NCL30388A1DR2G [ONSEMI]

Power Factor Corrected LED Driver Featuring Primary Side CC / CV Control;
NCL30388A1DR2G
型号: NCL30388A1DR2G
厂家: ONSEMI    ONSEMI
描述:

Power Factor Corrected LED Driver Featuring Primary Side CC / CV Control

文件: 总18页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Power Factor Corrected  
LED Driver Featuring  
Primary Side CC / CV  
Control  
NCL30388  
www.onsemi.com  
The NCL30388 is a power factor corrected controller targeting  
isolated and nonisolated constant current LED drivers. Designed to  
support flyback, buckboost and SEPIC topologies, the controller  
operates in a quasiresonant mode to provide high efficiency. Due to a  
novel control method, the device is able to tightly regulate a constant  
LED current from the primary side and provides nearunity power  
factor. This removes the need for secondary side feedback circuitry, its  
biasing and for an optocoupler.  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device is specifically intended for very compact space  
efficient designs and also provides a constant voltage regulation of the  
output if no load is connected to the LED driver.  
MARKING  
DIAGRAM  
8
1
L30388x  
ALYWX  
G
SOIC7  
CASE 751U  
L30388  
= Specific Device Code  
= Version  
= Assembly Location  
= Wafer Lot  
x
A
L
Features  
High Voltage Startup  
Y
W
G
= Year  
= Work Week  
Quasiresonant Peak Currentmode Control Operation  
Primary Side Feedback  
= PbFree Package  
CC / CV Control  
Tight LED Constant Current Regulation of 2% Typical  
Digital Power Factor Correction  
Cycle by Cycle Peak Current Limit  
PIN CONNECTIONS  
8
1
2
COMP  
ZCD  
HV  
Wide Operating V Range  
CC  
40 to + 125°C  
Robust Protection Features  
6
5
3
4
VCC  
DRV  
CS  
BrownOut  
OVP on V  
GND  
CC  
Constant Voltage / LED Open Circuit Protection  
Winding Short Circuit Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Thermal Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 15 of  
this data sheet.  
Typical Applications  
Integral LED Bulbs  
LED Power Driver Supplies  
LED Light Engines  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
February, 2020 Rev. 3  
NCL30388/D  
NCL30388  
.
.
.
NCL30388  
1
2
3
4
8
6
5
Figure 1. Typical Application Schematic in a Flyback Converter  
PIN FUNCTION DESCRIPTION NCL30388  
Pin No  
Pin Name  
COMP  
ZCD  
Function  
Pin Description  
1
2
OTA output for CV loop  
Zero crossing Detection  
This pin receives a compensation network to stabilize the CV loop  
This pin connects to the auxiliary winding and is used to detect the  
core reset event.  
V
sensing  
aux  
This pin also senses the auxiliary winding voltage for accurate out-  
put voltage control  
3
4
5
6
8
CS  
GND  
DRV  
VCC  
HV  
Current sense  
This pin monitors the primary peak current.  
The controller ground  
Driver output  
The driver’s output to an external MOSFET  
This pin is connected to an external auxiliary voltage.  
Supplies the controller  
High Voltage sensing  
This pin connects after the diode bridge to provide the startup cur-  
rent and internal high voltage sensing function.  
www.onsemi.com  
2
NCL30388  
INTERNAL CIRCUIT ARCHITECTURE  
CS_shorted  
Enable  
V
V
REF  
STOP  
OFF  
DD  
Internal  
Thermal  
VCC  
UVLO  
Latch  
Shutdown  
Fault  
Management  
VCC Management  
COMP  
Aux_SCP  
VCC_max  
VCC Ov er Voltage  
Ipkmax  
Protection  
HV  
STUP  
W OD_SCP  
BO_NOK  
Constant Voltage Control  
V
CV  
V
HVdiv  
FF_mode  
Qdrv  
V
V
HVdiv  
REF  
HV  
BO_NOK  
BrownOut  
FF_mode  
Zero Crossing Detection Logic  
ZCD  
ValleySelection  
(ZCD Blanking , TimeOut, ...)  
FrequencyFoldback  
VCC  
Aux. W inding Short Circuit Prot.  
S
Qdrv  
Aux_SCP  
Q
Q
Clamp  
Circuit  
V
HVdiv  
V
VLY  
DRV  
R
Line  
feed-fo rward  
STOP  
V
REF(PFC)  
CS  
Leading  
Edge  
CS_reset  
Constant-C urrent Control  
Blanking  
Ipkmax  
STOP  
Enable  
V
CV  
Max. Peak  
Current  
Ipkmax  
Limit  
VREF  
setpoint  
CS Short  
Protection  
V
CS_shorted  
REF  
Generation of the  
Reference Voltage  
for Power Factor Corr.  
W inding and  
Output diode  
Short Circuit  
Protection  
V
V
HVdiv  
REF(PFC)  
W OD_SCP  
GND  
Figure 2. Internal Circuit Architecture NCL30388  
www.onsemi.com  
3
NCL30388  
MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
0.3 to 30  
Internally limited  
V
mA  
CC(MAX)  
CC(MAX)  
I
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV(MAX)  
DRV  
I
300, +500  
V
Maximum voltage on HV pin  
Maximum current for HV pin (dc current selflimited if operated within the allowed range)  
0.3, +700  
V
mA  
HV(MAX)  
HV(MAX)  
I
20  
V
Maximum voltage on low power pins (except pins HV, DRV and VCC)  
Current range for low power pins (except pins HV, DRV and VCC)  
0.3, 5.5 (Notes 2 and 6)  
2, +5  
V
mA  
MAX  
MAX  
I
R
Thermal Resistance JunctiontoAir  
Maximum Junction Temperature  
Operating Temperature Range  
180  
°C/W  
°C  
θ
JA  
T
150  
J(MAX)  
40 to +125  
°C  
Storage Temperature Range  
65 to +150  
°C  
ESD Capability, HBM model (Note 3)  
ESD Capability, MM model (Note 3)  
ESD Capability, CDM model (Note 3)  
2
300  
1
kV  
V
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5 V ZENER diode. More positive and negative voltages  
can be applied if the pin current stays within the 2 mA / 5 mA range.  
3. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MilStd883, Method 3015.  
Charged Device Model 2000 V per JEDEC Standard JESD22C101D  
4. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, , V = 0 V) For min/max values  
CS  
J
CC  
ZCD  
T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
HIGH VOLTAGE SECTION  
High voltage current source  
High voltage current source  
V
CC  
= V  
– 200 mV  
I
I
3.3  
4.7  
300  
2
6.1  
mA  
mA  
V
CC(on)  
HV(start2)  
V
= 0 V  
CC  
HV(start1)  
V
CC  
level for I  
to I  
HV(start2)  
transition  
V
CC(TH)  
HV(start1)  
Minimum startup voltage  
HV source leakage current  
V
= 0 V  
V
17  
V
CC  
HV(MIN)  
HV(leak)  
V
HV  
= 450 V  
I
4.5  
10  
mA  
Vrms  
Maximum rms input voltage for correct operation of the PFC  
V
265  
HV(OL)  
loop (T = 20°C to 125°C)  
J
SUPPLY SECTION  
Supply Voltage  
V
Startup Threshold  
V
increasing  
increasing  
decreasing  
decreasing  
V
16  
9.77  
8.2  
7.8  
4
18  
10.50  
8.8  
20  
11.24  
9.4  
CC  
CC  
CC(on)  
Threshold for turning off DSS (Note 5)  
Minimum Operating Voltage  
V
V
CC(on2)  
V
CC  
V
CC  
V
CC(off)  
CC(HYS)  
CC(reset)  
Hysteresis V  
– V  
V
V
CC(on)  
CC(off)  
Internal logic reset  
5
6
Over Voltage Protection  
CC  
V
25.0  
26.5  
28  
V
CC(OVP)  
V
OVP threshold  
V
V
noise filter (Note 6)  
CC(reset)  
t
5
20  
ms  
CC(off)  
VCC(off)  
noise filter(Note 6)  
t
VCC(reset)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
I
1.2  
1.5  
3.0  
3.3  
2.9  
1.8  
3.5  
4.0  
3.4  
CC  
sw  
CC(off)  
CC1  
CC2  
CC3  
CC4  
Device Enabled/No output load on pin 5  
F
= 65 kHz  
= 470 pF,  
= 65 kHz  
sw  
Device Switching (F = 65 kHz)  
C
sw  
sw  
DRV  
Device switching (F = 15 kHz)  
F
V
= 10%of max value  
REFX  
5. Refer to ordering table option at the end of the document  
6. Guaranteed by design.  
www.onsemi.com  
4
 
NCL30388  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, , V = 0 V) For min/max values  
CS  
J
CC  
ZCD  
T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE  
Maximum Internal current limit  
V
1.31  
270  
1.38  
330  
100  
39  
1.45  
390  
150  
49  
V
ns  
ns  
ms  
ms  
V
ILIM  
LEB  
ILIM  
Leading Edge Blanking Duration for V  
t
ILIM  
Propagation delay from current detection to gate offstate  
Maximum ontime (option B)  
t
t
29  
on(MAX)  
Maximum ontime (option A)  
t
16  
20  
24  
on(MAX2)  
Threshold for immediate fault protection activation (140% of V  
)
V
1.91  
1.99  
170  
500  
60  
2.07  
ILIM  
CS(stop)  
Leading Edge Blanking Duration for V  
t
ns  
mA  
mV  
CS(stop)  
BCS  
CS(short)  
Current source for CS to GND short detection  
Current sense threshold for CS to GND short detection  
GATE DRIVE  
I
400  
20  
600  
100  
V
CS  
rising  
V
CS(low)  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
R
13  
30  
SNK  
SRC  
Drive current capability  
DRV Sink (Note GBD)  
DRV Source (Note GBD)  
mA  
I
500  
300  
SNK  
I
SRC  
Rise Time (10 % to 90 %)  
Fall Time (90 % to 10 %)  
DRV Low Voltage  
C
C
= 470 pF  
= 470 pF  
t
8
30  
20  
ns  
ns  
V
DRV  
r
t
DRV  
f
V
= V  
+0.2 V  
V
CC  
C
CC(off)  
DRV(low)  
= 470 pF,  
DRV  
R
=33 kW  
DRV  
DRV High Voltage  
V
= V  
V
10  
12  
14  
V
CC  
CC(MAX)  
DRV(high)  
C
= 470 pF,  
DRV  
R
=33 kW  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
Upper ZCD threshold voltage  
V
rising  
falling  
V
35  
90  
55  
150  
mV  
mV  
mV  
ns  
ZCD  
ZCD(rising)  
V
ZCD(falling)  
Lower ZCD threshold voltage  
V
ZCD  
ZCD hysteresis  
V
15  
ZCD(HYS)  
ZCD(DEM)  
Propagation Delay from valley detection to DRV high  
Blanking delay after ontime (ZCD blank option B)  
Blanking Delay at light load (ZCD blank option B)  
Blanking delay after ontime (ZCD blank option A)  
Blanking Delay at light load (ZCD blank option A)  
Timeout after last DEMAG transition  
Pullingdown resistor  
V
decreasing  
t
150  
1.9  
1.0  
1.25  
0.75  
8
ZCD  
V
> 0.35 V  
< 0.25 V  
> 0.35 V  
< 0.25 V  
t
t
t
t
1.1  
0.6  
0.75  
0.45  
5
1.5  
0.8  
1.0  
0.6  
6.5  
200  
ms  
REFX  
REFX  
REFX  
REFX  
ZCD(blank1)B  
ZCD(blank2)B  
ZCD(blank1)A  
ZCD(blank2)A  
V
ms  
V
V
ms  
ms  
t
ms  
TIMO  
V
= V  
R
ZCD(pd)  
kW  
ZCD  
ZCD(falling)  
CONSTANT CURRENT CONTROL  
Reference Voltage at T = 25°C to 85°C  
V
V
0.326  
0.323  
20  
0.333  
0.333  
50  
0.340  
0.343  
100  
V
V
J
REF  
Reference Voltage T = 40°C to 125°C  
J
REF  
Current sense lower threshold for detection of the leakage in-  
ductance reset time  
V
CS  
falling  
V
mV  
CS(low)  
Blanking time for leakage inductance reset detection  
CONSTANT VOLTAGE SECTION  
t
120  
ns  
CS(low)  
Internal voltage reference for constant voltage regulation  
T = 25°C  
J
V
V
2.42  
2.38  
2.48  
2.48  
2.54  
2.58  
V
V
REF(CV)  
Internal voltage reference for constant voltage regulation  
T = 40°C to 125°C  
J
REF(CV)  
www.onsemi.com  
5
NCL30388  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, , V = 0 V) For min/max values  
CS  
J
CC  
ZCD  
T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CONSTANT VOLTAGE SECTION  
CV Error amplifier Gain  
G
40  
50  
60  
60  
mS  
mA  
V
EA  
Error amplifier current capability  
COMP pin lower clamp voltage  
COMP pin higher clamp voltage  
V
=V  
I
EA  
REFX  
REF  
V
0.6  
4.1  
2
CV(clampL)  
CV(clampH)  
V
V
ZCD pin voltage below which the CV OTA is boosted  
Error amplifier current capability during boost phase  
V
* 80%  
V
1.88  
2.69  
2.12  
3.04  
V
REF(CV)  
boost(CV)  
I
140  
2.87  
1.5  
2.625  
3.43  
2
mA  
V
EAboost  
ZCD slow OVP threshold (V  
*115%)  
V
OVP1  
ref(CV)  
Switching period during slow OVP  
T
ms  
V
sw(OVP1)  
ZCD voltage at which slow OVP is exit (V  
ZCD fast OVP threshold  
*105%)  
V
OVP1rst  
ref(CV)  
V
OVP2  
3.29  
1.88  
3.57  
2.12  
V
ZCD pin voltage below which the CV OTA is boosted  
V
* 80%  
V
V
REF(CV)  
boost(CV)  
LINE FEED FORWARD  
V
to I  
conversion ratio  
K
0.153  
76  
0.185  
95  
0.217  
114  
42  
mA/V  
mA  
HV  
CS(offset)  
LFF  
I
offset(MAX)  
Offset current maximum value  
V
> 400 V  
HV  
Line feedforward current  
DRV high, V = 200 V  
I
32  
37  
mA  
HV  
FF  
VALLEY LOCKOUT SECTION  
Threshold for line range detection V increasing  
V
increases  
decreases  
V
HL  
252  
241  
15  
264  
253  
25  
276  
265  
35  
V
V
in  
HV  
Threshold for line range detection V decreasing  
in  
V
HV  
V
LL  
Blanking time for line range detection  
t
ms  
%
HL(blank)  
Valley thresholds (expressed as a percentage of V  
)
REF  
st  
nd  
nd  
rd  
1
to 2 valley transition at LL and 2 to 3 valley HL, V  
decr.  
incr.  
decr.  
incr.  
decr.  
incr.  
decr.  
incr.  
V
decreases  
V
V
V
V
V
V
V
V
80  
90  
65  
75  
50  
60  
35  
45  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
VLY12/23  
VLY21/32  
VLY23/34  
VLY32/43  
VLY34/45  
VLY43/54  
VLY45/56  
VLY54/65  
nd  
nd  
st  
rd  
nd  
th  
th  
th  
rd  
rd  
th  
th  
th  
th  
nd  
th  
rd  
th  
th  
th  
2
to 1 valley transition at LL and 3 to 2 valley HL, V  
V
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
REF  
REF  
2
to 3 valley transition at LL and 3 to 4 valley HL, V  
V
rd  
3
to 2 valley transition at LL and 4 to 3 valley HL, V  
V
REF  
REF  
rd  
3
to 4 valley transition at LL and 4 to 5 valley HL, V  
V
th  
4
to 3 valley transition at LL and 5 to 4 valley HL, V  
V
REF  
REF  
th  
4
to 5 valley transition at LL and 5 to 6 valley HL, V  
V
th  
th  
th  
th  
5
to 4 valley transition at LL and 6 to 5 valley HL, V  
V
REF  
V
REF  
V
REF  
value at which the FF mode is activated  
value at which the FF mode is removed  
V
decreases  
increases  
V
V
25  
35  
%
%
REF  
FFstart  
V
REF  
FFstop  
FREQUENCY FOLDBACK  
Added dead time  
V
= 25%V  
t
1.4  
2.0  
40  
2.6  
ms  
ms  
ms  
ms  
ms  
REFX  
REF  
FF1LL  
Added dead time  
V
= 8% V  
t
REFX  
REF  
FFchg  
FFend  
Deadtime clamp (Maximum deadtime option C)  
Deadtime clamp (Maximum deadtime option B)  
Deadtime clamp (Maximum deadtime option A)  
FAULT PROTECTION  
V
V
< 1 mV  
< 3 mV  
t
1.4  
687  
250  
REFX  
REFX  
t
FFend2  
FFend3  
V
< 11.2 mV  
t
REFX  
Thermal Shutdown  
Device switching (F  
around 65 kHz)  
T
SHDN  
130  
150  
170  
°C  
SW  
Thermal Shutdown Hysteresis  
T
50  
°C  
SHDN(HYS)  
Threshold voltage for output short circuit or aux. winding short  
circuit detection  
V
0.8  
1.0  
1.2  
V
ZCD(short)  
Short circuit detection Timer  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
Autorecovery Timer  
t
recovery  
www.onsemi.com  
6
NCL30388  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, , V = 0 V) For min/max values  
CS  
J
CC  
ZCD  
T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
BROWNOUT AND LINE SENSING  
BrownOut ON level (IC start pulsing)  
BrownOut OFF level (IC stops pulsing)  
BO comparators delay  
V
increasing  
decreasing  
V
104  
93  
110  
99  
30  
25  
55  
5
116  
105  
V
V
HV  
HVBO(on)  
HVBO(off)  
BO(delay)  
BO(blank)  
V
HV  
V
t
t
ms  
ms  
V
BrownOut blanking time  
15  
35  
HV pin voltage above which the sampling of ZCD is enabled  
Sampling Enable comparator hysteresis  
V
HV  
decreasing  
increasing  
V
sampEN  
V
HV  
V
V
sampHYS  
TYPICAL CHARACTERISTICS  
18.30  
18.25  
18.20  
18.15  
18.10  
8.90  
8.88  
8.86  
8.84  
8.82  
8.80  
18.05  
18.00  
8.78  
8.76  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. VCC(on) vs. Junction Temperature  
Figure 4. VCC(off) vs. Junction Temperature  
28.0  
27.5  
27.0  
26.5  
1.45  
1.43  
1.41  
1.39  
1.37  
1.35  
26.0  
25.5  
25.0  
1.33  
1.31  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCC(OVP) vs. Junction Temperature  
Figure 6. VILIM vs. Junction Temperature  
www.onsemi.com  
7
NCL30388  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
2.07  
2.05  
2.03  
2.01  
1.99  
1.97  
1.95  
30  
20  
1.93  
1.91  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 7. VCS(low)F vs. Junction Temperature  
Figure 8. VCS(stop) vs. Junction Temperature  
144  
134  
124  
114  
104  
94  
335.5  
334.5  
333.5  
332.5  
84  
331.5  
330.5  
74  
64  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 9. tILIM vs. Junction Temperature  
Figure 10. VREF vs. Junction Temperature  
60  
58  
56  
54  
52  
50  
48  
46  
44  
2.511  
2.506  
2.501  
2.496  
2.491  
2.486  
2.481  
2.476  
2.471  
2.466  
42  
40  
50  
50  
25  
0
25  
50  
75  
100  
25  
0
25  
50  
75  
100 125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. VREF(CV) vs. Junction Temperature  
Figure 12. GEA vs. Junction Temperature  
www.onsemi.com  
8
NCL30388  
TYPICAL CHARACTERISTICS  
3.46  
2.883  
2.878  
2.873  
2.868  
2.863  
2.858  
2.853  
2.848  
3.45  
3.44  
3.43  
3.42  
3.41  
3.40  
2.843  
2.838  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 13. VOVP1 vs. Junction Temperature  
Figure 14. VOVP2 vs. Junction Temperature  
0.190  
0.188  
0.186  
0.184  
37.8  
37.6  
37.4  
37.2  
37.0  
36.8  
36.6  
36.4  
0.182  
0.180  
36.2  
36.0  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. KLFF vs. Junction Temperature  
Figure 16. IFF vs. Junction Temperature  
100.2  
99.7  
99.2  
111.2  
110.7  
110.2  
98.7  
98.2  
109.7  
109.2  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100 125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. VHVBO(on) vs. Junction Temperature  
Figure 18. VHVBO(off) vs. Junction Temperature  
www.onsemi.com  
9
NCL30388  
APPLICATION INFORMATION  
The NCL30388 implements a currentmode architecture  
while keeping accurate constant current and constant  
operating in quasiresonant mode. Due to proprietary  
circuitry, the controller is able to accurately regulate the  
secondary side current and voltage of the flyback converter  
without using any optocoupler or measuring directly the  
secondary side current or voltage.  
voltage control.  
Line Feedforward: allows compensating the variation  
of the output current caused by the propagation delay.  
V Over Voltage Protection: if the V pin voltage  
CC  
CC  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting pulsing.  
The controller provides near unity power factor  
correction.  
Fast Over Voltage Protection: If the voltage of ZCD pin  
exceeds 130% of its regulation level, the controller  
shuts dwon and waits 4 s before trying to restart.  
BrownOut: the controller includes a brownout circuit  
which safely stops the controller in case the input  
voltage is too low. The device will automatically restart  
if the line recovers.  
QuasiResonance CurrentMode Operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCL30388 optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Due to an internal algorithm  
control, the controller locksout in a selected valley and  
remains locked until the input voltage or the output  
current set point significantly changes.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to take into  
account the effect of the leakage inductance of the  
transformer and allows an accurate control of the  
secondary side current regardless of the input voltage  
and output load variation  
Primary Side Constant Voltage Regulation: By  
monitoring the auxiliary winding voltage, it is possible  
to regulate accurately the output voltage. The output  
voltage regulation is typically within 2%.  
Load Transient Compensation: Since PFC has low loop  
bandwidth, abrupt changes in the load may cause  
excessive over or undershoot. The slow Over Voltage  
Protection contains the output voltage when it tends to  
become excessive. In addition, the NCL30388 speeds  
up the constant voltage regulation loop when the output  
voltage goes below 80% of its regulation level.  
Cyclebycycle peak current limit: when the current  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
MOSFET is turned off for the rest of the switching  
cycle.  
Winding ShortCircuit Protection: an additional  
comparator senses the CS signal and stops the  
controller if V reaches 1.4 x V  
(after a reduced  
CS  
ILIM  
LEB of t ). This additional comparator is enabled  
BCS  
only during the main LEB duration t  
immunity reason.  
, for noise  
LEB  
Output Under Voltage Protection: If a too low voltage is  
applied on ZCD pin for 90ms time interval, the  
controllers assume that the output or the ZCD pin is  
shorted to ground and shutdown. After waiting 4  
seconds, the IC restarts switching.  
Thermal Shutdown: an internal circuitry disables the  
gate drive when the junction temperature exceeds  
150°C (typically). The circuit resumes operation once  
the temperature drops below approximately 100°C.  
Power Factor Correction: A proprietary concept allows  
achieving high power factor correction and low THD  
www.onsemi.com  
10  
NCL30388  
POWER FACTOR AND CONSTANT CURRENT  
CONTROL  
The NCL30388 embeds an analog/digital block to control  
the power factor and regulate the output current by  
monitoring the ZCD, CS and HV pin voltages (signals  
Where:  
N is the secondary to primary transformer turns  
sp  
ratio: N = N / N .  
sp S P  
R  
V  
V
is the current sense resistor  
sense  
is the output current reference: V  
=
REFX  
REFX  
V
ZCD  
, V  
, V ). This circuit generates the current  
if V  
4 V  
HV_DIV  
CS  
REF  
COMP  
setpoint V  
and compares it to the current sense  
The output current reference (V  
) is V  
unless the  
CTRL_DIV  
REFX  
REF  
signal to turn the MOSFET off. The HV pin provides the  
sinusoidal reference necessary for shaping the input current.  
The obtained current reference is further modulated so that  
when averaged over a half line period, it is equal to the  
constant voltage mode is activated.  
CONSTANT VOLTAGE CONTROL  
The auxiliary winding voltage is sampled internally  
through the ZCD pin.  
A precise internal voltage reference V  
voltage target for the CV loop.  
output current reference (V  
). The modulation and  
REFX  
sets the  
REF(CV)  
averaging process is made internally by a digital circuit. If  
the HV pin properly conveys the sinusoidal shape, power  
factor will be close to 1. Also, the Total Harmonic Distortion  
(THD) will be low especially if the output voltage ripple is  
small.  
The sampled voltage is applied to the negative input of the  
CV OTA and compared to V  
.
REFCV  
A type 2 compensator is needed at the CV OTA output to  
stabilize the loop. The COMP pin voltage modify the the  
output current internal reference in order to regulate the  
output voltage.  
The output current will be well regulated,  
following the equation below:  
VREFX  
When V  
When V  
4 V, V  
= V  
.
COMP  
COMP  
REFX  
< 0.6 V, V  
REF  
(eq. 1)  
IOUT  
+
2NspRsense  
= 0 V  
REFX  
Gm  
RZCDU  
ZCD  
VZCDsamp  
ZCD & signal  
sampling  
COMP  
.
R1  
C1  
RZCDL  
OTA  
VREF(CV)  
C2  
Aux.  
Figure 19. Constant Voltage Feedback Circuit  
STARTUP PHASE (HV STARTUP)  
To speedup the output voltage rise, the following is  
implemented:  
It is generally requested that the LED driver starts to emit  
light in less than 1 s and possibly within 300 ms. It is  
challenging since the startup consists of the time to charge  
The digital OTA output is increased until V  
REF(PFC)  
. Again, this is to speedup the  
signal reaches V  
REFX  
the V capacitor and that necessary to charge the output  
CC  
control signal rise to their steady state value.  
capacitor until sufficient current flows into the LED string.  
This second phase can be particularly long in dimming cases  
where the secondary current is a portion of the nominal one.  
The NCL30388 features a high voltage startup circuit that  
allows charging VCC capacitor very fast.  
At the beginning of each operating phase of a V  
CC  
cycle, the digital OTA output is set to 0. Actually, the  
digital OTA output is set to 0 in the case of a cold  
startup or in the case of a startup sequence following  
an operation interruption due to a fault. On the other  
When the power supply is first connected to the mains  
outlet, the internal current source is biased and charges up  
hand, if the V hiccups just because the system fails to  
CC  
startup in one V cycle (DSS option not activated),  
CC  
the V capacitor. When the voltage on this V capacitor  
CC  
CC  
the digital OTA output is not reset to ease the second  
(or more) attempt.  
reaches the V  
level, the current source turns off. At this  
CC(on)  
time, the controller is only supplied by the V capacitor,  
CC  
If the load is shorted, the circuit will operate in hiccup  
and the auxiliary supply should take over before V  
CC  
mode with V oscillating between V  
and  
CC  
CC(off)  
collapses below V  
.
CC(off)  
V
CC(on)  
until the output under voltage protection (UVP)  
The HV startup circuitry is made of two startup current  
levels, I and I . This helps to protect the  
trips. UVP is triggered if the ZCD pin voltage does not  
exceed 1 V within a 90 ms operation of time. This  
indicates that the ZCD pin is shorted to ground or that  
an excessive load prevents the output voltage from  
rising.  
HV(start1)  
HV(start1)  
controller against shortcircuit between V and GND. At  
CC  
powerup, as long as V is below V  
, the source  
CC  
CC(TH)  
delivers I  
(around 300 mA typical). Then, when  
HV(start1)  
V
CC  
reaches V  
, the source smoothly transitions to  
CC(TH)  
I
and delivers its nominal value.  
HV(start2)  
www.onsemi.com  
11  
NCL30388  
CYCLEBYCYCLE CURRENT LIMIT  
When the current sense voltage exceeds the internal  
threshold V , the MOSFET is turned off for the rest of the  
VALLEY LOCKOUT  
QuasiSquare wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
ILIM  
switching cycle.  
WINDING AND OUTPUT DIODE SHORTCIRCUIT  
PROTECTION  
In parallel to the cyclebycycle sensing of the CS pin,  
The NCL30388 changes valley as V  
decreases and as  
REFX  
the input voltage increases and as the output current setpoint  
is varied during dimming. This limits the frequency  
excursion.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line.  
another comparator with a reduced LEB (t ) and a  
BCS  
threshold of (V  
= 140% *V ) monitors the CS pin  
ILIM  
CS(stop)  
to detect a winding or an output diode short circuit. The  
controller shuts down if it detects four consecutive pulses  
during which the CS pin voltage exceeds V  
CS(stop).  
The controller goes into autorecovery mode.  
HV pin voltage for valley change  
REFX value at which the  
controller changes valley  
(Iout decreasing)  
VREFX value at which the  
controller changes valley  
(Iout increasing)  
0
−−LL −− 230 V −−HL −− 400 V  
100%  
80%  
100%  
85%  
1st  
2nd  
2nd  
3rd  
3rd  
4th  
65%  
50%  
35%  
70%  
55%  
40%  
4th  
5th  
5th  
6th  
25%  
0%  
30%  
0%  
FF mode  
FF mode  
0
−−LL −− 240 V −−HL −− 400 V  
HV pin voltage for valley change  
Figure 20. TABLE II: Valley Selection  
ZERO CROSSING DETECTION BLOCK  
At startup, the output voltage reflected on the auxiliary  
winding is low. Because of the ZCD resistor bridge setting  
the constant voltage regulation target, the voltage on the  
ZCD pin is very low and the ZCD comparator might be  
unable to detect the valleys. In this condition, setting the  
DRV Latch with the 6.5ms timeout leads to a continuous  
conduction mode operation (CCM) at the beginning of the  
softstart. This CCM operation only last a few cycles until  
the voltage on ZCD pin becomes high enough and trips the  
ZCD comparator.  
The ZCD pin allows detecting when the drainsource  
voltage of the power MOSFET reaches a valley.  
A valley is detected when the ZCD pin voltage crosses  
below the 55 mV internal threshold.  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
the valleys. To avoid such a situation, the NCL30388 a  
TimeOut circuit that generates pulses if the voltage on ZCD  
pin stays below the 55 mV threshold for 6.5 ms.  
The Timeout also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations.  
www.onsemi.com  
12  
NCL30388  
VZCD  
VZCD(th)  
low  
3
4
high  
14  
12  
I
out decreases or Vin  
Vin increases  
high  
ZCD comp  
high  
low  
15  
low  
TimeOut  
16  
2nd , 3rd  
high  
VVIN  
increases  
Clock  
low  
17  
Figure 21.  
If the ZCD pin or the auxiliary winding happen to be  
shorted the timeout function would normally make the  
controller keep switching and hence lead to improper  
regulation of the LED current.  
The Under Voltage Protection (UVP) is implemented to  
avoid these scenarios: a secondary timer starts counting  
features a slow over voltage protection (slow OVP) and a  
fast over voltage protection (fast OVP) on ZCD pin.  
Slow OVP  
If ZCD voltage exceed V  
for four consecutive  
ZCD(OVP1)  
switching cycles, the controller stops switching during  
1.4 ms. After 1.4 ms, the controller initiates a new DRV  
when the ZCD voltage is below the V  
threshold. If  
ZCD(short)  
pulse to refresh ZCD sampling voltage. If V  
is still too  
ZCD  
this timer reaches 90 ms, the controller detects a fault and  
enters the autorecovery fault mode.  
high (V  
> 110%V  
), the controller continues to  
ZCD  
REF(CV)  
switch with a 1.4 ms period. The controller resumes its  
normal operation when V  
< 110%V  
.
ZCD PIN OVER VOLTAGE PROTECTION.  
ZCD  
REF(CV)  
Because of the power factor correction, it is necessary to  
set the crossover frequency of the CV loop very low (target  
10 Hz, depending on power stage phase shift). Because the  
loop is slow, the output voltage can reach high value during  
startup or during an output load step. It is necessary to limit  
the output voltage excursion. For this, the NCL30388  
Fast OVP  
If ZCD voltage exceeds V  
for 4 consecutive switching cycles (slow OVP not triggered)  
or for 2 switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and starts the  
autorecovery fault mode (cf: Protections Section)  
(130% of V  
)
ZCD(OVP2)  
REF(CV)  
www.onsemi.com  
13  
NCL30388  
LINE FEEDFORWARD  
HV  
vDD  
vVS  
CS  
RLFF  
ICS(offset)  
KLFF  
Rsense  
Q_drv  
+
25 ms  
Blanking  
BO_NOK  
1 V / 0.9 V  
Figure 22. Line FeedForward and Brownout Schematic  
The line voltage is sensed by the HV pin and converted  
into a current. By adding an external resistor in series  
between the sense resistor and the CS pin, a voltage offset  
proportional to the line voltage is added to the CS signal. The  
offset is applied only during the MOSFET ontime in order  
to not influence the detection of the leakage inductance  
reset.  
ESD diode is conducting. Practically, the ESD diode of  
CS pin is monitored. If such a fault is detected for  
200 ms, the circuit stops generating DRV pin.  
Output short circuit situation (Output Under Voltage  
Protection)  
Overload is detected by monitoring the ZCD pin  
voltage: if it remains below V  
for 90 ms, an  
ZCD(short)  
The offset is always applied even at light load in order to  
improve the current regulation at low output load.  
output short circuit is detected and the circuit stops  
generating pulses for 4 s. When this 4 s delay has  
elapsed, the circuit attempts to restart.  
BROWNOUT  
ZCD pin incorrect connection:  
In order to protect the supply against a very low input  
voltage, the NCL30388 features a brownout circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
if a voltage higher than 100 V is applied to the HV pin and  
shutsdown if the HV pin voltage decreases and stays below  
90 V for 25 ms typical. Exiting a brownout condition  
If the ZCD pin grounded, the circuit will detect an  
output short circuit situation when 90 ms delay has  
elapsed.  
A 200 kW resistor pulls down the ZCD pin so that  
the output short circuit detection trips if the ZCD pin  
is not connected (floating).  
overrides the hiccup on V (V does not wait to reach  
CC  
CC  
Winding or Output Diode Short Circuit protection  
The circuit detects this failure when 4 consecutive DRV  
pulses occur within which the CS pin voltage exceeds  
V
) and the IC immediately goes into startup mode.  
CC(off)  
PROTECTIONS  
The circuit incorporates a large variety of protections to  
make the LED driver very rugged.  
(V =140% *V ). In this case, the controller  
CS(stop) ILIM  
enters autorecovery mode (4 s operation interruption  
Among them, we can list:  
between active bursts).  
Fault of the GND connection  
V Over Voltage Protection  
CC  
If the GND pin is properly connected, the supply  
The circuit stops generating pulses if the V exceeds  
CC  
current drawn from the positive terminal of the V  
V
and enters autorecovery mode (4 s operation  
CC  
CC(OVP)  
capacitor, flows out of the GND pin to return to the  
interruption between active bursts).  
This feature protects the circuit if output LEDs happen  
to be disconnected.  
negative terminal of the V capacitor. If the GND pin  
CC  
is not connected, the circuit ESD diodes offer another  
return path. The accidental non connection of the GND  
pin can hence be detected by detecting that one of this  
www.onsemi.com  
14  
NCL30388  
ZCD fast OVP  
CS pin short to ground  
The CS pin is checked at startup (cold startup or after  
a brownout event). A current source (I ) is  
If ZCD voltage exceeds V  
for 4 consecutive  
ZCD(OVP2)  
switching cycles (slow OVP not triggered) or for 2  
switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and enters  
autorecovery mode (4s operation interruption  
between active bursts).  
cs(short)  
applied to the pin and no DRV pulse is generated until  
the CS pin exceeds V . I and V are  
cs(low) cs(short)  
cs(low)  
500 mA and 60 mV typically (V rising). The typical  
CS  
minimum impedance to be placed on the CS pin for  
operation is then 120 W. In practice, it is recommended  
to place more than 250 W to take into account possible  
parametric deviations.  
Also, along the circuit operation, the CS pin could  
happen to be grounded. If it is grounded, the MOSFET  
conduction time is limited by the maximum ontime. If  
such an event occurs, a new pin impedance test is  
made.  
Die Over Temperature (TSD)  
The circuit stops operating if the junction temperature  
(T ) exceeds 150°C typically. The controller remains  
J
off until T goes below nearly 100°C.  
J
BrownOut Protection (BO)  
The circuit prevents operation when the line voltage is  
too low to avoid an excessive stress of the LED driver.  
Operation resumes as soon as the line voltage is high  
enough and V is higher than V  
.
CC  
CC(on)  
ORDERING TABLE OPTION  
Line Range  
Detector  
DSS  
Maximum Deadtime  
V
REF  
Max. Ontime  
ZCD Blanking  
Y
On  
x
N
A
B
C
U
V
A
B
A
B
1.5 ms  
x
Y
N
Off  
x
Off  
250 ms 687 ms 1.4 ms 250 mV 333 mV 20 ms  
33 ms  
1 ms  
On  
OPN #  
NCL30388A1  
NCL30388B1  
x
x
x
x
x
x
x
x
x
ORDERING INFORMATION2  
Device  
Marking  
L30388A1  
L30388B1  
Package type  
Shipping  
NCL30388A1DR2G  
NCL30388B1DR2G  
SOIC8 – P7 COMP VHV PBFH  
SOIC8 – P7 COMP VHV PBFH  
2500 / Tape & Reel  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
15  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC7  
CASE 751U01  
ISSUE E  
DATE 20 OCT 2009  
SCALE 1:1  
A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B ARE DATUMS AND T  
IS A DATUM SURFACE.  
4. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
S
M
M
B
B−  
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189 0.197  
4.00 0.150 0.157  
1.75 0.053 0.069  
0.51 0.013 0.020  
0.050 BSC  
0.25 0.004 0.010  
0.25 0.007 0.010  
1.27 0.016 0.050  
C
R X 45  
_
1.27 BSC  
J
0.10  
0.19  
0.40  
0
T−  
SEATING  
PLANE  
K
8
0
8
_
_
_
_
M
H
D 7 PL  
0.25  
5.80  
0.50 0.010 0.020  
6.20 0.228 0.244  
M
S
S
0.25 (0.010)  
T
B
A
GENERIC  
MARKING DIAGRAM  
SOLDERING FOOTPRINT*  
8
XXXXX  
ALYWX  
1.52  
0.060  
G
1
XXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
7.0  
0.275  
4.0  
0.155  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON12199D  
7LEAD SOIC  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC7  
CASE 751U01  
ISSUE E  
DATE 20 OCT 2009  
STYLE 1:  
STYLE 2:  
STYLE 3:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6.  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
6. EMITTER, #2  
7. NOT USED  
8. EMITTER, #1  
6. SOURCE, #2  
7. NOT USED  
8. SOURCE, #1  
7. NOT USED  
8. EMITTER  
STYLE 4:  
STYLE 5:  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5.  
STYLE 6:  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. NOT USED  
PIN 1. SOURCE  
2. DRAIN  
3. DRAIN  
4. SOURCE  
5. SOURCE  
6.  
6.  
7. NOT USED  
8. SOURCE  
7. NOT USED  
8. SOURCE  
8. COMMON CATHODE  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR (DIE 1)  
2. BASE (DIE 1)  
STYLE 9:  
PIN 1. INPUT  
PIN 1. EMITTER (COMMON)  
2. COLLECTOR (DIE 1)  
3. COLLECTOR (DIE 2)  
4. EMITTER (COMMON)  
5. EMITTER (COMMON)  
6. BASE (DIE 2)  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
3. BASE (DIE 2)  
4. COLLECTOR (DIE 2)  
5. COLLECTOR (DIE 2)  
6. EMITTER (DIE 2)  
7. NOT USED  
7. NOT USED  
7. NOT USED  
8. FIRST STAGE Vd  
8. COLLECTOR (DIE 1)  
8. EMITTER (COMMON)  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE (DIE 1)  
2. GATE (DIE 1)  
3. SOURCE (DIE 2)  
4. GATE (DIE 2)  
5. DRAIN (DIE 2)  
6. DRAIN (DIE 2)  
7. NOT USED  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. NOT USED  
8. GROUND  
8. DRAIN (DIE 1)  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON12199D  
7LEAD SOIC  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY