NCL30486B2DR2G [ONSEMI]

Smart-Dimmable CC/CV PSR Controller;
NCL30486B2DR2G
型号: NCL30486B2DR2G
厂家: ONSEMI    ONSEMI
描述:

Smart-Dimmable CC/CV PSR Controller

文件: 总32页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Dimmable Power Factor  
Corrected LED Driver  
9
1
SOIC9 NB  
CASE 751BP  
Product Preview  
NCL30486B  
MARKING DIAGRAM  
The NCL30486B is a power factor corrected flyback controller  
targeting isolated constant current LED drivers. The controller  
operates in a quasiresonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to tightly regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, its biasing and for an  
optocoupler.  
10  
L30486XX  
ALYW  
G
1
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device is specifically intended for very compact space  
efficient designs and supports analog and digital dimming with two  
dedicated dimming inputs control ideal for Smart LED Lighting  
applications.  
L30486  
XX  
A
= Specific Device Code  
= Version  
= Assembly Location  
= Wafer Lot  
= Assembly Start Week  
= PbFree Package  
L
YW  
G
Features  
High Voltage Startup  
PIN CONNECTIONS  
Quasiresonant Peak Currentmode Control Operation  
Primary Side Feedback  
ADIM  
HV  
1
2
3
4
5
10  
CC / CV Accurate Control V up to 320 V rms  
in  
Tight LED Constant Current Regulation of 2% Typical  
Digital Power Factor Correction  
Analog and Digital Dimming  
COMP  
PDIM  
VCC  
DRV  
ZCD  
CS  
8
7
6
Dimming Standby Mode (Dim CV Mode)  
Standby Mode  
Cycle by Cycle Peak Current Limit  
GND  
Wide Operating V Range  
CC  
40 to +125°C  
Robust Protection Features  
BrownOut  
OVP on V  
CC  
Constant Voltage / LED Open Circuit Protection  
Winding Short Circuit Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Thermal Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 30 of  
this data sheet.  
Line over Voltage Protection  
This is a PbFree Device  
Typical Applications  
Integral LED Bulbs  
LED Power Driver Supplies  
LED Light Engines  
This document contains information on a product under development. onsemi reserves  
the right to change or discontinue this product without notice.  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
December, 2021 Rev. P1  
NCL30486B/D  
NCL30486B  
.
.
Aux  
.
VADIM  
NCL30486  
1
2
3
4
5
10  
9
8
7
6
PWM signal  
Figure 1. Typical Application Schematic for NCL30486B  
PIN FUNCTION DESCRIPTION NCL30486B  
Pin N5  
1
Pin Name  
Function  
Pin Description  
ADIM  
Analog dimming  
This pin is used for analog control of the output current. Applying a voltage varying  
between V and V will dim the output current from 0% to 100%.  
DIM(EN)  
DIM100  
2
3
COMP  
ZCD  
OTA output for CV loop This pin receives a compensation network to stabilize the constant voltage loop  
Zero crossing Detection This pin connects to the auxiliary winding and is used to detect the core reset event.  
V
sensing  
This pin also senses the auxiliary winding voltage for accurate output voltage control  
aux  
4
5
6
7
8
CS  
Current sense  
This pin monitors the primary peak current.  
GND  
DRV  
VCC  
PDIM  
The controller ground  
Driver output  
Supplies the controller  
PWM dimming  
The driver’s output to an external MOSFET  
This pin is connected to an external auxiliary voltage.  
This pin is used for PWM dimming control. An optocoupler can be connected directly  
to the pin if the PWM control signal is from the secondary side  
9
NC  
HV  
creepage  
10  
High Voltage sensing  
This pin connects after the diode bridge to provide the startup current and internal  
high voltage sensing function.  
www.onsemi.com  
2
NCL30486B  
INTERNAL CIRCUIT ARCHITECTURE  
STOP  
L_OVP  
VCC  
COMP  
Aux_SCP  
Fast_OVP  
Enable  
Standby  
VCV  
OFF  
Fault  
Management  
VCC Management  
UVLO  
Constant Voltage  
Control  
Slow_OVP  
Fast_OVP  
Thermal  
Shutdown  
VCC  
OVP  
HV  
Startup  
VCC_OVP  
CS_short  
HVdiv Slow_OVP  
V
VREFX  
dimCV_mode  
HV  
BO_NOK  
L_OVP  
BrownOut  
Line OVP  
Zero crossing detection Logic  
Z(CD blanking, TimeOut, ...)  
ZCD  
Valley Selection  
Frequency foldback  
Aux. Winding Short Circuit Prot.  
Aux_SCP  
VHVdiv  
Q_drv  
Q_drv  
VHVdiv  
Line  
feedforward  
S
R
Q
Q
Standby VDIMA VHVdiv dc_DIM  
DRV  
Driver  
and  
Clamp  
Enable  
STOP  
CS  
VREFX  
Leading  
Edge  
Blanking  
Power factor and  
Constantcurrent control  
CS_reset  
Ipk_max  
Maximum  
ontime  
Max. Peak  
Current Limit  
STOP  
Winding /  
Output diode  
ADIM  
PDIM  
WOD_SCP  
Analog  
Dimming  
SCP  
VDIMA  
dimCV_mode  
Enable  
CS Short  
Protection  
CS_short  
GND  
PWM  
Dimming  
dc_DIM  
dimCV_mode  
Figure 2. Internal Circuit Architecture NCL30486B  
www.onsemi.com  
3
NCL30486B  
MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply Voltage, VCC Pin, Continuous Voltage  
Maximum Current for VCC Pin  
0.3 to 30  
Internally limited  
V
mA  
CC(MAX)  
CC(MAX)  
I
V
Maximum Driver Pin Voltage, DRV Pin, Continuous Voltage  
Maximum Current for DRV Pin  
0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV(MAX)  
DRV  
I
300, +500  
V
Maximum Voltage on HV Pin  
Maximum Current for HV Pin (dc Current Selflimited if Operated within the Allowed Range)  
0.3, +700  
V
mA  
HV(MAX)  
HV(MAX)  
I
20  
V
Maximum Voltage on Low Power Pins (Except Pins DRV and VCC)  
Current Range for Low Power Pins (Except Pins DRV and VCC)  
0.3, 5.5 (Note 2)  
2, +5  
V
mA  
MAX  
MAX  
I
R
Thermal Resistance JunctiontoAir  
Maximum Junction Temperature  
210  
°C/W  
°C  
q
JA  
T
150  
J(MAX)  
Operating Temperature Range  
40 to +125  
°C  
Storage Temperature Range  
60 to +150  
°C  
ESD Capability, HBM Model Except HV Pin (Note 3)  
ESD Capability, HBM Model HV Pin  
ESD Capability, CDM Model (Note 3)  
4
1.5  
1
kV  
kV  
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5 V ZENER diode. More positive and negative voltages  
can be applied if the pin current stays within the 2 mA / 5 mA range.  
3. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MilStd883, Method 3015.  
Charged Device Model 1000 V per JEDEC Standard JESD22C101D.  
4. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V.  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
HIGH VOLTAGE SECTION  
High Voltage Current Source  
High Voltage Current Source  
V
V
= V  
– 200 mV  
I
3.4  
4.6  
300  
0.8  
15  
6.2  
mA  
mA  
CC  
CC(on)  
HV(start2)  
I
HV(start1)  
= 0 V  
CC  
V
CC  
Level for I  
to I  
Transition  
V
CC(TH)  
V
HV(start1)  
HV(start2)  
Minimum Startup Voltage  
HV Source Leakage Current  
V
V
= 0 V  
V
V
CC  
HV(MIN)  
HV(leak)  
= 450 V  
I
4.5  
10  
mA  
HV  
Maximum Input Voltage (rms) for Correct Operation of  
the PFC Loop  
V
320  
V rms  
HV(OL)  
SUPPLY SECTION  
Supply Voltage  
V
Startup Threshold  
V
CC  
V
CC  
V
CC  
increasing  
decreasing  
decreasing  
V
V
16  
9.3  
7.6  
4
18  
10.2  
20  
10.7  
CC(on)  
CC(off)  
Minimum Operating Voltage  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal Logic Reset  
V
5
6
Over Voltage Protection  
VCC OVP Threshold  
V
25  
26.5  
28  
V
CC(OVP)  
V
V
Noise Filter (Note 5)  
CC(reset)  
t
5
20  
ms  
CC(off)  
VCC(off)  
nOise Filter (Note 5)  
t
VCC(reset)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
I
1.1  
1.4  
3.3  
3.6  
1.7  
1.7  
3.9  
4.3  
2
CC  
sw  
CC(off)  
CC1  
CC2  
CC3  
CC4  
Device Enabled/No Output Load on Pin 5  
F
= 65 kHz  
Device Switching (F = 65 kHz)  
C
= 470 pF, F = 65 kHz  
sw  
sw  
DRV  
sw  
Device Switching (F = 700 Hz)  
V
COMP  
0.9 V  
www.onsemi.com  
4
 
NCL30486B  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V.  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE  
Maximum Internal Current Limit  
V
1.28  
240  
1.40  
300  
50  
1.50  
360  
150  
V
ILIM  
LEB  
ILIM  
Leading Edge Blanking Duration for V  
t
ns  
ns  
ILIM  
Propagation Delay from Current Detection to Gate  
Offstate  
t
Maximum Ontime OPN1  
Maximum Ontime OPN2  
t
t
10.5  
16  
14.0  
20  
17.5  
24  
ms  
ms  
ms  
ms  
V
on(MAX)1  
on(MAX)2  
Maximum Ontime V  
Maximum Ontime V  
< 0.15 V (OPN1)  
< 0.15 V (OPN2)  
t
5.3  
8
7.0  
10  
8.7  
12  
REFX  
REFX  
on(MAX)12  
on(MAX)22  
t
Threshold for Immediate Fault Protection Activation  
(140% of V  
V
1.9  
2.0  
2.1  
CS(stop)  
)
ILIM  
Leading Edge Blanking Duration for V  
t
170  
500  
60  
ns  
mA  
CS(stop)  
BCS  
Current Source for CS to GND Short Detection  
I
400  
20  
600  
90  
CS(short)  
Current Sense Threshold for CS to GND Short Detection  
V
CS  
rising  
V
mV  
mV  
CS(low)  
Maximum Peak Current in Standby Mode  
V
CS(SBY)  
Option 1  
Option 2  
Option 3  
342  
297  
252  
380  
330  
280  
418  
363  
308  
GATE DRIVE  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive Current Capability  
DRV Sink (Note GBD)  
DRV Source (Note GBD)  
mA  
I
500  
300  
SNK  
SRC  
I
Rise Time (10% to 90%)  
Fall Time (90 %to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
= 470 pF  
t
8
30  
20  
ns  
ns  
V
DRV  
DRV  
CC  
r
t
f
V
= V  
+0.2 V  
V
CC(off)  
DRV(low)  
C
DRV  
= 470 pF, R  
= 33 kW  
= 33 kW  
DRV  
DRV High Voltage  
V
= V  
V
10  
12  
14  
V
CC  
DRV  
CC(MAX)  
DRV(high)  
C
= 470 pF, R  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
Upper ZCD Threshold Voltage  
V
V
rising  
falling  
V
35  
90  
55  
0.7  
150  
mV  
mV  
V
ZCD  
ZCD(rising)  
V
ZCD(falling)  
Lower ZCD Threshold Voltage  
ZCD  
Threshold to Force V  
ZCD Hysteresis  
Maximum During Startup  
V
REFX  
ZCD(start)  
ZCD(HYS)  
ZCD(DEM)  
V
15  
mV  
ns  
ns  
ms  
ms  
ms  
ms  
ms  
ms  
Propagation Delay from Valley Detection to DRV High  
Equivalent Time Constant for ZCD Input (GBD)  
Blanking Delay after Ontime (option 1)  
Blanking Delay after Ontime (option 2)  
Blanking Delay at Light Load (option 1)  
Blanking Delay at Light Load (option 2)  
Timeout after Last DEMAG Transition  
V
ZCD  
decreasing  
t
150  
t
20  
1.5  
1.0  
0.8  
0.6  
6.5  
50  
PAR  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
> 0.35 V  
> 0.35 V  
< 0.25 V  
< 0.25 V  
t
t
t
t
1.1  
0.75  
0.6  
0.45  
5
1.9  
1.25  
1.0  
0.75  
8
ZCD(blank1)  
ZCD(blank1)  
ZCD(blank2)  
ZCD(blank2)  
t
TIMO  
Timeout after Last DEMAG Transition V  
(Note 5)  
< V  
t
TIMOstart  
ZCD  
ZCD(start)  
Pullingdown Resistor  
V
= V  
R
200  
165  
kW  
mA  
ZCD  
ZCD(falling)  
ZCD(pd)  
ZCD Pin Current Source for Forcing CV Mode when  
Minimum Dimming  
V
ADIM  
= 0.5 V  
I
140  
190  
ZCDdim  
www.onsemi.com  
5
NCL30486B  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V.  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CONSTANT CURRENT CONTROL  
Reference Voltage  
T = 25°C 85°C  
V
V
327.9 334.2 341.2  
324.1 334.2 346.0  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
j
REF/3  
Reference Voltage  
T = 40°C to 125°C  
j
REF/3  
10% Reference Voltage  
10% Reference Voltage  
5% Reference Voltage  
5% Reference Voltage  
T = 25°C 85°C  
j
V
V
V
V
30  
33.33 36.66  
REF10/3  
REF10/3  
REF05/3  
REF05/3  
T = 40°C to 125°C  
j
27.33 33.33 39.33  
T = 25°C 85°C  
j
14.17  
13.34  
20  
17  
17  
50  
19.17  
20  
T = 40°C to 125°C  
j
Current Sense Lower Threshold for Detection of the  
Leakage Inductance Reset Time  
V
CS  
falling  
V
100  
CS(low)  
Blanking Time for Leakage Inductance Reset Detection  
t
120  
ns  
CS(low)  
POWER FACTOR CORRECTION  
Clamping Value for V  
T = 0°C to 125°C  
V
REF(PFC)CLP  
2.06  
2.20  
240  
230  
2.34  
V
REF(PFC)  
J
Line Range Detector for PFC Loop  
Line Range Detector for PFC Loop  
CONSTANT VOLTAGE SECTION  
V
HV  
HV  
increases  
decreases  
V
Vdc  
Vdc  
HL(PFC)  
V
V
LL(PFC)  
Internal Voltage Reference for Constant Voltage  
Regulation  
V
3.41  
3.52  
3.63  
V
REF(CV)  
CV Error Amplifier Gain  
G
40  
50  
60  
60  
mS  
mA  
V
EA  
Error Amplifier Current Capability  
V
= V  
(no dimming)  
I
EA  
REFX  
REF  
COMP Pin Lower Clamp Voltage  
V
0.6  
CV(clampL)  
CV(clampH)  
CV(clampH)  
COMP Pin Higher Clamp Voltage  
T = 0°C to 125°C  
J
V
4.05  
4.01  
4.12  
4.12  
4.25  
4.25  
V
COMP Pin Higher Clamp Voltage  
T = 40°C to 125°C  
J
V
V
Internal ZCD Voltage below which the CV OTA is Boosted  
Threshold for Releasing the CV Boost  
Error Amplifier Current Capability During Boost Phase  
V
* 85%  
* 90%  
V
2.796 2.975 3.154  
V
REF(CV)  
REF(CV)  
boost(CV)  
V
V
2.96  
3.15  
140  
3.34  
V
boost(CV)RST  
I
mA  
V
EAboost  
st  
ZCD OVP 1 Level (Slow OVP) Option 1  
V
V
* 115%  
* 105%  
V
OVP1  
3.783 4.025 4.267  
REF(CV)  
ZCD Voltage at which Slow OVP is Exit (Option 1)  
Switching Period During Slow OVP  
ZCD Fast OVP Option 1  
V
3.675  
1.5  
V
REF(CV)  
OVP1rst  
T
ms  
V
sw(OVP1)  
V
ref(CV)  
* 125% + 150 mV  
V
4.253 4.525 4.797  
OVP2  
OVP2_CNT  
Number of Switching Cycles before Fast OVP  
Confirmation  
T
4
Duration for Disabling DRV Pulses During ZCD Fast OVP  
T
4
s
recovery  
COMP Pin Voltage below which Standby Mode is  
Entered (Note 5)  
V
V
decreasing  
increasing  
V
0.895  
V
COMP  
CMP(SBY)  
COMP Standby Comparator Hysteresis (Note 5)  
V
18  
mV  
COMP  
CMP(SBY)HYS  
LINE FEED FORWARD  
V
HV  
to I  
Conversion Ratio  
K
LFF  
0.189 0.21 0.231 mA/V  
CS(offset)  
Offset Current Maximum Value  
Line Feedforward Current  
V
> (450 V or 500 V)  
I
76  
35  
95  
40  
114  
45  
mA  
mA  
HV  
offset(MAX)  
DRV high, V = 200 V  
I
FF  
HV  
VALLEY LOCKOUT SECTION  
Threshold for Line Range Detection V Increasing  
V
increases  
decreases  
V
HL  
228  
218  
15  
240  
230  
25  
252  
242  
35  
V
V
HV  
> 80% V  
HV  
HV  
st  
nd  
(1 to 2 Valley Transition for V  
)
REFX  
REF  
st  
rd  
(Prog. Option: 1 to 3 Valley Transition)  
Threshold for Line Range Detection V Decreasing  
V
V
LL  
HV  
nd  
st  
(2 to 1 Valley Transition for V  
> 80% V  
)
REFX  
REF  
rd  
st  
(Prog. Option: 3 to 1 Valley Transition)  
Blanking Time for Line Range Detection  
t
ms  
HL(blank)  
www.onsemi.com  
6
NCL30486B  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V.  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
VALLEY LOCKOUT SECTION  
Valley Thresholds  
V
st  
nd  
nd  
rd  
1
to 2 Valley Transition at LL and 2 to 3 Valley HL,  
V
V
V
V
V
V
V
V
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
V
V
0.80  
0.90  
0.65  
0.75  
0.50  
0.60  
0.35  
0.45  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
VLY12/23  
VLY21/32  
VLY23/34  
VLY32/43  
VLY34/45  
VLY43/54  
VLY45/56  
VLY54/65  
rd  
th  
V
Decr. (Prog. Option: 3 to 4 Valley HL)  
REF  
nd  
st  
rd  
nd  
2
to 1 Valley Transition at LL and 3 to 2 Valley HL,  
th  
rd  
V
Incr. (Prog. Option: 4 to 3 Valley HL)  
REF  
nd  
rd  
rd  
th  
2
to 3 Valley Transition at LL and 3 to 4 Valley HL,  
th  
th  
V
Decr. (Prog. Option: 4 to 5 Valley HL)  
REF  
rd  
nd  
th  
rd  
3
to 2 Valley Transition at LL and 4 to 3 Valley HL,  
th  
th  
V
Incr. (Prog. Option: 5 to 4 Valley HL)  
REF  
rd  
th  
th  
th  
3
to 4 Valley Transition at LL and 4 to 5 Valley HL,  
th  
th  
V
Decr. (Prog. Option: 5 to 6 Valley HL)  
REF  
th  
th  
th  
th  
4
to 3 Valley Transition at LL and 5 to 4 vAlley HL,  
th  
th  
V
Incr. (Prog. Option: 6 to 5 Valley HL)  
REF  
th  
th  
th  
th  
4
to 5 Valley Transition at LL and 5 to 6 Valley HL,  
th  
th  
V
Decr. (Prog. Option: 6 to 7 Valley HL)  
REF  
th  
th  
th  
th  
5
to 4 Valley Transition at LL and 6 to 5 Valley HL,  
th  
th  
V
REF  
V
REF  
V
REF  
Incr. (Prog. Option: 7 to 6 Valley HL)  
Value at which the FF Mode is Activated  
Value at which the FF Mode is Removed  
V
V
decreases  
increases  
V
V
0.25  
0.35  
V
V
REF  
FFstart  
REF  
FFstop  
FREQUENCY FOLDBACK  
Added Dead Time (Note 5)  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
= 0.25 V  
= 0.08 V  
< 3 mV  
< 11.2 mV  
= 0  
t
2
ms  
ms  
ms  
ms  
ms  
ms  
FF1LL  
Added Dead Time (Note 5)  
t
35  
FFchg  
Deadtime Clamp (Option 1) (Note 5)  
Deadtime Clamp (Option 2) (Note 5)  
Minimum Added Deadtime in Standby (Note 5)  
t
687  
250  
640  
1.8  
FFend1  
FFend2  
t
t
DT(min)SBY  
Maximum Added Deadtime in Standby (Option 2)  
(Note 5)  
= 0, V  
< 0.7 V  
t
DT(max)SBY2  
COMP  
V
Threshold below which Valley Synchronization in  
V
REFX  
V
REFX  
decreasing  
increasing  
V
REFXsyncD  
0.14  
0.15  
0.16  
V
V
REFX  
Frequency Foldback is Turned Off (Note 5)  
V
Threshold above which Valley Synchronization in  
V
0.165 0.18 0.195  
REFX  
REFXsyncI  
Frequency Foldback is Turned On (Note 5)  
DIMMING SECTION  
DIM Pin Voltage for Zero Output Current (OFF Voltage)  
ADIM Pin Voltage for 1% Reference Voltage  
Minimum Dimming Level (Option 1)  
V
0.475  
0.5  
0.7  
0
0.525  
V
V
ADIM(EN)  
V
0.668  
0.732  
ADIM(MIN)  
K
%
%
%
%
V
DIM(MIN)1  
DIM(MIN)2  
DIM(MIN)3  
DIM(MIN)4  
Minimum Dimming Level (Option 2)  
K
1
Minimum Dimming Level (Option 3)  
K
K
5
Minimum Dimming Level (Option 4)  
8
ADIM Pin Voltage for Maximum Output Current  
V
3.0  
3.1  
ADIM100  
(V  
REFX  
= 1 V)  
Dimming Range  
V
2.3  
6.8  
10  
70  
153  
1080  
3
V
V
ADIM(range)  
Clamping Voltage for DIM Pin  
V
ADIM(CLP)  
Dimming Pin Pullup Current Source  
Current Comparator Low Threshold for PDIM  
Current Comparator High Threshold for PDIM  
Cascode Current Limit for PDIM  
I
8
12  
80  
175  
mA  
mA  
mA  
mA  
V
ADIM(pullup)1  
I
I
60  
131  
PDIM(THR)  
PDIM(THD)  
I
PDIM(LIM)  
PDIM Pin Voltage  
V
PDIM  
Maximum Period of the PWM Dimming Signal  
Minimum Ontime for PWM Signal Applied on PDIM  
6
ms  
ms  
8
www.onsemi.com  
7
NCL30486B  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V.  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
FAULT PROTECTION  
Thermal Shutdown (Note 5)  
Device switching (F  
65 kHz)  
around  
T
SHDN  
130  
150  
170  
°C  
SW  
Thermal Shutdown Hysteresis  
T
20  
°C  
SHDN(HYS)  
Threshold Voltage for Output Short Circuit or Aux.  
Winding Short Circuit Detection  
V
0.6  
0.65  
0.7  
V
ZCD(short)  
Short Circuit Detection Timer  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
Autorecovery Timer  
t
recovery  
Line OVP Threshold  
V
V
increasing  
decreasing  
V
457  
430  
210  
469  
443  
340  
485  
465  
470  
Vdc  
Vdc  
ms  
HV  
HV(OVP)  
HV Pin Voltage at which Line OVP is Reset  
Blanking Time for Line OVP Reset  
BROWNOUT AND LINE SENSING  
BrownOut ON Level (IC Start Pulsing)  
BrownOut ON Level (IC Start Pulsing) Option 2  
BrownOut OFF Level (IC Stops Pulsing)  
BrownOut OFF Level (IC Stops Pulsing) Option 2  
V
HV(OVP)RST  
HV  
T
LOVP(blank)  
V
HV  
V
HV  
V
HV  
V
HV  
V
HV  
increasing  
increasing  
decreasing  
decreasing  
V
101.5  
129.7  
92  
108  
138  
99  
114.5  
146.3  
106  
137  
Vdc  
Vdc  
Vdc  
Vdc  
V
HVBO(on)  
V
HVBO(on)2  
V
HVBO(off)  
V
121  
129  
55  
HVBO(off)2  
HV Pin Voltage above which the Sampling of ZCD is  
Enabled Low Line  
decreasing, low line  
decreasing, highline  
increasing  
V
sampENLL  
HV Pin Voltage above which the Sampling of ZCD is  
Enabled Highline  
V
V
V
105  
V
HV  
sampENHL  
ZCD Sampling Enable Comparator Hysteresis  
BO Comparators Delay  
V
5
V
HV  
sampHYS  
BO(delay)  
BO(blank)  
t
t
30  
25  
ms  
ms  
BrownOut Blanking Time  
15  
35  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by design.  
www.onsemi.com  
8
 
NCL30486B  
TYPICAL CHARACTERISTICS  
4,9  
4,8  
4,7  
4,6  
4,5  
4,4  
4,3  
4,2  
4,1  
4
296  
291  
286  
281  
276  
271  
266  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. IHV(start2) vs. Temperature  
Figure 4. IHV(start1) vs. Temperature  
18,31  
18,3  
10,218  
10,213  
10,208  
10,203  
10,198  
10,193  
10,188  
10,183  
10,178  
10,173  
10,168  
18,29  
18,28  
18,27  
18,26  
18,25  
18,24  
18,23  
18,22  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. VCC(on) vs. Temperature  
Figure 6. VCC(off) vs. Temperature  
1,47  
1,45  
1,43  
1,41  
1,39  
1,37  
1,35  
1,33  
26,91  
26,89  
26,87  
26,85  
26,83  
26,81  
26,79  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VCC(OVP) vs. Temperature  
Figure 8. ICC1 vs. Temperature  
www.onsemi.com  
9
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
1,0505  
1,0495  
1,0485  
1,0475  
1,0465  
1,0455  
1,0445  
1,0435  
1,0425  
1,0415  
1,765  
1,755  
1,745  
1,735  
1,725  
1,715  
1,705  
1,695  
1,685  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ICC4 vs. Temperature  
Figure 10. tFF1LL vs. Temperature  
358  
357  
356  
355  
354  
353  
352  
351  
350  
2,214  
2,209  
2,204  
2,199  
2,194  
2,189  
2,184  
2,179  
2,174  
2,169  
2,164  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. VHV(OL) vs. Temperature  
Figure 12. VREF(PFC)CLP vs. Temperature  
1,3755  
1,3735  
1,3715  
1,3695  
1,3675  
1,3655  
1,3635  
54,2  
53,7  
53,2  
52,7  
52,2  
51,7  
51,2  
50,7  
50,2  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. VILIM vs. Temperature  
Figure 14. VCS(low)F vs. Temperature  
www.onsemi.com  
10  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
2,005  
2,004  
2,003  
2,002  
2,001  
2
379  
378,5  
378  
377,5  
377  
1,999  
1,998  
1,997  
1,996  
1,995  
376,5  
376  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. VCS(stop) vs. Temperature  
Figure 16. VCS(SBY)_opn1 vs. Temperature  
280,2  
330,6  
329,6  
328,6  
327,6  
326,6  
325,6  
279,7  
279,2  
278,7  
278,2  
277,7  
277,2  
276,7  
276,2  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. VCS(SBY)_opn2 vs. Temperature  
Figure 18. VCS(SBY)_opn3 vs. Temperature  
14,1  
20,1  
14,05  
14  
20,05  
20  
13,95  
13,9  
13,85  
13,8  
19,95  
19,9  
19,85  
19,8  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. ton(MAX)1 vs. Temperature  
Figure 20. ton(MAX)2 vs. Temperature  
www.onsemi.com  
11  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
183  
182  
181  
180  
179  
178  
177  
176  
310  
308  
306  
304  
302  
300  
298  
296  
294  
292  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. tLEB vs. Temperature  
Figure 22. tBCS vs. Temperature  
49  
47  
45  
43  
41  
39  
37  
11  
10  
9
8
7
6
5
4
3
50  
50  
25  
0
25  
50  
75  
25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. tILIM vs. Temperature  
Figure 24. RSNK vs. Temperature  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
22  
17  
12  
7
2
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. RSRC vs. Temperature  
Figure 26. tr vs. Temperature  
www.onsemi.com  
12  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
86,2  
86,1  
86  
22  
20  
18  
16  
14  
12  
85,9  
85,8  
85,7  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. tf vs. Temperature  
Figure 28. VZCD(rising) vs. Temperature  
0,6685  
0,6675  
0,6665  
0,6655  
0,6645  
0,6635  
0,6625  
0,6615  
0,6605  
57,4  
56,9  
56,4  
55,9  
55,4  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. VZCD(falling) vs. Temperature  
Figure 30. VZCD(short) vs. Temperature  
121  
116  
111  
106  
101  
96  
1,63  
1,62  
1,61  
1,6  
1,59  
1,58  
1,57  
1,56  
91  
86  
81  
76  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. tZCD(DEM) vs. Temperature  
Figure 32. tZCD(blank1)OPN1 vs. Temperature  
www.onsemi.com  
13  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
0,876  
0,871  
0,866  
0,861  
0,856  
0,851  
0,846  
0,841  
0,836  
1,084  
1,079  
1,074  
1,069  
1,064  
1,059  
1,054  
1,049  
1,044  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. tZCD(blank1)OPN2 vs. Temperature  
Figure 34. tZCD(blank1)OPN1 vs. Temperature  
6,895  
0,584  
6,875  
6,855  
6,835  
6,815  
6,795  
0,579  
0,574  
0,569  
0,564  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. tZCD(blank2)OPN2 vs. Temperature  
Figure 36. tTIMO vs. Temperature  
341  
35  
34,5  
34  
340,5  
340  
339,5  
339  
338,5  
338  
33,5  
33  
337,5  
337  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. VREF/3 vs. Temperature  
Figure 38. VREF10/3 vs. Temperature  
www.onsemi.com  
14  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
18,4  
18,2  
18  
3,528  
3,523  
3,518  
3,513  
3,508  
3,503  
3,498  
3,493  
3,488  
17,8  
17,6  
17,4  
17,2  
17  
16,8  
16,6  
16,4  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 39. VREF5/3 vs. Temperature  
Figure 40. VREF(CV) vs. Temperature  
4,121  
4,116  
4,111  
4,106  
4,101  
4,096  
615,5  
613,5  
611,5  
609,5  
607,5  
605,5  
603,5  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 41. VCV(clampL) vs. Temperature  
Figure 42. VCV(clampH) vs. Temperature  
4,529  
4,524  
4,519  
4,514  
4,509  
4,058  
4,048  
4,038  
4,028  
4,018  
4,008  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 43. VOVP1 vs. Temperature  
Figure 44. VOVP2 vs. Temperature  
www.onsemi.com  
15  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
102,7  
102,2  
101,7  
101,2  
100,7  
100,2  
99,7  
0,2074  
0,2064  
0,2054  
0,2044  
0,2034  
0,2024  
99,2  
50  
25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 45. KLFF vs. Temperature  
Figure 46. Ioffset(MAX) vs. Temperature  
41,6  
41,4  
41,2  
41  
470,2  
469,7  
469,2  
468,7  
468,2  
467,7  
467,2  
466,7  
466,2  
465,7  
465,2  
40,8  
40,6  
40,4  
40,2  
40  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 47. IFF vs. Temperature  
Figure 48. VHV(OVP) vs. Temperature  
443,9  
443,4  
442,9  
442,4  
441,9  
441,4  
440,9  
440,4  
439,9  
439,4  
108,15  
108,05  
107,95  
107,85  
107,75  
107,65  
107,55  
107,45  
107,35  
107,25  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 49. VHV(OVP)RST vs. Temperature  
Figure 50. VHVBO(on)1 vs. Temperature  
www.onsemi.com  
16  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
99,15  
99,05  
98,95  
98,85  
98,75  
98,65  
98,55  
98,45  
98,35  
98,25  
138,45  
138,25  
138,05  
137,85  
137,65  
137,45  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 51. VHVBO(off)1 vs. Temperature  
Figure 52. VHVBO(on)2 vs. Temperature  
127,4  
127,2  
127  
0,5042  
0,5037  
0,5032  
0,5027  
0,5022  
0,5017  
0,5012  
126,8  
126,6  
126,4  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 53. VHVBO(off)2 vs. Temperature  
Figure 54. VADIM(EN) vs. Temperature  
151,7  
151,2  
150,7  
150,2  
149,7  
149,2  
148,7  
148,2  
70,5  
70  
69,5  
69  
68,5  
68  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 55. IPDIM(THR) vs. Temperature  
Figure 56. IPDIM(THD) vs. Temperature  
www.onsemi.com  
17  
NCL30486B  
TYPICAL CHARACTERISTICS (continued)  
1,077  
1,072  
1,067  
1,062  
1,057  
1,052  
3,003  
3,001  
2,999  
2,997  
2,995  
2,993  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 57. IPDIM(LIM) vs. Temperature  
Figure 58. VPDIM vs. Temperature  
0,704  
0,703  
0,702  
0,701  
0,7  
3,006  
3,004  
3,002  
3
0,699  
0,698  
0,697  
0,696  
2,998  
2,996  
2,994  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 59. VADIM(MIN) vs. Temperature  
Figure 60. VADIM100 vs. Temperature  
168,5  
166,5  
164,5  
162,5  
160,5  
158,5  
156,5  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
Figure 61. IZCD(DIM) vs. Temperature  
www.onsemi.com  
18  
NCL30486B  
Application Information  
The NCL30486B implements  
if V reaches 1.5 x V  
(after a reduced LEB of t ).  
BCS  
CS  
ILIM  
a
currentmode  
This additional comparator is enabled only during the  
main LEB duration t , for noise immunity reason.  
architecture operating in quasiresonant mode. Thanks to  
proprietary circuitry, the controller is able to accurately  
regulate the secondary side current and voltage of the  
flyback converter without using any optocoupler or  
measuring directly the secondary side current or voltage.  
The controller provides near unity power factor correction  
LEB  
Output Under Voltage Protection: If a too low voltage is  
applied on ZCD pin for 90 ms time interval, the  
controllers assume that the output or the ZCD pin is  
shorted to ground and shutdown. After waiting 4 seconds,  
the IC restarts switching.  
Analog Dimming: the ADIM pin is dedicated to analog  
dimming. There are several options for the minimum  
dimming level. Pulling the pin voltage lower than  
QuasiResonance  
CurrentMode  
Operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCL30486B optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Thanks to an internal algorithm  
control, the controller locksout in a selected valley and  
remains locked until the input voltage or the output  
current set point significantly changes.  
V
disables the controller.  
ADIM(EN)  
PWM Dimming: the PDIM pin is dedicated to PWM  
dimming. The controller measures the duty ratio of a  
signal applied to the pin and reduces the output current  
accordingly. If this pin is left open, the controller delivers  
the maximum output current. If the pin is pulled down, the  
controller is disabled.  
Thermal Shutdown: an internal circuitry disables the gate  
drive when the junction temperature exceeds 150°C  
(typically). The circuit resumes operation once the  
temperature drops below approximately 100°C.  
Standby Mode: In order to decrease the power  
consumption of the SMPS if no load conditions, the  
controller features a standby mode, where its own  
consumption is decreased.  
Dimming Standby Mode (dimCV Mode) Option: by  
pulling ADIM or PDIM down, the controller goes in  
constant voltage mode with a reduced regulation setpoint.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to take into  
account the effect of the leakage inductance of the  
transformer and allows an accurate control of the  
secondary side current regardless of the input voltage and  
output load variation.  
Primary Side Constant Voltage Regulation: By  
monitoring the auxiliary winding voltage, it is possible to  
regulate accurately the output voltage. The output voltage  
regulation is typically within 2%.  
Load Transient Compensation: Since PFC has low loop  
bandwidth, abrupt changes in the load may cause  
excessive over or undershoot. The slow Over Voltage  
Protection contains the output voltage when it tends to  
become excessive. In addition, the NCL30486B speeds  
up the constant voltage regulation loop when the output  
voltage goes below 80% or 85% of its regulation level.  
Power Factor Correction: A proprietary concept allows  
achieving high power factor correction and low THD  
while keeping accurate constant current and constant  
voltage control.  
POWER FACTOR AND CONSTANT CURRENT  
CONTROL  
The NCL30486B embeds an analog/digital block to  
control the power factor and regulate the output current by  
monitoring the ZCD, CS and HV pin voltages (signals  
V
, V  
, V ). This circuit generates the current  
HV_DIV CS  
ZCD  
setpoint signal and compares it to the current sense signal to  
turn the MOSFET off. The HV pin provides the sinusoidal  
reference necessary for shaping the input current. The  
obtained current reference is further modulated so that when  
averaged over a half line period, it is equal to the output  
Line Feedforward: allows compensating the variation of  
the output current caused by the propagation delay.  
V Over Voltage Protection: if the V pin voltage  
CC  
CC  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting pulsing.  
current reference (V  
). The modulation and averaging  
REFX  
process is made internally by a digital circuit. If the HV pin  
properly conveys the sinusoidal shape, power factor will be  
close to 1. Also, the Total Harmonic Distortion (THD) will  
be low especially if the output voltage ripple is small.  
Fast Over Voltage Protection: If the voltage of ZCD pin  
exceeds 130% of its regulation level, the controller shuts  
down and waits 4 s before trying to restart.  
BrownOut: the controller includes a brownout circuit  
which safely stops the controller in case the input voltage  
is too low. The device will automatically restart if the line  
recovers.  
VREF  
(eq. 1)  
IOUT  
+
2NspRsense  
Where:  
Cyclebycycle Peak Current Limit: when the current  
N is the secondary to primary transformer turns ratio:  
sp  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
N
R  
V  
= N / N  
S P  
sp  
MOSFET is turned off for the rest of the switching cycle.  
Winding ShortCircuit Protection: an additional  
comparator senses the CS signal and stops the controller  
is the current sense resistor  
sense  
is the output current reference: V  
= V  
if  
REFX  
REFX  
REF  
no dimming  
www.onsemi.com  
19  
NCL30486B  
The output current reference (V  
) is V  
unless the  
The sampled voltage is applied to the negative input of the  
constant voltage (CV) operational transconductance  
REFX  
REF  
constant voltage mode is activated or ADIM pin voltage is  
below V or a PWM signal with a dutycycle below  
amplifier (OTA) and compared to V  
.
ADIM(100)  
REFCV  
95% is applied on PDIM.  
A type 2 compensator is needed at the CV OTA output to  
stabilize the loop. The COMP pin voltage modify the the  
output current internal reference in order to regulate the  
output voltage.  
PRIMARY SIDE CONSTANT VOLTAGE CONTROL  
The auxiliary winding voltage is sampled internally  
through the ZCD pin.  
A precise internal voltage reference V  
voltage target for the CV loop.  
When V  
When V  
4 V, V  
= V  
.
COMP  
COMP  
REFX  
< 0.9 V, V  
REF  
sets the  
REF(CV)  
= 0 V.  
REFX  
Gm  
RZCDU  
ZCD  
V
ZCDsamp  
ZCD & signal  
sampling  
COMP  
.
R1  
C1  
R
OTA  
ZCDL  
VREF(CV)  
C2  
Aux.  
Figure 62. Constant Voltage Feedback Circuit  
STARTUP PHASE (HV STARTUP)  
At the beginning of each operating phase of a V cycle,  
CC  
It is generally requested that the LED driver starts to emit  
light in less than 1 s and possibly within 300 ms. It is  
challenging since the startup consists of the time to charge  
the digital OTA output is set to 0. Actually, the digital  
OTA output is set to 0 in the case of a cold startup or in  
the case of a startup sequence following an operation  
the V capacitor and that necessary to charge the output  
CC  
interruption due to a fault. On the other hand, if the V  
CC  
capacitor until sufficient current flows into the LED string.  
This second phase can be particularly long in dimming cases  
where the secondary current is a portion of the nominal one.  
The NCL30486B features a high voltage startup circuit  
that allows charging VCC capacitor very fast.  
hiccups just because the system fails to startup in one  
cycle, the digital OTA output is not reset to ease the  
V
CC  
second (or more) attempt. But, the digital OTA stops  
integrating if V < V . The compensator output  
CC  
CC(off)  
then restarts from its setpoint before the UVLO, thus  
avoiding any output current overshoot if a resistor is  
inserted in series with HV pin.  
When the power supply is first connected to the mains  
outlet, the internal current source is biased and charges up  
the V capacitor. When the voltage on this V capacitor  
CC  
CC  
If the load is shorted, the circuit will operate in hiccup  
reaches the V  
level, the current source turns off. At this  
CC(on)  
mode with VCC oscillating between V  
and V  
CC(on)  
CC(off)  
time, the controller is only supplied by the V capacitor,  
CC  
until the output under voltage protection (UVP) trips.  
UVP is triggered if the ZCD pin voltage does not exceed  
and the auxiliary supply should take over before V  
CC  
collapses below V  
.
CC(off)  
V
within a 90 ms operation of time. This  
ZCD(short)  
The HV startup circuitry is made of two startup current  
levels, I and I . This helps to protect the  
indicates that the ZCD pin is shorted to ground or that an  
excessive load prevents the output voltage from rising.  
HV(start1)  
HV(start2)  
controller against shortcircuit between V and GND. At  
CC  
powerup, as long as V is below V  
, the source  
CC  
CC(TH)  
HV Startup Power Dissipation  
delivers I  
(around 300 mA typical). Then, when  
HV(start1)  
At high line (305 V rms and above) the power dissipated  
by the HV startup in case of fault or when the controller is  
disabled with PDIM becomes high. Indeed, in case of fault,  
the NCL30486B is directly supplied by the HV rail. When  
the controller is disabled with PDIM, the optocoupler  
collector current is also supplied by the controller, since the  
NCL30486B allows directly connecting the optocoupler  
transistor to PDIM pin. Thus, the HV startup circuit also  
supplies the optocoupler transistor in case of faults. The  
current flowing through the HV startup will heat the  
controller. It is highly recommended adding enough copper  
V
reaches V  
, the source smoothly transitions to  
CC  
CC(TH)  
I
and delivers its nominal value. As a result, in case  
HV(start2)  
of shortcircuit between V and GND occurring at high  
line (V = 305 V rms), the maximum power dissipation will  
be 431 x 300 m = 130 mW instead of 1.5 W if there was only  
one startup current level.  
To speedup the output voltage rise, the following is  
implemented:  
CC  
in  
The digital OTA output is increased until V  
REF(PFC)  
signal reaches V  
. Again, this is to speedup the  
REFX  
control signal rise to their steady state value.  
around the controller to decrease the R  
of the controller.  
qJA  
www.onsemi.com  
20  
NCL30486B  
2
Winding and Output Diode ShortCircuit Protection  
In parallel to the cyclebycycle sensing of the CS pin,  
Adding a minimum pad area of 215 mm of 35 mm copper  
(1 oz) drops the R to around 120°C/W (no air flow, R  
qJA  
qJA  
another comparator with a reduced LEB (t ) and a  
measured at ADIM pin)  
The PCB layout shown in Figure 63 is a layout example  
to achieve low R  
BCS  
threshold of (V  
= 140% x V  
) monitors the CS pin  
CS(stop)  
ILIM  
to detect a winding or an output diode short circuit. The  
controller shuts down if it detects 4 consecutives pulses  
.
qJA  
during which the CS pin voltage exceeds V  
CS(stop).  
The controller goes into autorecovery mode.  
PWM Dimming  
The NCL30486B has a dedicated pin for PWM dimming.  
The controller directly measures the duty ratio of a PWM  
signal applied to PDIM.  
Two counters with a high frequency clock are used for this  
purpose. A first counter measure the high state duration of  
the PWM signal (t ) and the second counter measures  
on_PDIM  
its period (T  
). A divider computes (t  
/
sw_PDIM  
on_PDIM  
T
) and the result is directly the output current  
sw_PDIM  
setpoint (V  
set point). A filter is added after the digital  
REFX  
divider to remove the ripple of the signal. A cascode  
configuration on PDIM pin allows decreasing the fall time  
of the signal.  
Thanks to this circuit, the LED current is controlled in an  
analog way, even if a PWM signal is used for dimming. This  
allows having a good PF during dimming.  
Figure 63. PCD Layout Example  
The application note AND90120 gives more details about  
strategies to decrease the power dissipation of the HV  
startup circuit.  
CyclebyCycle Current Limit  
When the current sense voltage exceeds the internal  
threshold V , the MOSFET is turned off for the rest of the  
ILIM  
switching cycle.  
VDIM_sec  
IPDIM  
IPDIM(THD)  
IPDIM(THR)  
VPDIM_int  
Ton  
Tsw  
Figure 64. PDIM Internal Waveforms  
www.onsemi.com  
21  
 
NCL30486B  
Practically, the controller extracts the dutycycle by  
If a voltage lower than V  
is applied to the DIM  
ADIM(EN)  
measuring the current inside PDIM pin which is directly the  
opto coupler collector current.  
pin, the DRV pulses are disabled for controllers without the  
dimming CV mode option.  
If PDIM pin is left open, the controller delivers 100% of  
The DIM pin is pulled up internally by a small current  
source or resistor. Thus, if the pin is left open, the controller  
is able to start.  
I
. If the pin is pulled down for longer than 25 ms, the  
out  
controller is disabled.  
If the PWM dimming signal is removed during dimming,  
NOTE:  
the controller delivers 100% of I  
.
out  
Interaction between ADIM and PDIM: if ADIM and  
The NCL30486B set 100% of output current when the  
dutycycle of the signal applied on PDIM is above 93%.  
PDIM are both used at the same time, the resulting  
dimming set point if a multiplication of V  
and the  
ADIM  
dutyratio of PDIM signal.  
Analog Dimming  
During dimming, when the “Enable” signal is OK, the  
The pin ADIM pin allows implementing analog dimming  
of the LED light.  
controller starts pulsing after first valley, even if a higher  
valley number is selected by V  
. This is to avoid too  
If the power supply designer applies an analog signal  
REFX  
varying from V  
output current will increase or decrease proportionally to the  
voltage applied. For V = V , the power supply  
to V  
to the DIM pin, the  
long startup time while dimming at low output current  
value. After ZCD voltage during DRV off time is higher  
DIM(EN)  
DIM100  
than 0.65 V, the number of valley is selected by V  
.
DIM  
DIM100  
REFX  
delivers the maximum output current (V  
= 1 V).  
REFX  
In order to minimize discrete output current variation  
caused by valley change in deep dimming, valley  
synchronization is removed when the dimming setpoint is  
below 15%.  
If a voltage lower than V  
is applied to ADIM  
ADIM(MIN)  
pin, the output current is clamped to the selected dimming  
clamp value (see Dimming clamp section below)  
VREF  
100% VREF  
8% V  
REF  
5% V  
REF  
1% VREF  
VADIM(EN)  
VADIM100  
VADIM  
VADIM(MIN)  
Figure 65. ADIM Pin Dimming Curves  
www.onsemi.com  
22  
NCL30486B  
Dimming Clamp  
For smart dimming applications, need to bias the  
secondaryside MCU. This can be achieved by clamping  
There are 4 options for the dimming clamp:  
No dimming clamp  
1%  
5%  
8%  
V
REFX  
when the dimming setpoint is small.  
V
REFX  
(%)  
100%  
8%  
5%  
1%  
0.01 0.05  
1.0  
0.08  
Scaled dimming voltage or  
dimming dutyratio  
Figure 66. Dimming Clamp Options  
Dimming Curves  
By default, there is a linear relationship between the  
voltage applied on ADIM pin and V setpoint. In the  
same way, there is a linear relationship between the  
dutyratio of the signal applied on PDIM and V  
An internal memory allows selecting a root square  
relationship between dimming and V  
The square like curve is based on CIE 1931 lightness  
formula.  
.
REFX  
REFX  
REFX  
setpoint.  
Output Current vs. Dimming  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
linear  
CIE 1931  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Scaled Dimming Voltage or Dimming Duty Ratio  
Figure 67. Dimming Curves  
www.onsemi.com  
23  
NCL30486B  
Dimming Standby Mode (dimCV Mode)  
R  
is the resistor connected between ZCD and GND  
is the auxiliary winding voltage corresponding to  
ZCDL  
pins  
The NCL30486B features an option to force constant  
voltage regulation by pulling ADIM or PDIM pin down.  
This can be useful to provide some energy to secondary side  
circuitry while the LED are turned off. In this mode, the  
regulation target is set lower than the regulation threshold is  
normal CV mode.  
V  
auxCV1  
the nominal CV setpoint  
V  
is the auxiliary winding voltage corresponding to  
auxCV2  
the CV setpoint in reduced CV mode: V  
< V  
auxCV2  
auxCV1  
Concretely, when V  
internal PDIM signal ontime is below 10 ms during 20 ms,  
the “dimCVmode” signal becomes high and the I  
current source is applied to ZCD pin during the  
demagnetization time only (this is to allow correct valley  
detection). This current sources increases ZCD voltage and  
consequently a new regulation point is set for the CV loop.  
The ZCD pin resistors set directly the regulation threshold  
in normal CV mode and in dimming CV mode.  
< V  
or when the  
ADIM  
ADIM(EN)  
Valley Lockout  
QuasiSquare wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
ZCD(dim)  
The NCL30486B changes valley as V  
decreases and  
REFX  
as the input voltage increases and as the output current  
setpoint is varied during dimming. This limits the frequency  
excursion.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line.  
There is an option to have the valley thresholds  
incremented by 1 at high line for better I control at  
305 V rms.  
V
REF(CV) (VauxCV1 * VauxCV2)  
(eq. 2)  
RZCDL  
+
I
ZCD(dim) (VauxCV1 * VREF(CV))  
VauxCV1  
ǒ Ǔ  
(eq. 3)  
RZCDU + RZCDL  
* 1  
VREF(CV)  
out  
Where:  
R  
is the resistor from auxiliary winding to ZCD pin  
ZCDU  
Table 1. VALLEY SELECTION  
V
Voltage for Valley Change  
HV_DIV  
V
REFX  
Value at which the Controller  
V
REFX  
Value at which the Controller  
0
−−LL−−  
2.3 V  
−−HL−−  
5 V  
Changes Valley (I  
Decreasing)  
Changes Valley (I  
Increasing)  
out  
out  
st  
nd rd  
100%  
100%  
1
2
3
4
5
6
(3 )  
90%  
75%  
60%  
45%  
80%  
65%  
50%  
35%  
nd  
rd th  
2
(4 )  
rd  
th th  
3
(5 )  
th  
th th  
4
(6 )  
th  
th th  
5
(7 )  
25%  
0%  
35%  
0%  
FF mode  
FF mode  
0
−−LL−−  
2.3 V  
−−HL−−  
5 V  
Internal V  
Voltage for Valley Change  
HV_DIV  
Zero Crossing Detection Block  
the valleys. To avoid such a situation, NCL30486B features  
a TimeOut circuit that generates pulses if the voltage on  
ZCD pin stays below the 55 mV threshold for 6.5 ms.  
The Timeout also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations.  
The ZCD pin allows detecting when the drainsource  
voltage of the power MOSFET reaches a valley.  
A valley is detected when the ZCD pin voltage crosses  
below the 55 mV internal threshold.  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
www.onsemi.com  
24  
NCL30486B  
VZCD  
VZCD(th)  
low  
3
4
high  
14  
12  
I
decreases or V  
out  
in  
high  
increases  
ZCD comp  
high  
low  
15  
low  
TimeOut  
16  
17  
2nd , 3 rd  
high  
VVIN  
increases  
Clock  
low  
Figure 68. Valley Detection and Timeout Chronograms  
If the ZCD pin or the auxiliary winding happen to be  
shorted the timeout function would normally make the  
controller keep switching and hence lead to improper  
regulation of the LED current.  
The Under Voltage Protection (UVP) is implemented to  
avoid these scenarios: a secondary timer starts counting  
10 Hz, depending on power stage phase shift). Because the  
loop is slow, the output voltage can reach high value during  
startup or during an output load step. It is necessary to limit  
the output voltage excursion. For this, the NCL30486B  
features a slow OVP and a fast OVP on ZCD pin.  
Slow OVP  
when the ZCD voltage is below the V  
threshold. If  
ZCD(short)  
If ZCD voltage exceeds V  
for 4 consecutive  
OVP1  
this timer reaches 90 ms, the controller detects a fault and  
enters the autorecovery fault mode.  
switching cycles, the controller stops switching during  
1.4 ms. The PFC loop is not reset. After 1.4 ms, the  
controller initiates a new DRV pulse to refresh ZCD  
Minimum Offtime at Startup  
At startup, the output voltage reflected on the auxiliary  
winding is low. Thus, the voltage on the ZCD pin is very low  
and the ZCD comparator might be unable to detect the  
valleys. In this condition, setting the DRV latch with the  
6.5ms timeout leads to a continuous conduction mode  
operation (CCM).  
sampling voltage. If V  
is still too high (V  
> 115%  
ZCD  
ZCD  
V
), the controller continues to switch with a 1.4 ms  
REF(CV)  
period. The controller resumes its normal operation when  
< 105% V  
V
ZCD  
.
REF(CV)  
During slow OVP, the peak current setpoint is COMP pin  
voltage scaled down by a fixed ratio.  
To avoid CCM pulses during startup, a minimum off time  
Fast OVP  
If ZCD voltage exceeds V  
for 4 consecutive switching cycles (slow OVP not triggered)  
or for 2 switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and starts the  
autorecovery fault mode (cf: Fault Management Section)  
(typ. 50 ms) is forced when V  
< V  
during 8 ms.  
ZCD  
ZCD(short)  
(130% of V  
)
ZCD(OVP2)  
REF(CV)  
This minimum off time is also present when the controller  
restart after a fault, if V < V  
.
ZCD(short)  
ZCD  
ZCD Over Voltage Protection  
Because of the power factor correction, it is necessary to  
set the crossover frequency of the CV loop very low (target  
www.onsemi.com  
25  
NCL30486B  
HV  
vDD  
vVS  
CS  
RLFF  
I CS(offset)  
KLFF  
Rsense  
Q_drv  
+
25 ms  
BO_NOK  
Blanking  
1 V / 0.9 V  
Figure 69. Line FeedForward and Brownout Schematic  
Line Feedforward  
if a voltage higher than V  
is applied to the HV pin  
HVBO(on)  
The line voltage is sensed by the HV pin and converted  
into a current. By adding an external resistor in series  
between the sense resistor and the CS pin, a voltage offset  
proportional to the line voltage is added to the CS signal. The  
offset is applied only during the MOSFET ontime in order  
to not influence the detection of the leakage inductance  
reset.  
and shutsdown if the HV pin voltage decreases and stays  
below V for 25 ms typical.  
An option with higher brownout levels is also available  
HVBO(off)  
(see ordering table and electricals parameters)  
Line OVP  
In order to protect the power supply in case of too high  
input voltage, the NCL30486B features a line over voltage  
The offset is always applied even at light load in order to  
improve the current regulation at low output load.  
protection. When the voltage on HV pin exceeds V  
HV(OVP)  
the controller stops switching; V hiccups.  
CC  
Brownout  
When V becomes lower than V  
for more  
HV  
HV(OVP)RST  
In order to protect the supply against a very low input  
voltage, the controller features a brownout circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
than 340 ms, the controller initiates a clean startup sequence  
and restarts switching.  
www.onsemi.com  
26  
 
NCL30486B  
VHV  
VHV(OVP)  
VHV(OVP)RST  
t LOVP(blank)  
VCC  
VCC(on)  
VCC(off)  
VDRV  
Iout  
Figure 70. Line OVP Chronograms  
Standby Mode  
to keep the output voltage regulated (pink curve in  
Figure 71).  
In order to decrease the power consumption of the  
converter when no output load is connected to its output, the  
NCL30486B versions features a standby mode.  
In standby mode, the current consumption of the  
controller is reduced to I  
The peak current is frozen to a fixed value V  
The regulation of V is based on COMP pin voltage  
out  
varying between 700 mV to 913 mV.  
Standby mode is entered if V  
< 895 mV, V  
COMP  
COMP  
(1.7 mA typ.)  
decreasing and exit if V  
> 913 mV, V  
increasing.  
CC4  
COMP  
COMP  
(See AND90120 for more details concerning the standby  
mode)  
CS(STBY)  
(27% or below of V  
switching frequency, more specifically the deadtime (DT)  
) and the controller adjust the  
ILIMIT  
DT (ms)  
t
, 1800  
DT(max)SBY2  
Standby mode curve  
t
, 687  
FFend1  
t , 640  
DT(min)SBY  
560  
Simplified FF curve for 675 ms DT clamp  
t
, 35  
FFchg  
t
, 2  
FF1LL  
700  
895  
913  
1.758  
250  
VCOMP (V)  
V
CMP(SBY)  
0 5.848  
VREFX (mV)  
V
FFstart  
Figure 71. Deadtime Setpoint as a Function of VCOMP  
www.onsemi.com  
27  
 
NCL30486B  
Variable Maximum Ontime  
Around line zerocrossing, the primary inductor slope is  
too low to reach the peak current setpoint imposed by the CC  
control. The DRV pulse is terminated by the max. ontime.  
This creates sudden variation of the ontime and creates  
an input current spike (EMI filter inductance responds to  
rate of change of current).  
Varying the maximum ontime with VREFX helps  
decreasing this spike over the output load range. Figure 72  
and Figure 73 shows the maximum ontime curve as a  
function of VREFX.  
T
(ms)  
on,MAX  
20  
18  
16  
14  
12  
10  
7
0.15  
0.18 0.25  
0.5  
0.6  
0.8  
0.9  
1
V
REFX  
(V)  
0.35  
0.45  
0.65  
0.75  
Figure 72. Variable Maximum Ontime, 20ms Option  
T
(ms)  
on,MAX  
20  
18  
16  
14  
12  
11  
10  
9
8
7
0.15  
0.18 0.25 0.35  
0.5  
0.6  
0.65  
0.8  
0.9  
1
V
REFX  
(V)  
0.45  
0.75  
Figure 73. Variable Maximum Ontime, 14ms Option  
www.onsemi.com  
28  
 
NCL30486B  
Protections  
V Over Voltage Protection  
CC  
The circuit incorporates a large variety of protections to  
make the LED driver very rugged.  
Among them, we can list:  
The circuit stops generating pulses if the V exceeds  
CC  
V
and enters autorecovery mode. This feature  
CC(OVP)  
protects the circuit if output LEDs happen to be  
disconnected.  
Fault of the GND connection  
If the GND pin is properly connected, the supply current  
ZCD fast OVP  
drawn from the positive terminal of the V capacitor,  
flows out of the GND pin to return to the negative terminal  
CC  
If ZCD voltage exceeds V  
for 4 consecutive  
ZCD(OVP2)  
switching cycles (slow OVP not triggered) or for 2  
switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and enters  
autorecovery mode (4 s operation interruption between  
active bursts).  
of the V capacitor. If the GND pin is not connected, the  
CC  
circuit ESD diodes offer another return path. The  
accidental non connection of the GND pin can hence be  
detected by detecting that one of this ESD diode is  
conducting. Practically, the ESD diode of CS pin is  
monitored. If such a fault is detected for 200 ms, the circuit  
stops generating DRV pin.  
Die Over Temperature (TSD)  
The circuit stops operating if the junction temperature  
(T ) exceeds 150°C typically. The controller remains off  
J
Output short circuit situation (Output Under Voltage  
until T goes below nearly 130°C.  
J
Protection)  
BrownOut Protection (BO)  
Overload is detected by monitoring the ZCD pin voltage:  
if it remains below V  
circuit is detected and the circuit stops generating pulses  
for 4 s. When this 4 s delay has elapsed, the circuit  
attempts to restart.  
The circuit prevents operation when the line voltage is too  
low to avoid an excessive stress of the LED driver.  
Operation resumes as soon as the line voltage is high  
for 90 ms, an output short  
ZCD(short)  
enough and V is higher than V  
.
CC  
CC(on)  
CS pin short to ground  
ZCD pin incorrect connection:  
The CS pin is checked at startup (cold startup or after  
If the ZCD pin grounded, the circuit will detect an  
output short circuit situation when 90 ms delay has  
elapsed.  
a brownout event). A current source (I  
) is applied  
cs(short)  
to the pin and no DRV pulse is generated until the CS pin  
exceeds V . I and V are 500 mA and  
cs(low) cs(short)  
cs(low)  
A 200 kW resistor pulls down the ZCD pin so that  
the output short circuit detection trips if the ZCD pin  
is not connected (floating).  
60 mV typically (V rising). The typical minimum  
CS  
impedance to be placed on the CS pin for operation is then  
120 W. In practice, it is recommended to place more than  
250W to take into account possible parametric deviations.  
Also, along the circuit operation, the CS pin could happen  
to be grounded. If it is grounded, the MOSFET  
conduction time is limited by the 20 ms maximum  
ontime. If such an event occurs, a new pin impedance  
test is made.  
Winding or Output Diode Short Circuit protection  
The circuit detects this failure when 4 consecutive DRV  
pulses occur within which the CS pin voltage exceeds  
(V  
= 140% x V  
). In this case, the controller  
CS(stop)  
ILIM  
enters autorecovery mode (4s operation interruption  
between active bursts).  
Line overvoltage protection  
(see Line OVP section)  
www.onsemi.com  
29  
NCL30486B  
ORDERING TABLE OPTION  
Valley  
Transition  
from LL to HL Standby Mode  
Line Range  
Detector  
Deadtime Clamp  
V
Max. Ontime  
20 ms 14 ms  
ZCD Blanking  
REF  
st  
st  
OPN #  
NCL30486_ _  
1.4 ms 200 mV 333 mV  
1
to  
1
to  
On  
Off  
On  
Off  
250 ms 687 ms  
1 ms  
1.5 ms  
nd  
rd  
2
3
NCL30486B1  
NCL30486B2  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Frozen Peak Current  
During Standby Mode  
Dimming  
Line OVP  
V
Brownout Levels  
Dimming Clamp  
Curve  
dimCV Mode  
CS(SBY)  
OPN #  
NCL30486_ _  
On  
Off  
380 mV 330 mV 280 mV On: 108 V On: 138 V  
Off: 98 V Off: 129 V  
0%  
1%  
5%  
8%  
Linear Square  
On  
Off  
NCL30486B1  
NCL30486B2  
x
x
x
x
x
x
x
x
x
x
x
x
ORDERING INFORMATION  
Device  
Marking  
L30486B1  
L30486B2  
Package Type  
Shipping  
NCL30486B1  
SOIC9 – P7 COMP VHV PBFH  
2500 / Tape & Reel  
(PbFree)  
NCL30486B2  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
30  
NCL30486B  
PACKAGE DIMENSIONS  
SOIC9 NB  
CASE 751BP  
ISSUE A  
2X  
NOTES:  
0.10  
C A-B  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.10mm TOTAL IN EXCESS OF ’b’  
AT MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15mm  
PER SIDE. DIMENSIONS D AND E ARE DE-  
TERMINED AT DATUM F.  
D
H
A
2X  
0.20  
C
4 TIPS  
0.10 C A-B  
F
10  
6
E
1
5. DIMENSIONS A AND B ARE TO BE DETERM-  
INED AT DATUM F.  
6. A1 IS DEFINED AS THE VERTICAL DISTANCE  
FROM THE SEATING PLANE TO THE LOWEST  
POINT ON THE PACKAGE BODY.  
5
L2  
A3  
SEATING  
PLANE  
L
C
0.20  
C
9X b  
DETAIL A  
B
5 TIPS  
M
MILLIMETERS  
0.25  
C A-B D  
DIM MIN  
MAX  
1.75  
0.25  
0.25  
0.51  
5.00  
4.00  
TOP VIEW  
A
A1  
A3  
b
D
E
1.25  
0.10  
0.17  
0.31  
4.80  
3.80  
9X  
h
X 45  
_
0.10  
C
0.10  
C
M
e
1.00 BSC  
H
h
L
5.80  
0.37 REF  
0.40  
6.20  
1.27  
A
DETAIL A  
e
SIDE VIEW  
A1  
SEATING  
PLANE  
L2  
M
0.25 BSC  
C
0
8
_
_
END VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT*  
1.00  
PITCH  
9X  
0.58  
6.50  
1
9X  
1.18  
DIMENSION: MILLIMETERS  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
31  
NCL30486B  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY