NCL30488A3 [ONSEMI]

Power Factor Corrected LED Driver with Primary Side CC/CV;
NCL30488A3
型号: NCL30488A3
厂家: ONSEMI    ONSEMI
描述:

Power Factor Corrected LED Driver with Primary Side CC/CV

文件: 总22页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Power Factor Corrected  
LED Driver with Primary  
Side CC/CV  
NCL30488  
The NCL30488 is a power factor corrected flyback controller  
targeting isolated constant current LED drivers. The controller  
operates in a quasiresonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to tightly regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, its biasing and for an  
optocoupler.  
www.onsemi.com  
SOIC7  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design.  
CASE 751U  
MARKING  
DIAGRAM  
Features  
8
High Voltage Startup  
L30488XX  
ALYWX  
G
Quasiresonant Peak Currentmode Control Operation  
Primary Side Feedback  
CC / CV Accurate Control V up to 320 V rms  
in  
Tight LED Constant Current Regulation of 2% Typical  
Digital Power Factor Correction  
1
L30488  
XX  
A
= Specific Device Code  
= Version  
= Assembly Location  
= Wafer Lot  
= Assembly Start Week  
= PbFree Package  
Analog and Digital Dimming  
Cycle by Cycle Peak Current Limit  
L
Wide Operating V Range  
CC  
YW  
G
40 to + 125°C  
Robust Protection Features  
PIN CONNECTIONS  
BrownOut  
OVP on V  
CC  
Constant Voltage / LED Open Circuit Protection  
Winding Short Circuit Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Thermal Shutdown  
COMP  
ZCD  
CS  
HV  
1
8
2
VCC  
DRV  
3
4
6
Line over Voltage Protection  
This is a PbFree Device  
5
GND  
Typical Applications  
Integral LED Bulbs  
LED Power Driver Supplies  
LED Light Engines  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 21 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
August, 2020 Rev. 0  
NCL30488/D  
NCL30488  
.
.
.
NCL30488  
1
2
3
4
7
6
5
Figure 1. Typical Application Schematic for NCL30488  
PIN FUNCTION DESCRIPTION NCL30488  
Pin N5  
1
Pin Name  
Function  
Pin Description  
COMP  
OTA output for CV loop  
This pin receives a compensation network (capacitors and resistors) to stabilize the  
CV loop  
2
ZCD  
Zero crossing Detection  
This pin connects to the auxiliary winding and is used to detect the core reset event.  
This pin also senses the auxiliary winding voltage for accurate output voltage control.  
V
sensing  
aux  
3
4
5
6
7
8
CS  
GND  
DRV  
VCC  
NC  
Current sense  
This pin monitors the primary peak current.  
The controller ground  
Driver output  
The driver’s output to an external MOSFET  
This pin is connected to an external auxiliary voltage.  
Supplies the controller  
creepage  
HV  
High Voltage sensing  
This pin connects after the diode bridge to provide the startup current and internal  
high voltage sensing function.  
www.onsemi.com  
2
NCL30488  
INTERNAL CIRCUIT ARCHITECTURE  
STOP  
VCC  
L_OVP  
Aux_SCP  
UVLO  
Fault  
Management  
COMP  
VCC Management  
OFF  
Fast_OVP  
Standby  
VCV  
Thermal  
Shutdown  
VCC  
OVP  
HV  
Startup  
VCC_OVP  
Constant Voltage  
Control  
CS_short  
Slow_OVP  
Fast_OVP  
Slow_OVP  
VREFX VVS  
HV  
BO_NOK  
L_OVP  
VHVdiv  
Brownout  
Line OVP  
Zero crossing detection Logic  
(ZCD blanking, TimeOut, )  
ZCD  
Valley Selection  
Frequency foldback  
Aux . Winding Short Circuit Prot.  
Aux_SCP  
Q_drv  
Q_drv  
VHVdiv  
Line  
feedforward  
S
R
Q
Q
VHVdiv  
Standby  
DRV  
Driver  
and  
Clamp  
CS  
VREFX  
CS_reset  
Leading  
Edge  
Blanking  
Power factor and  
Constantcurrent control  
STOP  
Ipk_max  
Maximum  
ontime  
Max. Peak  
Current Limit  
STOP  
Winding /  
Output diode  
SCP  
WOD_SCP  
CS Short  
Protection  
CS_short  
GND  
Figure 2. Internal Circuit Architecture NCL30488  
www.onsemi.com  
3
NCL30488  
MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
0.3 to 30  
Internally limited  
V
mA  
CC(MAX)  
CC(MAX)  
I
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV(MAX)  
DRV  
I
300, +500  
V
Maximum voltage on HV pin  
Maximum current for HV pin (dc current selflimited if operated within the allowed range)  
0.3, +700  
V
mA  
HV(MAX)  
HV(MAX)  
I
20  
V
Maximum voltage on low power pins (except pins DRV and VCC)  
Current range for low power pins (except pins DRV and VCC)  
0.3, 5.5 (Note 2)  
2, +5  
V
mA  
MAX  
MAX  
I
R
Thermal Resistance JunctiontoAir  
Maximum Junction Temperature  
200  
°C/W  
°C  
θ
JA  
T
150  
J(MAX)  
Operating Temperature Range  
40 to +125  
°C  
Storage Temperature Range  
60 to +150  
°C  
ESD Capability, HBM model except HV pin (Note 3)  
ESD Capability, HBM model HV pin  
ESD Capability, CDM model (Note 3)  
4
1.5  
1
kV  
kV  
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5 V ZENER diode. More positive and negative voltages  
can be applied if the pin current stays within the 2 mA / 5 mA range.  
3. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MilStd883, Method 3015.  
Charged Device Model 1000 V per JEDEC Standard JESD22C101D.  
4. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V)  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
HIGH VOLTAGE SECTION  
High voltage current source  
High voltage current source  
V
V
= V  
– 200 mV  
I
3.9  
5.1  
300  
0.8  
15  
6.2  
mA  
mA  
CC  
CC(on)  
HV(start2)  
I
HV(start1)  
= 0 V  
CC  
V
CC  
level for I  
to I  
transition  
V
CC(TH)  
V
HV(start1)  
HV(start2)  
Minimum startup voltage  
HV source leakage current  
V
V
= 0 V  
V
V
CC  
HV(MIN)  
HV(leak)  
= 450 V  
I
4.5  
10  
mA  
HV  
Maximum input voltage (rms) for correct operation of  
the PFC loop  
V
320  
V rms  
HV(OL)  
SUPPLY SECTION  
Supply Voltage  
V
Startup Threshold  
V
CC  
V
CC  
V
CC  
increasing  
decreasing  
decreasing  
V
V
16  
9.3  
7.6  
4
18  
20  
10.7  
CC(on)  
CC(off)  
Minimum Operating Voltage  
10.2  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
5
6
Over Voltage Protection  
VCC OVP threshold  
V
25  
26.5  
28  
V
CC(OVP)  
V
V
noise filter (Note 5)  
CC(reset)  
t
5
20  
ms  
CC(off)  
VCC(off)  
noise filter (Note 5)  
t
VCC(reset)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
I
1.2  
1.35  
3.0  
3.5  
1.7  
1.6  
3.5  
CC  
sw  
CC(off)  
CC1  
CC2  
CC3  
CC4  
Device Enabled/No output load on pin 5  
F
= 65 kHz  
Device Switching (F = 65 kHz)  
C
= 470 pF, F = 65 kHz  
4.0  
sw  
sw  
DRV  
sw  
Device switching (F = 700 Hz)  
V
COMP  
v 0.9 V  
1.88  
www.onsemi.com  
4
 
NCL30488  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V)  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE  
Maximum Internal current limit  
V
1.33  
283  
1.40  
345  
100  
1.47  
407  
150  
V
ILIM  
LEB  
ILIM  
Leading Edge Blanking Duration for V  
t
ns  
ns  
ILIM  
Propagation delay from current detection to gate  
offstate  
t
Maximum ontime (option 1)  
Maximum ontime (option 2)  
t
t
29  
16  
39  
20  
49  
24  
ms  
ms  
V
on(MAX)  
on(MAX)  
Threshold for immediate fault protection activation  
(140% of V  
V
1.9  
2.0  
2.1  
CS(stop)  
)
ILIM  
Leading Edge Blanking Duration for V  
t
170  
500  
60  
ns  
mA  
CS(stop)  
BCS  
Current source for CS to GND short detection  
I
400  
20  
600  
90  
CS(short)  
Current sense threshold for CS to GND short  
detection  
V
CS  
rising  
V
mV  
CS(low)  
GATE DRIVE  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive current capability  
DRV Sink (Note GBD)  
DRV Source (Note GBD)  
mA  
I
500  
300  
SNK  
SRC  
I
Rise Time (10% to 90%)  
Fall Time (90 %to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
= 470 pF  
t
8
30  
20  
ns  
ns  
V
DRV  
DRV  
CC  
r
t
f
V
C
= V +0.2 V  
CC(off)  
V
DRV(low)  
= 470 pF, R  
= 33 kW  
DRV  
DRV  
DRV High Voltage  
V
= V  
DRV  
V
10  
12  
14  
V
CC  
CC(MAX)  
DRV(high)  
C
= 470 pF, R  
= 33 kW  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
Upper ZCD threshold voltage  
V
V
V
rising  
falling  
falling  
V
35  
90  
55  
0.7  
150  
mV  
mV  
V
ZCD  
ZCD  
ZCD  
ZCD(rising)  
V
ZCD(falling)  
Lower ZCD threshold voltage  
Threshold to force V  
ZCD hysteresis  
maximum during startup  
V
REFX  
ZCD(start)  
ZCD(HYS)  
ZCD(DEM)  
V
15  
mV  
ns  
Propagation Delay from valley detection to DRV high  
(no t  
V
V
decreasing  
decreasing  
t
150  
ZCD  
)
LEB4  
Additional delay from valley lockout output to DRV  
latch set (programmable option)  
T
t
125  
250  
375  
ns  
ZCD  
LEB4  
Equivalent time constant for ZCD input (GBD)  
Blanking delay after ontime (option 1)  
Blanking delay after ontime (option 2)  
Blanking Delay at light load (option 1)  
Blanking Delay at light load (option 2)  
Timeout after last DEMAG transition  
Pullingdown resistor  
1.1  
0.75  
0.6  
0.45  
5
20  
1.5  
1.0  
0.8  
0.6  
6.5  
200  
1.9  
1.25  
1.0  
0.75  
8
ns  
ms  
ms  
ms  
ms  
ms  
kW  
PAR  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
> 0.35 V  
> 0.35 V  
< 0.25 V  
< 0.25 V  
t
t
t
t
ZCD(blank1)  
ZCD(blank1)  
ZCD(blank2)  
ZCD(blank2)  
t
TIMO  
V
ZCD  
= V  
R
ZCD(pd)  
ZCD(falling)  
CONSTANT CURRENT CONTROL  
Reference Voltage  
T = 25°C 85°C  
V
327.9 334.2 341.2  
mV  
mV  
mV  
j
REF/3  
Reference Voltage  
T = 40°C to 125°C  
j
V
REF/3  
324  
20  
334.2  
50  
346  
100  
Current sense lower threshold for detection of the  
leakage inductance reset time  
V
CS  
falling  
V
CS(low)  
Blanking time for leakage inductance reset detection  
t
120  
ns  
CS(low)  
www.onsemi.com  
5
NCL30488  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V)  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
POWER FACTOR CORRECTION  
Clamping value for V  
T = 0°C to 125°C  
V
2.06  
2.2  
240  
230  
2.34  
V
REF(PFC)  
J
REF(PFC)CLP  
Line range detector for PFC loop  
Line range detector for PFC loop  
CONSTANT VOLTAGE SECTION  
V
HV  
HV  
increases  
decreases  
V
Vdc  
Vdc  
HL(PFC)  
V
V
LL(PFC)  
Internal voltage reference for constant voltage  
regulation  
V
3.41  
3.52  
3.63  
V
REF(CV)  
CV Error amplifier Gain  
G
40  
50  
60  
60  
mS  
mA  
V
EA  
Error amplifier current capability  
COMP pin lower clamp voltage  
COMP pin higher clamp voltage  
COMP pin higher clamp voltage  
V
= V  
(no dimming)  
I
EA  
REFX  
REF  
V
0.6  
4.12  
4.12  
4
CV(clampL)  
CV(clampH)  
CV(clampH)  
T = 0°C to 125°C  
J
V
4.05  
4.01  
4.25  
4.25  
V
T = 40°C to 125°C  
J
V
V
Internal divider V  
to V  
K
COMP  
COMP  
REFX  
Internal ZCD voltage below which the CV OTA is  
boosted  
V
V
* 85%  
* 90%  
V
2.796 2.975 3.154  
V
REF(CV)  
boost(CV)  
Threshold for releasing the CV boost  
V
2.96  
3.15  
140  
3.34  
V
mA  
V
REF(CV)  
boost(CV)RST  
Error amplifier current capability during boost phase  
I
EAboost  
st  
ZCD OVP 1 level (slow OVP) option 1  
V
V
* 115%  
* 105%  
V
OVP1  
3.783 4.025 4.267  
REF(CV)  
ZCD voltage at which slow OVP is exit (option 1)  
Switching period during slow OVP  
ZCD fast OVP option 1  
V
3.675  
1.5  
V
REF(CV)  
OVP1rst  
T
ms  
V
sw(OVP1)  
V
ref(CV)  
* 125% + 150 mV  
V
4.253 4.525 4.797  
OVP2  
OVP2_CNT  
Number of switching cycles before fast OVP  
confirmation  
T
4
Duration for disabling DRV pulses during ZCD fast  
OVP  
T
4
s
recovery  
COMP pin internal pullup resistor (SSR option)  
R
15  
kW  
pullup  
LINE FEED FORWARD  
V
to I  
conversion ratio  
K
0.189  
76  
0.21  
95  
0.231 mA/V  
HV  
CS(offset)  
LFF  
Offset current maximum value  
Line feedforward current  
V
> (450 V or 500 V)  
I
114  
45  
mA  
mA  
HV  
offset(MAX)  
DRV high, V = 200 V  
I
35  
40  
HV  
FF  
VALLEY LOCKOUT SECTION  
Threshold for line range detection V increasing  
V
increases  
decreases  
V
HL  
228  
218  
15  
240  
230  
25  
252  
242  
35  
V
V
HV  
> 80% V  
HV  
HV  
st  
nd  
(1 to 2 valley transition for V  
)
REFX  
REF  
st  
rd  
(prog. option: 1 to 3 valley transition)  
Threshold for line range detection V decreasing  
V
V
LL  
HV  
REFX  
nd  
st  
(2 to 1 valley transition for V  
> 80% V  
)
REF  
rd  
st  
(prog. option: 3 to 1 valley transition)  
Blanking time for line range detection  
t
ms  
HL(blank)  
www.onsemi.com  
6
NCL30488  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V  
= 0 V, V = 0 V)  
CS  
J
CC  
ZCD  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V) (continued)  
J
J
CC  
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
VALLEY LOCKOUT SECTION  
Valley thresholds  
V
st  
nd  
nd  
th  
rd  
rd  
rd  
th  
th  
th  
th  
th  
th  
th  
th  
th  
th  
rd  
1
to 2 valley transition at LL and 2 to 3 valley  
V
REF  
V
REF  
V
REF  
V
REF  
V
REF  
V
REF  
V
REF  
V
REF  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
V
V
0.80  
0.90  
0.65  
0.75  
0.50  
0.60  
0.35  
0.45  
VLY12/23  
VLY21/32  
VLY23/34  
VLY32/43  
VLY34/45  
VLY43/54  
VLY45/56  
VLY54/65  
rd  
HL, V  
decr. (prog. option: 3 to 4 valley HL)  
REF  
nd  
st  
nd  
2
to 1 valley transition at LL and 3 to 2 valley  
th  
HL, V  
incr. (prog. option: 4 to 3 valley HL)  
REF  
nd  
rd  
th  
2
to 3 valley transition at LL and 3 to 4 valley  
th  
HL, V  
decr. (prog. option: 4 to 5 valley HL)  
REF  
rd  
nd  
rd  
3
to 2 valley transition at LL and 4 to 3 valley  
th  
HL, V  
incr. (prog. option: 5 to 4 valley HL)  
REF  
rd  
th  
th  
3
to 4 valley transition at LL and 4 to 5 valley  
th  
HL, V  
decr. (prog. option: 5 to 6 valley HL)  
REF  
th  
th  
th  
4
to 3 valley transition at LL and 5 to 4 valley  
th  
HL, V  
incr. (prog. option: 6 to 5 valley HL)  
REF  
th  
th  
th  
4
to 5 valley transition at LL and 5 to 6 valley  
th  
HL, V  
decr. (prog. option: 6 to 7 valley HL)  
REF  
th  
th  
th  
5
to 4 valley transition at LL and 6 to 5 valley  
th  
th  
HL, V  
incr. (prog. option: 7 to 6 valley HL)  
REF  
V
REF  
V
REF  
value at which the FF mode is activated  
value at which the FF mode is removed  
V
V
decreases  
increases  
V
V
0.25  
0.35  
V
V
REF  
FFstart  
REF  
FFstop  
FREQUENCY FOLDBACK  
Added dead time  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
V
REFX  
= 0.25 V  
= 0.08 V  
< 3 mV  
< 11.2 mV  
= 0  
t
0.8  
1.0  
40  
1.2  
ms  
ms  
ms  
ms  
ms  
ms  
FF1LL  
Added dead time  
t
FFchg  
Deadtime clamp ( option 1)  
Deadtime clamp ( option 2)  
Minimum added deadtime in standby  
Maximum added deadtime in standby (option 2)  
FAULT PROTECTION  
t
675  
250  
650  
1.8  
FFend1  
FFend2  
t
t
DT(min)SBY  
= 0, V  
< 0.7 V  
t
COMP  
DT(max)SBY2  
Thermal Shutdown (Note 5)  
Device switching (F  
around 65 kHz)  
T
SHDN  
130  
150  
170  
°C  
SW  
Thermal Shutdown Hysteresis  
T
20  
°C  
SHDN(HYS)  
Threshold voltage for output short circuit or aux.  
winding short circuit detection  
V
0.6  
0.65  
0.7  
V
ZCD(short)  
Short circuit detection Timer  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
Autorecovery Timer  
t
recovery  
Line OVP threshold  
V
V
increasing  
decreasing  
V
457  
430  
15  
469  
443  
25  
485  
465  
35  
Vdc  
Vdc  
ms  
HV  
HV(OVP)  
HV pin voltage at which Line OVP is reset  
Blanking time for line OVP reset  
V
HV  
HV(OVP)RST  
T
LOVP(blank)  
BROWNOUT AND LINE SENSING  
BrownOut ON level (IC start pulsing)  
BrownOut ON level (IC start pulsing) option 2  
BrownOut OFF level (IC stops pulsing)  
BrownOut OFF level (IC stops pulsing) option 2  
V
V
V
V
V
increasing  
increasing  
decreasing  
decreasing  
V
101.5  
129.7  
92  
108  
138  
98  
114.5  
146.3  
104  
137  
Vdc  
Vdc  
Vdc  
Vdc  
V
HV  
HV  
HV  
HV  
HV  
HVBO(on)  
V
HVBO(on)2  
V
HVBO(off)  
V
121  
129  
55  
HVBO(off)2  
HV pin voltage above which the sampling of ZCD is  
enabled low line  
decreasing, low line  
decreasing, highline  
increasing  
V
sampENLL  
HV pin voltage above which the sampling of ZCD is  
enabled highline  
V
HV  
V
HV  
V
105  
V
sampENHL  
ZCD sampling enable comparator hysteresis  
BO comparators delay  
V
5
V
sampHYS  
BO(delay)  
BO(blank)  
t
t
30  
25  
ms  
ms  
BrownOut blanking time  
15  
35  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by design.  
www.onsemi.com  
7
 
NCL30488  
TYPICAL CHARACTERISTICS  
5,4  
5,3  
5,2  
5,1  
5
309  
304  
299  
294  
289  
284  
4,9  
4,8  
4,7  
4,6  
4,5  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. IHV(start2) vs. Temperature  
Figure 4. IHV(start1) vs. Temperature  
361  
359  
357  
355  
353  
351  
349  
18,34  
18,29  
18,24  
18,19  
18,14  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. VHV(OL) vs. Temperature  
Figure 6. VCC(on) vs. Temperature  
10,25  
10,23  
10,21  
10,19  
10,17  
10,15  
10,13  
10,11  
26,96  
26,91  
26,86  
26,81  
26,76  
26,71  
26,66  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VCC(off) vs. Temperature  
Figure 8. VCC(OVP) vs. Temperature  
www.onsemi.com  
8
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
1,7  
1,69  
1,68  
1,67  
1,66  
1,65  
1,64  
1,63  
1,62  
1,41  
1,39  
1,37  
1,35  
1,33  
1,31  
1,29  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ICC1 vs. Temperature  
Figure 10. ICC4 vs. Temperature  
1,2  
1,15  
1,1  
54  
53,5  
53  
1,05  
1
52,5  
52  
0,95  
0,9  
51,5  
51  
0,85  
0,8  
50,5  
50  
0,75  
0,7  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. VILIM vs. Temperature  
Figure 12. VCS(low)F vs. Temperature  
2,06  
2,04  
2,02  
2
20,24  
20,19  
20,14  
20,09  
20,04  
19,99  
19,94  
19,89  
19,84  
1,98  
1,96  
1,94  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. VCS(stop) vs. Temperature  
Figure 14. ton(MAX)2 vs. Temperature  
www.onsemi.com  
9
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
359  
354  
349  
344  
339  
334  
180  
179  
178  
177  
176  
175  
174  
173  
172  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. tLEB vs. Temperature  
Figure 16. tBCS vs. Temperature  
120  
110  
100  
90  
10,5  
9,5  
8,5  
7,5  
6,5  
5,5  
4,5  
3,5  
80  
70  
60  
50  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. tILIM vs. Temperature  
Figure 18. RSNK vs. Temperature  
34  
32  
30  
28  
26  
24  
22  
20  
15,5  
13,5  
11,5  
9,5  
7,5  
5,5  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. RSRC vs. Temperature  
Figure 20. tr vs. Temperature  
www.onsemi.com  
10  
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
21,5  
20,5  
19,5  
18,5  
17,5  
16,5  
15,5  
14,5  
13,5  
12,5  
83  
82,5  
82  
81,5  
81  
80,5  
80  
79,5  
79  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. tf vs. Temperature  
Figure 22. VZCD(rising) vs. Temperature  
0,672  
0,67  
54,5  
53,5  
52,5  
51,5  
50,5  
49,5  
0,668  
0,666  
0,664  
0,662  
0,66  
0,658  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. VZCD(falling) vs. Temperature  
Figure 24. VZCD(short) vs. Temperature  
116  
111  
106  
101  
96  
1,605  
1,595  
1,585  
1,575  
1,565  
1,555  
91  
86  
81  
76  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. tZCD(dem) vs. Temperature  
Figure 26. tZCD(blank1)OPN1 vs. Temperature  
www.onsemi.com  
11  
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
0,861  
0,856  
0,851  
0,846  
0,841  
0,836  
1,072  
1,067  
1,062  
1,057  
1,052  
1,047  
1,042  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. tZCD(blank1)OPN2 vs. Temperature  
Figure 28. tZCD(blank2)OPN1 vs. Temperature  
0,584  
0,579  
0,574  
0,569  
0,564  
6,92  
6,87  
6,82  
6,77  
6,72  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. tZCD(blank2)OPN2 vs. Temperature  
Figure 30. tTIMO vs. Temperature  
336,8  
336,3  
335,8  
335,3  
334,8  
334,3  
333,8  
333,3  
332,8  
332,3  
331,8  
3,545  
3,535  
3,525  
3,515  
3,505  
3,495  
3,485  
3,475  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. VREF/3 vs. Temperature  
Figure 32. VREF(CV) vs. Temperature  
www.onsemi.com  
12  
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
4,15  
4,14  
4,13  
4,12  
4,11  
4,1  
4,075  
4,065  
4,055  
4,045  
4,035  
4,025  
4,015  
4,005  
3,995  
4,09  
4,08  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. VCV(clampH) vs. Temperature  
Figure 34. VOVP1 vs. Temperature  
0,2095  
0,2085  
0,2075  
0,2065  
0,2055  
0,2045  
0,2035  
0,2025  
0,2015  
0,2005  
4,54  
4,53  
4,52  
4,51  
4,5  
4,49  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. VOVP2 vs. Temperature  
Figure 36. KLFF vs. Temperature  
104  
103  
102  
101  
100  
99  
41,7  
41,5  
41,3  
41,1  
40,9  
40,7  
40,5  
40,3  
40,1  
98  
97  
96  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. Ioffset(MAX) vs. Temperature  
Figure 38. IFF vs. Temperature  
www.onsemi.com  
13  
NCL30488  
TYPICAL CHARACTERISTICS (continued)  
1,0395  
1,0385  
1,0375  
1,0365  
1,0355  
1,0345  
1,0335  
1,0325  
1,0315  
1,0305  
2,208  
2,203  
2,198  
2,193  
2,188  
2,183  
2,178  
2,173  
2,168  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 39. tFF1LL vs. Temperature  
Figure 40. VREF(PFC)CLP vs. Temperature  
108,9  
108,7  
108,5  
108,3  
108,1  
107,9  
107,7  
107,5  
107,3  
107,1  
106,9  
99,6  
99,4  
99,2  
99  
98,8  
98,6  
98,4  
98,2  
98  
97,8  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 41. VHVBO(on)ONP1 vs. Temperature  
Figure 42. VHVBO(off) vs. Temperature  
472  
471  
470  
469  
468  
467  
466  
465  
464  
446  
445  
444  
443  
442  
441  
440  
439  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 43. VHV(OVP) vs. Temperature  
Figure 44. VHV(OVP)RST vs. Temperature  
www.onsemi.com  
14  
NCL30488  
Application Information  
if V reaches 1.5 x V  
(after a reduced LEB of t ).  
BCS  
CS  
ILIM  
The NCL30488 implements a currentmode architecture  
operating in quasiresonant mode. Thanks to proprietary  
circuitry, the controller is able to accurately regulate the  
secondary side current and voltage of the flyback converter  
without using any optocoupler or measuring directly the  
secondary side current or voltage. The controller provides  
near unity power factor correction  
This additional comparator is enabled only during the  
main LEB duration t , for noise immunity reason.  
LEB  
Output Under Voltage Protection: If a too low voltage is  
applied on ZCD pin for 90 ms time interval, the  
controllers assume that the output or the ZCD pin is  
shorted to ground and shutdown. After waiting 4 seconds,  
the IC restarts switching.  
Thermal Shutdown: an internal circuitry disables the gate  
drive when the junction temperature exceeds 150°C  
(typically). The circuit resumes operation once the  
temperature drops below approximately 140°C.  
QuasiResonance  
CurrentMode  
Operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCL30488 optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Thanks to an internal algorithm  
control, the controller locksout in a selected valley and  
remains locked until the input voltage or the output  
current set point significantly changes.  
POWER FACTOR AND CONSTANT CURRENT  
CONTROL  
The NCL30488 embeds an analog/digital block to control  
the power factor and regulate the output current by  
monitoring the ZCD, CS and HV pin voltages (signals  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to take into  
account the effect of the leakage inductance of the  
transformer and allows an accurate control of the  
secondary side current regardless of the input voltage and  
output load variation.  
Primary Side Constant Voltage Regulation: By  
monitoring the auxiliary winding voltage, it is possible to  
regulate accurately the output voltage. The output voltage  
regulation is typically within 2%.  
Load Transient Compensation: Since PFC has low loop  
bandwidth, abrupt changes in the load may cause  
excessive over or undershoot. The slow Over Voltage  
Protection contains the output voltage when it tends to  
become excessive. In addition, the NCL30488 speeds up  
the constant voltage regulation loop when the output  
voltage goes below 85% of its regulation level.  
Power Factor Correction: A proprietary concept allows  
achieving high power factor correction and low THD  
while keeping accurate constant current and constant  
voltage control.  
V
, V  
, V ). This circuit generates the current  
HV_DIV CS  
ZCD  
setpoint signal and compares it to the current sense signal to  
turn the MOSFET off. The HV pin provides the sinusoidal  
reference necessary for shaping the input current. The  
obtained current reference is further modulated so that when  
averaged over a half line period, it is equal to the output  
current reference (V  
). The modulation and averaging  
REFX  
process is made internally by a digital circuit. If the HV pin  
properly conveys the sinusoidal shape, power factor will be  
close to 1. Also, the Total Harmonic Distortion (THD) will  
be low especially if the output voltage ripple is small.  
VREF  
(eq. 1)  
IOUT  
+
2NspRsense  
Where:  
N is the secondary to primary transformer turns ratio:  
sp  
N
R  
V  
= N / N  
S P  
sp  
is the current sense resistor  
sense  
is the output current reference: V  
= V  
if  
REFX  
REFX  
REF  
no dimming  
Line Feedforward: allows compensating the variation of  
the output current caused by the propagation delay.  
V Over Voltage Protection: if the V pin voltage  
The output current reference (V  
) is V  
unless the  
REFX  
REF  
controller operates in constant voltage mode.  
CC  
CC  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting pulsing.  
PRIMARY SIDE CONSTANT VOLTAGE CONTROL  
The auxiliary winding voltage is sampled internally  
through the ZCD pin.  
Fast Over Voltage Protection: If the voltage of ZCD pin  
exceeds 130% of its regulation level, the controller shuts  
down and waits 4 s before trying to restart.  
BrownOut: the controller includes a brownout circuit  
which safely stops the controller in case the input voltage  
is too low. The device will automatically restart if the line  
recovers.  
A precise internal voltage reference V  
voltage target for the CV loop.  
sets the  
REF(CV)  
The sampled voltage is applied to the negative input of the  
constant voltage (CV) operational transconductance  
amplifier (OTA) and compared to V  
.
REFCV  
A type 2 compensator is needed at the CV OTA output to  
stabilize the loop. The COMP pin voltage modify the the  
output current internal reference in order to regulate the  
output voltage.  
Cyclebycycle peak current limit: when the current  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
MOSFET is turned off for the rest of the switching cycle.  
Winding ShortCircuit Protection: an additional  
comparator senses the CS signal and stops the controller  
When V  
When V  
4 V, V  
= V  
.
COMP  
COMP  
REFX  
< 0.9 V, V  
REF  
= 0 V.  
REFX  
www.onsemi.com  
15  
NCL30488  
Gm  
R
ZCD  
ZCDU  
V
ZCDsamp  
ZCD & signal  
sampling  
COMP  
.
R1  
C1  
R
OTA  
ZCDL  
VREF(CV)  
C2  
Aux.  
Figure 45. Constant Voltage Feedback Circuit  
Secondary Side Regulation Compatible  
The NCL30488 is able to support secondaryside  
regulation as well. The controller features an option to  
The HV startup circuitry is made of two startup current  
levels, I and I . This helps to protect the  
HV(start1)  
HV(start1)  
controller against shortcircuit between V and GND. At  
CC  
provide a pullup resistor R  
on COMP pin instead of the  
powerup, as long as V is below V  
, the source  
pullup  
CC  
CC(TH)  
CV OTA output. This allows connecting directly an  
optocoupler collector and properly biases it. The internal  
delivers I  
(around 300 mA typical). Then, when  
HV(start1)  
V
I
reaches V  
, the source smoothly transitions to  
CC(TH)  
CC  
voltage biasing R  
is around 5 V.  
and delivers its nominal value. As a result, in case  
pullup  
HV(start2)  
In secondary side regulation, the slow and fast OVP on  
ZCD pin are still active thus providing an additional over  
voltage protection. In this case, the ZCD pin resistors should  
of shortcircuit between V and GND occurring at high  
CC  
line (V = 305 V rms), the maximum power dissipation will  
in  
be 431 x 300 m = 130 mW instead of 1.5 W if there was only  
one startup current level.  
To speedup the output voltage rise, the following is  
implemented:  
be calculated to trigger V  
interest.  
at the output voltage of  
OVP2  
The digital OTA output is increased until V  
REF(PFC)  
. Again, this is to speedup the  
CV OTA Boost  
signal reaches V  
VDD  
REFX  
control signal rise to their steady state value.  
Rpullup  
At the beginning of each operating phase of a V cycle,  
CC  
COMP  
the digital OTA output is set to 0. Actually, the digital  
OTA output is set to 0 in the case of a cold startup or in  
the case of a startup sequence following an operation  
+
VREF(CV)  
interruption due to a fault. On the other hand, if the V  
CC  
hiccups just because the system fails to startup in one  
cycle, the digital OTA output is not reset to ease the  
V
CC  
second (or more) attempt.  
If the load is shorted, the circuit will operate in hiccup  
Figure 46. COMP Pin Configuration for Secondary  
Side Regulation  
mode with V oscillating between V  
and V  
CC(on)  
CC  
CC(off)  
until the output under voltage protection (UVP) trips.  
UVP is triggered if the ZCD pin voltage does not exceed  
STARTUP PHASE (HV STARTUP)  
It is generally requested that the LED driver starts to emit  
light in less than 1 s and possibly within 300 ms. It is  
challenging since the startup consists of the time to charge  
V
within a 90 ms operation of time. This  
ZCD(short)  
indicates that the ZCD pin is shorted to ground or that an  
excessive load prevents the output voltage from rising.  
the V capacitor and that necessary to charge the output  
CC  
capacitor until sufficient current flows into the LED string.  
This second phase can be particularly long in dimming cases  
where the secondary current is a portion of the nominal one.  
The NCL30488 features a high voltage startup circuit that  
allows charging VCC pin capacitor very fast.  
HV Startup Power Dissipation  
At high line (305 V rms and above) the power dissipated  
by the HV startup in case of fault becomes high. Indeed, in  
case of fault, the NCL30488 is directly supplied by the HV  
rail. The current flowing through the HV startup will heat the  
controller. It is highly recommended adding enough copper  
When the power supply is first connected to the mains  
outlet, the internal current source is biased and charges up  
the V capacitor. When the voltage on this V capacitor  
around the controller to decrease the R  
of the controller.  
qJA  
2
Adding a minimum pad area of 215 mm of 35 mm copper  
(1 oz) drops the R to around 120°C/W (no air flow, R  
CC  
CC  
reaches the V  
level, the current source turns off. At this  
CC(on)  
qJA  
qJA  
time, the controller is only supplied by the V capacitor,  
measured at ADIM pin)  
The PCB layout shown in Figure 47 is a layout example  
to achieve low R  
CC  
and the auxiliary supply should take over before V  
CC  
collapses below V  
.
.
CC(off)  
qJA  
www.onsemi.com  
16  
NCL30488  
Winding and Output Diode ShortCircuit Protection  
In parallel to the cyclebycycle sensing of the CS pin,  
another comparator with a reduced LEB (t ) and a  
BCS  
threshold of (V  
= 140% x V  
) monitors the CS pin  
CS(stop)  
ILIM  
to detect a winding or an output diode short circuit. The  
controller shuts down if it detects 4 consecutives pulses  
during which the CS pin voltage exceeds V  
CS(stop).  
The controller goes into autorecovery mode.  
Valley Lockout  
QuasiSquare wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
Figure 47. PCD Layout Example  
The NCL30488 changes valley as V  
decreases and as  
REFX  
the input voltage increases and as the output current setpoint  
is varied during dimming. This limits the frequency  
excursion.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line.  
The application note ANDXXXX gives more details about  
strategies to decrease the power dissipation of the HV  
startup circuit.  
CyclebyCycle Current Limit  
When the current sense voltage exceeds the internal  
(prog. option to have the operating valley incremented by  
threshold V , the MOSFET is turned off for the rest of the  
ILIM  
1 at high line for better I control at 305 V rms.)  
out  
switching cycle.  
Table 1. VALLEY SELECTION  
V
Voltage for Valley Change  
HV_DIV  
V
REFX  
value at which the Controller  
V
REFX  
Value at Which the Controller  
0
−−LL−−  
2.3 V  
−−HL−−  
5 V  
Changes Valley (I  
Decreasing)  
Changes Valley(I  
Increasing)  
out  
out  
st  
nd rd  
100%  
100%  
80%  
1
2
3
4
5
6
(3 )  
80%  
65%  
50%  
35%  
nd  
rd th  
2
(4 )  
65%  
50%  
35%  
rd  
th th  
3
(5 )  
th  
th th  
4
(6 )  
th  
th th  
5
(7 )  
25%  
0%  
25%  
0%  
FF mode  
FF mode  
0
−−LL−−  
2.3 V  
−−HL−−  
5 V  
Internal V  
Voltage for Valley Change  
HV_DIV  
Zero Crossing Detection Block  
The Timeout also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations.  
The ZCD pin allows detecting when the drainsource  
voltage of the power MOSFET reaches a valley.  
A valley is detected when the ZCD pin voltage crosses  
below the 55 mV internal threshold.  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
the valleys. To avoid such a situation, Optimus Prime  
features a TimeOut circuit that generates pulses if the  
voltage on ZCD pin stays below the 55 mV threshold for  
6.5 ms.  
At startup, the output voltage reflected on the auxiliary  
winding is low. Because of the ZCD resistor bridge setting  
the constant voltage regulation target, the voltage on the  
ZCD pin is very low and the ZCD comparator might be  
unable to detect the valleys. In this condition, setting the  
DRV Latch with the 6.5 ms timeout leads to a continuous  
conduction mode operation (CCM) at the beginning of the  
softstart. This CCM operation only last a few cycles until  
the voltage on ZCD pin becomes high enough and trips the  
ZCD comparator.  
www.onsemi.com  
17  
NCL30488  
VZCD  
VZCD(th)  
low  
3
4
high  
14  
12  
I
decreases or V  
out  
in  
high  
increases  
ZCD comp  
high  
low  
15  
low  
TimeOut  
16  
17  
2nd , 3 rd  
high  
VVIN  
increases  
Clock  
low  
Figure 48. Valley Detection and Timeout Chronograms  
If the ZCD pin or the auxiliary winding happen to be  
shorted the timeout function would normally make the  
controller keep switching and hence lead to improper  
regulation of the LED current.  
The Under Voltage Protection (UVP) is implemented to  
avoid these scenarios: a secondary timer starts counting  
Slow OVP  
If ZCD voltage exceeds V  
switching cycles, the controller stops switching during  
1.4 ms. The PFC loop is not reset. After 1.4 ms, the  
controller initiates a new DRV pulse to refresh ZCD  
for 4 consecutive  
OVP1  
sampling voltage. If V  
is still too high (V  
> 115%  
ZCD  
ZCD  
when the ZCD voltage is below the V  
threshold. If  
V
), the controller continues to switch with a 1.4 ms  
ZCD(short)  
REF(CV)  
this timer reaches 90 ms, the controller detects a fault and  
enters the autorecovery fault mode.  
period. The controller resumes its normal operation when  
< 115% V  
V
ZCD  
.
REF(CV)  
During slow OVP, the peak current setpoint is COMP pin  
voltage scaled down by a fixed ratio.  
ZCD Over Voltage Protection  
Because of the power factor correction, it is necessary to  
set the crossover frequency of the CV loop very low (target  
10 Hz, depending on power stage phase shift). Because the  
loop is slow, the output voltage can reach high value during  
startup or during an output load step. It is necessary to limit  
the output voltage excursion. For this, the NCL30488  
features a slow OVP and a fast OVP on ZCD pin.  
Fast OVP  
If ZCD voltage exceeds V  
4 consecutive switching cycles (slow OVP not triggered) or  
for 2 switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and starts the  
autorecovery fault mode (cf: Fault Management Section)  
(130% of V  
) for  
REF(CV)  
OVP2  
www.onsemi.com  
18  
NCL30488  
Line Feedforward  
HV  
v DD  
v VS  
CS  
RLFF  
I CS(offset)  
K LFF  
R sense  
Q_drv  
+
25 ms  
BO_NOK  
Blanking  
1 V / 0.9 V  
Figure 49. Line FeedForward and Brownout Schematic  
The line voltage is sensed by the HV pin and converted  
into a current. By adding an external resistor in series  
between the sense resistor and the CS pin, a voltage offset  
proportional to the line voltage is added to the CS signal. The  
offset is applied only during the MOSFET ontime in order  
to not influence the detection of the leakage inductance  
reset.  
below V  
for 25 ms typical. Exiting a brownout  
HVBO(off)  
condition overrides the hiccup on V (V does not wait  
to reach V  
mode.  
An option with higher brownout levels is also available  
(see ordering table and electricals parameters)  
CC  
CC  
) and the IC immediately goes into startup  
CC(off)  
Line OVP  
The offset is always applied even at light load in order to  
improve the current regulation at low output load.  
In order to protect the power supply in case of too high  
input voltage, the NCL30488 features a line over voltage  
protection. When the voltage on HV pin exceeds V  
Brownout  
HV(OVP)  
In order to protect the supply against a very low input  
voltage, the controller features a brownout circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
the controller stops switching; V hiccups.  
CC  
When V becomes lower than V  
for more  
HV  
HV(OVP)RST  
than 25 ms, the controller initiates a clean startup sequence  
if a voltage higher than V  
is applied to the HV pin  
and restarts switching.  
HVBO(on)  
and shutsdown if the HV pin voltage decreases and stays  
www.onsemi.com  
19  
 
NCL30488  
VHV  
VHV(OVP)  
VHV(OVP)RST  
t LOVP(blank)  
VCC  
VCC(on)  
VCC(off)  
VDRV  
Iout  
Figure 50. Line OVP Chronograms  
Protections  
The circuit incorporates a large variety of protections to  
make the LED driver very rugged.  
Among them, we can list:  
Winding or Output Diode Short Circuit protection  
The circuit detects this failure when 4 consecutive DRV  
pulses occur within which the CS pin voltage exceeds  
Fault of the GND connection  
(V  
= 140% x V  
). In this case, the controller  
CS(stop)  
ILIM  
If the GND pin is properly connected, the supply current  
enters autorecovery mode (4s operation interruption  
drawn from the positive terminal of the V capacitor,  
between active bursts).  
CC  
flows out of the GND pin to return to the negative terminal  
V Over Voltage Protection  
CC  
of the V capacitor. If the GND pin is not connected, the  
CC  
The circuit stops generating pulses if the V exceeds  
CC  
circuit ESD diodes offer another return path. The  
accidental non connection of the GND pin can hence be  
detected by detecting that one of this ESD diode is  
conducting. Practically, the ESD diode of CS pin is  
monitored. If such a fault is detected for 200 ms, the circuit  
stops generating DRV pin.  
V
and enters autorecovery mode. This feature  
CC(OVP)  
protects the circuit if output LEDs happen to be  
disconnected.  
ZCD fast OVP  
If ZCD voltage exceeds V  
for 4 consecutive  
ZCD(OVP2)  
switching cycles (slow OVP not triggered) or for 2  
switching cycles if the slow OVP has already been  
triggered, the controller detects a fault and enters  
autorecovery mode (4 s operation interruption between  
active bursts).  
Output short circuit situation (Output Under Voltage  
Protection)  
Overload is detected by monitoring the ZCD pin voltage:  
if it remains below V  
for 90 ms, an output short  
ZCD(short)  
circuit is detected and the circuit stops generating pulses  
for 4 s. When this 4 s delay has elapsed, the circuit  
attempts to restart.  
Die Over Temperature (TSD)  
The circuit stops operating if the junction temperature  
(T ) exceeds 150°C typically. The controller remains off  
until T goes below nearly 130°C.  
J
ZCD pin incorrect connection:  
J
If the ZCD pin grounded, the circuit will detect an  
output short circuit situation when 90 ms delay has  
elapsed.  
BrownOut Protection (BO)  
The circuit prevents operation when the line voltage is too  
low to avoid an excessive stress of the LED driver.  
Operation resumes as soon as the line voltage is high  
A 200 kW resistor pulls down the ZCD pin so that  
the output short circuit detection trips if the ZCD pin  
is not connected (floating).  
enough and V is higher than V  
.
CC  
CC(on)  
www.onsemi.com  
20  
NCL30488  
250W to take into account possible parametric deviations.  
CS pin short to ground  
Also, along the circuit operation, the CS pin could happen  
to be grounded. If it is grounded, the MOSFET  
conduction time is limited by the 20 ms maximum  
ontime. If such an event occurs, a new pin impedance  
test is made.  
The CS pin is checked at startup (cold startup or after  
a brownout event). A current source (I  
) is applied  
cs(short)  
to the pin and no DRV pulse is generated until the CS pin  
exceeds V . I and V are 500 mA and  
cs(low) cs(short)  
cs(low)  
60 mV typically (V rising). The typical minimum  
CS  
Line overvoltage protection  
impedance to be placed on the CS pin for operation is then  
120 W. In practice, it is recommended to place more than  
(see Line OVP section)  
ORDERING TABLE OPTION  
Valley  
Transition  
from LL to HL  
Line Range  
Detector  
Maximum Deadtime  
V
REF  
Max. Ontime  
ZCD Blanking  
Standby Mode  
st  
st  
OPN #  
NCL30488_ _  
1.4 ms 200 mV 333 mV  
1
to  
1
to  
On  
Off  
On  
Off  
250 ms 687 ms  
20 ms  
33 ms  
1 ms  
1.5 ms  
nd  
rd  
2
3
NCL30488A2  
NCL30488A3  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Line OVP  
Frozen Peak Current During Standby Mode V  
Brownout Levels  
CS(SBY)  
OPN #  
NCL30488_ _  
On  
Off  
380 mV  
330 mV  
280 mV  
On: 108 V  
Off: 98 V  
On: 138 V  
Off: 129 V  
NCL30488A2  
NCL30488A3  
x
x
NA  
NA  
x
x
ORDERING INFORMATION  
Device  
Marking  
Package type  
Shipping  
NCL30488A2  
L30486A2  
SOIC7 – P7 COMP VHV PBFH  
2500 / Tape & Reel  
2500 / Tape & Reel  
(PbFree)  
NCL30488A3  
L30488A3  
SOIC7 – P7 COMP VHV PBFH  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
21  
NCL30488  
PACKAGE DIMENSIONS  
SOIC7  
CASE 751U  
ISSUE E  
A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B ARE DATUMS AND T  
IS A DATUM SURFACE.  
4. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
S
M
M
B
B−  
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189 0.197  
4.00 0.150 0.157  
1.75 0.053 0.069  
0.51 0.013 0.020  
0.050 BSC  
0.25 0.004 0.010  
0.25 0.007 0.010  
1.27 0.016 0.050  
C
R X 45  
_
1.27 BSC  
J
0.10  
0.19  
0.40  
0
T−  
SEATING  
PLANE  
K
8
0
8
_
_
_
_
M
H
D 7 PL  
0.25  
5.80  
0.50 0.010 0.020  
6.20 0.228 0.244  
M
S
S
0.25 (0.010)  
T
B
A
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY