVP (D of Figure 66). The triggering  
CC(OVP)  
CC Z  
protects the circuit if the output LED string happens to open  
or is disconnected.  
level is (V +V  
) where V  
is the 2.5−V internal  
Z
OVP  
OVP  
threshold. If this protection trips, the NCL30088A and  
NCL30088C latch off while the NCL30088B and  
NCL30088D enter the auto−recovery mode.  
Vdd  
NCL30088B / NCL30088D  
(autorecovery versions)  
IOTP(REF)  
SD Pin OVP (OVP2) DETECTION  
S
+
OFF  
Q
Q
VCC  
VOVP  
TSD(delay)  
DZ  
R
SD  
4−s Timer  
OTP DETECTION  
NTC  
+
NCP30088A / NCL30088C  
(latching off versions)  
TOTP(start)  
VOTP(off)  
/ V  
OTP(on)  
S
Q
Latch  
Q
R
VTF  
Thermal  
Foldback  
grand reset  
Rclamp  
Vclamp  
Figure 66. Thermal Foldback and OVP/OTP Circuitry  
The SD pin is clamped to about 1.35 V (V  
) through  
circuit gradually reduces the LED current down 50% of its  
clamp  
a 1.6−kW resistor (R  
). It is then necessary to inject about  
nominal value when V reaches V  
, in accordance  
TF(stop)  
clamp  
SD  
with the characteristic of Figure 67.  
VOVP * Vclamp  
If this thermal foldback cannot prevent the temperature  
from rising (testified by V drop below V ), the circuit  
ǒ Ǔ  
Rclamp  
SD  
OTP  
latches off (A and C versions) or enters auto−recovery mode  
(B and D versions) and cannot resume operation until V  
that is  
SD  
exceeds V  
to provide some temperature hysteresis  
2.50 * 1.35  
OTP(on)  
ǒ
^ 700 mAǓ  
1.6 k  
(around 10°C typically). The OTP thresholds nearly  
correspond to the following resistances of the NTC:  
Thermal foldback starts when R  
(11.7 kW, typically)  
typically, to trigger the OVP protection. This current helps  
ensure an accurate detection by using the Zener diode far  
from its knee region.  
R  
R  
NTC  
TF(start)  
Thermal foldback stops when R  
typically)  
(8.0 kW,  
NTC  
TF(stop)  
Programmable Over Temperature Foldback Protection  
(OTP)  
Connect an NTC between the SD pin and ground to detect  
an over−temperature condition. In response to a high  
OTP triggers when R  
R  
(5.9 kW, typically)  
(8.0 kW,  
NTC  
OTP(off)  
OTP is removed when R  
R  
OTP(on)  
NTC  
typically) (Note 9)  
temperature (detected if V drops below V  
), the  
SD  
TF(start)  
9. This condition is sufficient for operation recovery of the B and D versions. For the A and C versions which latch off when OTP triggers, the  
circuit further needs to be reset by a V drop below V  
An online EXCEL −based design tool is available to aid in selecting the appropriate NTC value.  
.
CC  
CC(reset)  
®
www.onsemi.com  
23  
 
NCL30088  
At startup, when V  
reaches V , the OTP  
CC(on)  
CC  
comparator is blanked for at least 250 ms in order to allow the  
SD pin voltage to reach its nominal value if a filtering  
capacitor is connected to the SD pin. This avoids flickering  
of the LED light during turn on.  
Brown−Out Protection  
The NCL30088 prevents operation when the line voltage  
is too low for proper operation. As illustrated in Figure 68,  
the circuit detects a brown−out situation if the V pin  
S
remains below the V  
threshold (0.9 V typical) for  
BO(off)  
more than the 25−ms blanking time. In this case, the  
controller stops operating. Operation resumes as soon as the  
V pin voltage exceeds V  
(1.0 V typical) and V is  
S
BO(on)  
CC  
higher than V  
. To ease recovery, the circuit overrides  
CC(on)  
the V normal sequence (no need for V cycling down  
Figure 67. Output Current Reduction versus SD  
Pin Voltage  
CC  
CC  
below V ). Instead, its consumption immediately  
CC(off)  
reduces to I  
so that V  
rapidly charges up to  
CC(start)  
CC  
V . Once done, the circuit re−starts operating.  
CC(on)  
Figure 68. Brown−out Circuit  
Die Over Temperature (TSD)  
The circuit stops operating if the junction temperature (T )  
exceeds 150°C typically. The controller remains off until T  
goes below nearly 100°C.  
Fault of the GND connection  
J
If the GND pin is properly connected, the supply  
J
current drawn from the positive terminal of the V  
capacitor, flows out of the GND pin to return to the  
CC  
negative terminal of the V capacitor. If the GND pin  
CC  
Pin Connection Faults  
is not connected, the circuit ESD diodes offer another  
return path. The accidental non−connection of the GND  
pin is monitored by detecting that one of the ESD diode  
is conducting. Practically, the ESD diode of CS pin is  
monitored. If such a fault is detected for 200 ms, the  
circuit stops generating DRV pulses.  
The circuit addresses most pin connection fault cases:  
CS pin short to ground  
The circuit senses the CS pin impedance every time it  
starts−up and after DRV pulses terminated by the 36−ms  
maximum on−time. If the measured impedance does  
not exceed 120 ohm typically, the circuit stops  
operating. In practice, it is recommended to place a  
minimum of 250−ohm in series between the CS pin and  
the current sense resistor to take into account possible  
parametric deviations.  
More generally, incorrect pin connection situations  
(open, grounded, shorted to adjacent pin) are covered by  
AND9204/D.  
www.onsemi.com  
24  
 
NCL30088  
Fault Modes  
In the case of a latching−off fault, the circuit stops pulsing  
until the LED driver is unplugged and V drops below  
The circuit turns off whenever a major faulty condition  
prevents it from operating:  
CC  
V
. At that moment, the fault is cleared and the circuit  
CC(reset)  
could resume operation.  
Severe OTP (V level below V  
)
OTP(off)  
SD  
In the auto−recovery case, the circuit cannot generate  
DRV pulses for the auto−recovery 4−s delay. When this time  
has elapsed, the circuit recovers operation as soon as the  
V OVP  
CC  
OVP2 (additional OVP provided by SD pin)  
Output diode short circuit protection: “WOD_SCP  
V
CC  
voltage has exceeded V  
.
CC(on)  
high”  
In the B and D versions, all these protections are  
Output / Auxiliary winding Short circuit protection:  
“Aux_SCP high”  
Die over temperature (TSD)  
auto−recovery. The SD pin OTP and OVP, WOD_SCP and  
AUX_SCP are latching off in the A and C versions (see  
Table 5).  
In this mode, the DRV pulses generation is interrupted.  
Table 5. PROTECTION MODES  
AUX_SCP  
WOD_SCP  
Latching off  
SD Pin OTP  
Latching off  
SD Pin OVP  
Latching off  
NCL30088A*  
NCL30088B  
NCL30088C*  
NCL30088D  
Latching off  
Auto−recovery  
Latching off  
Auto−recovery  
Latching off  
Auto−recovery  
Latching off  
Auto−recovery  
Latching off  
Auto−recovery  
Auto−recovery  
Auto−recovery  
Auto−recovery  
ORDERING INFORMATION  
Device  
Package Type  
Shipping  
NCL30088ADR2G*  
NCL30088BDR2G  
NCL30088CDR2G*  
NCL30088DDR2G  
SOIC−8  
(Pb−Free/Halide Free)  
2500 / Tape & Reel  
*Please contact local sales representative for availability.  
www.onsemi.com  
25  
 
NCL30088  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
EXCEL is a registered trademark of Microsoft Corporation.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCL30088/D  

相关型号:

NCL30088BDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088CDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088DDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30095ADR2G

LED 驱动器,AC-DC 功率因数校正升压开关稳压器,集成式 MOSFET,三端双向可控硅调光,温度折回
ONSEMI

NCL30100

Fixed Off Time Switched Mode LED Driver Controller
ONSEMI

NCL30100SNT1G

Fixed Off Time Switched Mode LED Driver Controller
ONSEMI

NCL30105

Constant Off Time PWM Current-Mode Controller for LED Applications
ETC

NCL30105DR2G

灵活可调光的降压LED驱动器控制器
ONSEMI

NCL30125

Current-Mode Controller, Fixed Frequency, for Two-Switch Forward Converter
ONSEMI

NCL30125A1DR2G

Switching Controller
ONSEMI

NCL30125A2

Current-Mode Controller, Fixed Frequency, for Two-Switch Forward Converter
ONSEMI

NCL30125A2DR2G

Current-Mode Controller, Fixed Frequency, for Two-Switch Forward Converter
ONSEMI