NCN5150MNTWG [ONSEMI]

Wired M-BUS Slave Transceiver; 有线M- BUS从收发器
NCN5150MNTWG
型号: NCN5150MNTWG
厂家: ONSEMI    ONSEMI
描述:

Wired M-BUS Slave Transceiver
有线M- BUS从收发器

文件: 总12页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCN5150  
Wired M-BUS Slave  
Transceiver  
Description  
The NCN5150 is a single-chip integrated slave transceiver for use in  
two-wire Meter Bus (M-BUS) slave devices and repeaters. The  
transceiver provides all of the functions needed to satisfy the  
European Standards EN 137572 and EN 14343 describing the  
physical layer requirements for M-BUS. It includes a programmable  
power level of up to 2 (SOIC version) or 6 (NQFP version) unit loads,  
which are available for use in external circuits through a 3.3 V LDO  
regulator.  
http://onsemi.com  
NQFP20  
SOIC16  
D SUFFIX  
CASE 751B  
MN SUFFIX  
CASE 485E  
The NCN5150 can provide communication up to the maximum  
M-BUS communication speed of 38,400 baud (half-duplex).  
Features  
MARKING DIAGRAMS  
Single-chip MBUS Transceiver  
UART Communication Speeds Up to 38,400 baud  
20  
1
NCN  
5150  
ALYW  
G
Integrated 3.3 V VDD LDO Regulator with Extended Peak Current  
Capability of 15 mA  
Supports Powering Slave Device from the Bus or from External  
Power Supply  
NQFP20  
Adjustable I/O Levels  
Adjustable Constant Current Sink up to 2 or 6 Unit Loads Depending  
16  
1
on the Package  
NCN5150  
ALYYWWG  
Low Bus Voltage Operation  
Extended Current Budget for External Circuits: at least 0.88 mA  
Polarity Independent  
Power-Fail Function  
SOIC16  
Fast Startup No External Transistor Required on STC Pin  
Industrial Ambient Temperature Range of 40°C to +85°C  
A
L
= Assembly Location  
= Wafer Lot (optional)  
= Year  
Y, YY  
Available in:  
W, WW = Work Week  
G or G = Pb-free Package  
16-pin SOIC (Pin-to-Pin Compatible with TSS721A)  
20-pin QFN  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
These are Pb-free Devices  
Typical Applications  
Multi-energy Utility Meters  
Water  
Gas  
Electricity  
Heating systems  
Related Standards European Standard  
EN 137572, EN 14343  
For more information visit www.m-bus.com  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
September, 2013 Rev. 2  
NCN5150/D  
NCN5150  
BUSL2  
VB  
1
2
3
4
5
6
7
8
16 BUSL1  
15 GND  
14 RIS  
13 RXI  
12 RX  
16  
20 19  
18 17  
GND  
BUSL1  
BUSL2  
VB  
1
2
3
4
5
15  
14  
13  
12  
11  
STC  
VS  
RIDD  
NCN5150  
NCN5150  
SOIC16  
VIO  
QFN20  
PFb  
TX  
SC  
TXI  
TX  
11 VDD  
10 VS  
TXI  
6
7
8
9
10  
9
VIO  
Figure 1. Pin Out NCN5150 in 20-pin NQFP and 16 Pin SOIC (Top View)  
Table 1. NCN5150 PINOUT  
Pin Number  
NCN5150 SOIC  
NCN5150 QFN  
Signal Name  
BUSL1  
BUSL2  
VB  
Type  
Bus  
Pin Description  
16  
1
2
3
4
6
MBUS line. Connect to bus through 220 W series resistors.  
Connections are polarity independent  
Bus  
Power  
Output  
2
Rectified bus voltage  
STC  
3
Storage capacitor pin. Connect to bulk storage capacitor  
(minimum 10 mF, maximum 330 mF2,700 mF see Table 9)  
RIDD  
Input  
4
7
Mark current adjustment pin.  
Connect to programming resistor  
PFb  
SC  
Output  
Output  
5
6
8
9
Power Fail, active low  
Mark bus voltage level storage capacitor pin.  
Connect to ceramic capacitor (typically 220 nF)  
TXI  
TX  
Output  
Output  
Input  
7
8
11  
12  
13  
14  
UART Data output (inverted)  
UART Data output  
VIO  
VS  
9
I/O pins (RX, RXI, TX, TXI, PFb) high level voltage  
Output  
10  
Gate driver for PMOS switch between bus powered operation  
and external power supply  
VDD  
Power  
11  
16  
Voltage regulator output.  
Connect to minimum 1 mF decoupling capacitor  
RX  
RXI  
RIS  
GND  
NC  
Input  
Input  
12  
13  
14  
15  
17  
UART Data input  
18  
UART Data input (inverted)  
Modulation current adjustment pin  
Ground  
Input  
20  
Ground  
NC  
1
5, 10, 15, 19  
EP  
Not connected pins. Tie to GND  
Exposed Pad. Tie to GND  
EP  
Ground  
http://onsemi.com  
2
NCN5150  
PFb  
Power  
Fail  
Detect  
VIO_BUF  
VB_INT  
VIO  
Buffer  
VIO  
VB  
BUSL1  
CS1  
BUSL2  
SC  
RIDD  
STC  
VIO_BUF  
TX  
Receiver  
STC  
VS  
Driver  
Voltage  
Monitor  
VS  
TXI  
RXI  
ECHO  
STC  
Clamp  
3.3 V  
LDO  
Transmitter  
VDD  
RX  
CS_TX  
Thermal  
Shutdown  
POR  
RIS  
NCN5150  
GND  
Figure 2. NCN5150 Block Diagram  
Table 2. ABSOLUTE MAXIMUM RATINGS (Note 1)  
Symbol Parameter  
Min  
40  
55  
50  
0.3  
0.3  
4.0  
Max  
+150  
+150  
50  
Unit  
°C  
°C  
V
T
Junction Temperature  
Storage Temperature  
J
T
S
V
Bus Voltage (|BUSL1 BUSL2|)  
Voltage on Pin TX, TXI  
BUS  
V
, V  
TXI  
7.5  
5.5  
V
TX  
V
RX  
, V , V  
IO  
Voltage on Pin RX, RXI, VIO  
ESD Rating Human Body Model  
ESD Rating Machine Model  
ESD Rating Charged Device Model  
V
RXI  
ESD  
kV  
V
HBM  
ESD  
250  
750  
MM  
ESD  
V
CDM  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. All voltages are referenced to GND.  
http://onsemi.com  
3
 
NCN5150  
Table 3. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Typical Value  
Unit  
°C/W  
°C/W  
Thermal Characteristics, SOIC16 Thermal Resistance, Junction-to-Air  
Thermal Characteristics, QFN20 Thermal Resistance, Junction-to-Air  
R
R
125  
42  
θJA  
θJA  
NOTE: R  
obtained with 1S0P (SOIC) or 2S2P (QFN) test boards according to JEDEC JESD51 standard.  
q
,JA  
Table 4. RECOMMENDED OPERATING CONDITIONS (Notes 2 and 3)  
Symbol Parameter  
Min  
Max  
+85  
42  
Unit  
°C  
V
T
Ambient Temperature  
Bus Voltage (|V  
40  
9.2  
9.7  
2.5  
A
V
BUS  
V |)  
BUS2  
12 Unit Loads  
36 Unit Loads  
BUSL1  
42  
V
V
IO  
VIO Pin Voltage (Note 4)  
3.8  
V
2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
3. All voltages are referenced to GND.  
4. V  
must be at least 1V higher than V for proper operation.  
STC  
IO  
Table 5. ELECTRICAL CHARACTERISTICS (Note 5)  
Symbol Parameter  
V ) (R  
Min  
Typ  
Max  
Unit  
DV  
DV  
Voltage drop over bus rectifier (V  
Voltage drop over CS1  
(Note 6) = 4.02 kW)  
1.25  
V
V
BR  
BUS  
B
IDD  
R
(Note 6) 13 kW  
1.30  
1.70  
CS  
IDD  
(V V  
)
B
STC  
R
R
R
(Note 6) 4.02 kW  
IDD  
I
Total Current Drawn from the Bus, Mark  
State  
1.32  
2.71  
4.10  
5.50  
6.80  
8.22  
0.2  
1.50  
3.00  
4.50  
6.00  
7.50  
9.00  
2
mA  
(Note 6) = 30 kW  
(Note 6) = 13 kW  
BUS  
IDD  
IDD  
R
R
R
R
(Note 6) = 8.45 kW  
(Note 6) = 6.19 kW  
(Note 6) = 4.87 kW  
(Note 6) = 4.02 kW  
IDD  
IDD  
IDD  
IDD  
DI  
BUS  
Bus Current Stability (over DV  
= 10 V, RX/RXI = mark)  
%
BUS  
I
Idle Current Available for the Application  
0.88  
2.10  
3.10  
4.20  
5.30  
6.50  
1.05  
2.35  
3.60  
4.80  
6.10  
7.45  
200  
1.20  
2.60  
4.00  
5.40  
6.90  
8.40  
mA  
R
R
(Note 6) = 30 kW  
(Note 6) = 13 kW  
STC  
IDD  
IDD  
to Draw from STC and V (Including  
DD  
Current Drawn from IO Pins)  
R
(Note 6) = 8.45 kW  
(Note 6) = 6.19 kW  
(Note 6) = 4.87 kW  
(Note 6) = 4.02 kW  
IDD  
IDD  
IDD  
IDD  
R
R
R
DI  
Additional Current Available for the Application when Transmitting a  
Space  
mA  
STC, space  
I
Internal Supply Current (R  
(Note 6) = 13 kW, RX/RXI = mark)  
359  
500  
0.5  
7.0  
mA  
mA  
V
CC  
IDD  
I
Current Drawn by the V Pin  
0.5  
6.0  
IO  
STC, clamp  
IO  
V
Clamp Voltage on Pin STC (I < I  
)
6.5  
DD  
STC  
V
Threshold Voltage on V to Trigger PFb (Note 7)  
V
+ 0.3  
V + 0.8  
STC  
V
B, PFb  
B
STC  
V
PFb Voltage High (I  
= 100 mA)  
V
IO  
0.6  
V
IO  
V
PFb, OH  
PFb  
V
PFb Voltage Low (Note 8) (I = 50 mA)  
PFb  
0
0.6  
V
PFb, OL  
V
Voltage on RIDD Pin  
1.15  
0.4  
1.20  
1.25  
V
RIDD  
V
Voltage on VS during High State  
(V > V , I = 5 mA)  
V
V
STC  
V
VS, OH  
STC  
STC  
STC, VDD ON VS  
R
VS, PD  
Pull-down Resistor on VS during Low State  
(V > 2 V, V > V )  
50  
100  
150  
kW  
DD  
STC  
S
5. All voltages are referenced to GND.  
6. Resistor with 1% accuracy.  
7. PFb comparator has a 70 mV hysteresis.  
8. PFb pin is pulled down with an on-chip resistor of typically 2 MW.  
http://onsemi.com  
4
 
NCN5150  
Table 6. VDD REGULATOR ELECTRICAL CHARACTERISTICS (Note 9)  
Symbol  
Parameter  
Voltage on V (Note 10 ) (I < 15 mA)  
Min  
3.1  
Typ  
3.3  
Max  
3.6  
Unit  
V
V
DD  
DD  
DD  
DD  
I
Peak Current that can be Supplied by V (Note 11)  
15  
mA  
mA  
V
DD  
I
V
BUS  
= 0 V, V = 0 V  
STC  
0.5  
2.65  
2.55  
5.6  
0.5  
3.15  
3.00  
6.4  
DD, OFF  
V
Power-on Reset Threshold, Release  
Power-on Reset Threshold, Reset  
2.85  
2.75  
6.0  
POR, ON  
V
V
POR, OFF  
V
Threshold Voltage on Pin STC to Turn On V Regulator, Pull  
the VS Pin High and Enable the PF Function  
V
STC, VDD ON  
DD  
V
Threshold Voltage on Pin STC to Turn Off V Regulator and  
3.7  
4.0  
4.3  
V
STC, VDD OFF  
DD  
Pull the PFb and VS Pins Low  
9. All voltages are referenced to GND.  
10. Including output resistance of V  
.
DD  
11. Average current draw limited by I  
.
STC  
Table 7. RECEIVER ELECTRICAL CHARACTERISTICS (Note 12)  
Symbol Parameter  
Receiver Threshold Voltage  
Min  
8.2  
Typ  
Max  
V 5.7  
SC  
Unit  
V
V
T
V
SC  
V
Mark Level Storage Capacitor Voltage  
V
B
V
SC  
SC, charge  
I
Mark Level Storage Capacitor Charge Current  
Mark Level Storage Capacitor Discharge Current  
40  
0.3  
25  
0.6  
15  
mA  
mA  
I
0.033 ×  
SC, discharge  
I
SC, charge  
CDR  
Charge/Discharge Current Ratio  
30  
40  
V
V
,
TX/TXI High-level Voltage (I /I  
= 100 mA) (Note 13)  
V
IO  
0.6  
V
IO  
V
TX, OH  
TXI, OH  
TX TXI  
V
V
,
TX/TXI Low-level Voltage  
0
0
0
0.35  
1.5  
16  
V
V
(I /I  
= 100 mA)  
TX, OL  
TXI, OL  
TX TXI  
(I = 1.1 mA)  
TX  
I
, I  
V
TX  
= 7.5 V, V = 6 V  
STC  
mA  
TX TXI  
12. All voltages are referenced to GND.  
13. V must be at least 1 V higher than V for proper operation.  
STC  
IO  
Table 8. TRANSMITTER ELECTRICAL CHARACTERISTICS (Note 14)  
Symbol Parameter  
Min  
12.5  
1.2  
Typ  
Max  
Unit  
mA  
V
I
Space Level Modulating Current (R = 100 W (Note 15))  
RIS  
15.0  
1.4  
18.0  
1.6  
5.5  
0.8  
30  
MC  
V
RIS  
Voltage on RIS Pin  
V
, V  
RXI, IH  
, V  
RXI, IL  
RX/RXI Input High  
V 0.8  
IO  
V
RX, IH  
V
RX/RXI Input Low  
0
V
RX, IL  
I , I  
RX RXI  
Current Drawn or Sourced from RX/RXI Pins (Note 16)  
(V = 3 V)  
6
mA  
IO  
14.All voltages are referenced to GND.  
15.Resistor with 1% accuracy.  
16.Including internal pull-up resistor on RX and internal pull-down resistor on RXI.  
http://onsemi.com  
5
 
NCN5150  
APPLICATION SCHEMATICS  
VS  
VIO  
VDD  
R
BUS1  
C
BUSL2  
VB  
VDD  
U
1
TXI  
TX  
TVS  
MBUS  
1
NCN5150  
BUSL1  
RX  
R
BUS2  
mC  
RXI  
PFb  
RIS  
SC  
GND  
RIDD  
R
STC  
R
C
C
STC  
IS  
SC  
IDD  
Figure 3. General Application Schematic  
VS  
VIO  
VDD  
R
BUS1  
C
VDD  
BUSL2  
VB  
U
1
TXI  
TX  
TVS  
MBUS  
NCN5150  
1
BUSL1  
RX  
R
BUS2  
mC  
RXI  
PFb  
RIS  
SC  
GND  
RIDD  
STC  
R
C
R
C
STC  
IS  
SC  
IDD  
Figure 4. Application Schematic with External Power Supply (Battery)  
http://onsemi.com  
6
NCN5150  
APPLICATION SCHEMATICS  
Q
VS  
1
VIO  
VDD  
R
BUS1  
C
VDD  
BUSL2  
VB  
U
1
TVS  
TXI  
TX  
MBUS  
1
NCN5150  
BUSL1  
RX  
R
BUS2  
mC  
RXI  
PFb  
RIS  
SC  
GND  
RIDD  
STC  
R
C
R
C
STC  
IS  
SC  
IDD  
Figure 5. Application Schematic with Backup External Power Supply  
VS  
V
STC  
VIO  
VDD  
2.2 kW  
15 kW  
15 kW  
R
BUS1  
C
VDD  
BUSL2  
VB  
U
1
TXI  
TX  
TVS  
MBUS  
1
NCN5150  
U
3
BUSL1  
RX  
R
BUS2  
RXI  
PFb  
U
2
RIS  
SC  
GND  
RIDD  
STC  
mC  
620 W  
VSTC  
R
C
R
C
STC  
IS  
SC  
IDD  
Figure 6. Optically Isolated Application Schematic  
http://onsemi.com  
7
NCN5150  
Table 9. TYPICAL BILL OF MATERIALS  
Reference Designator  
Value (Typical)  
Tolerance  
Manufacturer  
ON Semiconductor  
ON Semiconductor  
Part Number  
NCN5150  
U
1
TVS  
40 V  
1SMA40CAT3G  
1
C
> 1 mF  
20%, +80%  
1%  
VDD  
R
100 W  
IS  
C
220 nF  
20%, +80%  
10%  
1%  
SC  
R
, R  
220 W  
BUS1  
BUS2  
R
1 UL  
2 UL  
3 UL  
4 UL  
5 UL  
6 UL  
1 UL  
2 UL  
3 UL  
4 UL  
5 UL  
6 UL  
30 kW  
IDD  
13 kW  
1%  
8.45 kW  
6.19 kW  
4.87 kW  
4.02 kW  
330 mF  
820 mF  
1,200 mF  
1,500 mF  
2,200 mF  
2,700 mF  
1%  
1%  
1%  
1%  
C
10%  
10%  
10%  
10%  
10%  
10%  
STC  
APPLICATION INFORMATION  
The NCN5150 is a slave transceiver for use in the meter  
bus (M-BUS) protocol. The bus connection is fully polarity  
independent. The transceiver will translate the bus voltage  
modulation from master-to-slave communication to TTL  
UART communication, and in the other direction translate  
UART voltage levels to bus current modulation. The  
transceiver also integrates a voltage regulator for utilizing  
the current drawn in this way from the bus, and an early  
power fail warning. The transceiver also supports an  
external power supply and the I/O high level can be set to  
match the slave sensor circuit. A complete block diagram is  
shown in Figure 2. Each section will be explained in more  
detail below.  
Communication speeds allowed by the M-BUS standard are  
300, 600, 2400, 4800, 9600, 19200 and 38400 baud, all of  
which are supported by the NCN5150.  
Bus Connection and Rectification  
The bus should be connected to the pins BUSL1 and  
BUSL2 through series resistors to limit the current drawn  
from the bus in case of failure (according to the M-BUS  
standard). Typically, two 220 W resistors are used for this  
purpose.  
Since the M-BUS connection is polarity independent, the  
NCN5150 will first rectify the bus voltage through an active  
diode bridge.  
Slave Power Supply (Bus Powered)  
Meter Bus Protocol  
A slave device can be powered by the M-BUS or from an  
external supply. The M-BUS standard requires the slave to  
draw a fixed current from the bus. This is accomplished by  
the constant current source CS1. This current is used to  
M-BUS is a European standard for communication and  
powering of utility meters and other sensors.  
Communication from master to slave is achieved by  
voltage-level signaling. The master will apply a nominal  
+36 V to the bus in idle state, or when transmitting a logical  
1 (“mark”). When transmitting a logical 0 (“space”), the  
master will drop the bus voltage to a nominal +24 V.  
Communication from the slave to the master is achieved  
by current modulation. In idle mode or when transmitting a  
logical 1 (“mark”), the slave will draw a fixed current from  
the bus. When transmitting a logical 0 (“space”), the slave  
will draw an extra nominal 15 mA from the bus. M-BUS  
uses a half-duplex 11-bit UART frame format, with 1 start  
bit, 8 data bits, 1 even parity bit, and a stop bit.  
charge the external storage capacitor C . The current  
STC  
drawn from the bus is defined by the programming resistor  
R
IDD  
. The bus current can be chosen in increments of  
1.5 mA called unit loads. Table 5 list the different values of  
programming resistors needed for different unit loads, as  
well as the current drawn from the bus (I ) and the current  
BUS  
that can be drawn from the STC pin (I ). I  
is slightly  
STC STC  
less than I  
to account for the internal power consumption  
BUS  
of the NCN5150. The R  
resistor used must be at least 1%  
IDD  
http://onsemi.com  
8
NCN5150  
V
BUS  
V
MARK  
= [21 V, 42 V]  
accurate. Note that using 5 and 6 Unit Loads is not covered  
by the M-BUS standard.  
When the voltage on the STC pin reaches V  
V = V  
6 V  
T
MARK  
STC, VDD ON  
V
= V  
12 V  
SPACE  
MARK  
the LDO is turned on, and will regulate the voltage on the  
VDD pin to 3.3 V, drawing current from the storage  
capacitor. A decoupling capacitor of minimum 1 mF is  
required on the VDD pin for stability of the regulator. On the  
STC pin, a minimum capacitance of 10 mF is required.  
t
V
TX  
V
IO  
t
t
Furthermore, the ratio C /C  
The voltage on the STC pin is clamped to V  
shunt regulator, which will dissipate any excess current that  
is not used by the NCN5150 or external circuits.  
must be larger than 9.  
STC VDD  
V
TXI  
V
IO  
by a  
STC, clamp  
Slave Power Supply (External)  
Figure 7. Communication, Master to Slave  
In case the external sensor circuit consumes more than the  
allowed bus current or the sensor should be kept operational  
when the bus is not present, an external power supply, such  
as a battery, is required.  
V
B
I
CHARGE  
When the external circuitry uses different logical voltage  
levels, simply connect the power supply of that voltage level  
SC  
to V , so that the RX, RXI, TX, TXI and PFb pins will  
respond to the correct voltage levels. The NCN5150 will still  
be powered from the bus, but all communication will be  
IO  
I
DISCHARGE  
+
translated to the voltage level of V .  
IO  
If the external power supply should be used only as a  
backup when the bus power supply fails, a PMOS transistor  
can be inserted between the external power supply and VDD  
as shown in Figure 5. The gate is connected to VS, and will  
be driven high when the voltage on STC goes above the  
TX  
Encoding  
Echo  
TXI  
turn-on threshold of the LDO, nl. V  
. For more  
STC, VDD ON  
information see the paragraph on the power on sequence and  
corresponding Figure 12 on page 10.  
Figure 8. Communication, Master to Slave  
Communication, Slave to Master  
Communication, Master to Slave  
M-BUS communication from slave to master uses bus  
current modulation while the voltage remains constant. This  
current modulation can be controlled from either the RX or  
RXI pin as shown in Figure 10. When transmitting a space  
(“0”), the current modulator will draw an additional current  
from the bus. This current can be set with a programming  
M-BUS communication from master to slave is based on  
voltage level signaling. To differentiate between master  
signaling and voltage drop caused by the signaling of  
another slave over cabling resistance, etc., the mark level  
V
is stored, and only when the bus voltage drops  
BUS, MARK  
to less than V will the NCN5150 detect communication. A  
T
resistor R . To achieve the space current required the  
RIS  
simplified schematic of the receiver is shown in Figure 8.  
The received data is transmitted on the pins TX and TXI, as  
shown in the waveforms of Figure 7.  
M-BUS standard, R  
should be 100 W. A simplified  
RIS  
schematic of the transmitter is shown in Figure 11.  
An external capacitor must be connected to the SC pin to  
store the mark voltage level. This capacitor is charged to V .  
B
Discharging of this capacitor is typically 40x slower, so that  
the voltage on SC drops only a little during the time the  
master is transmitting a space. The value of C must be  
SC  
chosen it the range of 100 nF330 nF.  
Figure 9. Typical Relationship between RIS and  
Current Modulation Level  
http://onsemi.com  
9
 
NCN5150  
Because the M-BUS protocol is specified as half-duplex,  
shut down gracefully. The times t and t can be  
on  
off  
an echo function will cause the transmitted signal on RX or  
RXI to appear on the receiver outputs TX and TXI. Should  
the master attempt to send at the same time, the bitwise  
added signal of both sources will appear on these pins,  
resulting in invalid data.  
approximated by the following formulas:  
CSTC  
(eq. 1)  
(eq. 2)  
ton  
+
VSTC, VDD ON  
ISTC  
CSTC  
ǒV Ǔ  
STC, Clamp * VSTC, VDD OFF  
toff  
+
I
CC ) IDD  
V
RX  
V
IO  
Where I  
is the internal current consumption of the  
CC  
NCN5150 and I  
circuits drawn from either VDD or STC.  
is the current consumed by external  
DD  
t
V
RXI  
V
IO  
These formulas can be used to dimension the value of the  
bulk C  
needed, taking into account that the M-BUS  
STC  
standard requires t to be less than 3 s.  
on  
t
For certain applications where the power drawn from the  
bus is not used in external circuits, the storage capacitor  
value can be much lower. The NCN5150 requires a  
minimum STC capacitance of 10 mF to ensure that the bus  
current regulation is stable under all conditions.  
I
BUS  
I
I
= I  
+ 15 mA  
SPACE  
MARK  
= N unit loads  
MARK  
t
V
BUS  
Figure 10. Communication, Slave to Master  
V
V
= V  
= V  
+ 0.6  
B
B
STC  
B, MIN  
V
IO_BUF  
t
t
t
t
t
t
on  
V
V
STC, CLAMP  
STC  
Echo  
V
STC, VDD ON  
V
RX  
STC, VDD OFF  
Decoding  
V
B
RXI  
V
V
STC, CLAMP  
VS  
Enable  
+
V
DD  
3.3 V  
RIS  
V
PFb  
V
IO  
t
off  
Figure 11. Communication, Slave to Master  
Figure 12. Power-on and Power-off  
Thermal Shutdown  
The NCN5150 includes a thermal shutdown function that  
will disable the transmitter when the junction temperature of  
the IC becomes too hot. The thermal protection is only active  
when the slave is transmitting a space to the master.  
Power On/Off Sequence  
The power-on and power-off sequence of the NCN5150  
is shown in Figure 12. Shown also in Figure 12 is the  
operation of the PFb pin. This pin is used to give an early  
warning to the microcontroller that the bus power is  
collapsing, allowing the microcontroller to save its data and  
Table 10. ORDERING INFORMATION  
Device  
Package  
Shipping  
NCN5150DG  
SOIC16  
48 Units / Tube  
3,000 / Tape & Reel  
2,500 / Tape & Reel  
(Pb-free)  
NCN5150DR2G  
NCN5150MNTWG  
NQFP20, 4x4  
(Pb-free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
10  
 
NCN5150  
PACKAGE DIMENSIONS  
QFN20, 4x4, 0.5P  
CASE 485E  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30 MM  
FROM THE TERMINAL TIP.  
A
B
D
A3  
EXPOSED Cu  
MOLD CMPD  
PIN ONE  
REFERENCE  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
E
A1  
2X  
MILLIMETERS  
DETAIL B  
DIM MIN  
MAX  
1.00  
0.05  
0.15  
C
OPTIONAL CONSTRUCTIONS  
A
A1  
A3  
b
0.80  
---  
2X  
0.20 REF  
0.15  
C
0.20  
0.30  
2.90  
L
L
TOP VIEW  
D
4.00 BSC  
D2  
E
2.60  
4.00 BSC  
(A3)  
DETAIL B  
L1  
A
E2  
e
2.60  
2.90  
0.10  
0.08  
C
0.50 BSC  
0.20 REF  
K
DETAIL A  
L
0.35  
0.00  
0.45  
0.15  
OPTIONAL CONSTRUCTIONS  
C
L1  
SEATING  
PLANE  
A1  
C
SIDE VIEW  
SOLDERING FOOTPRINT*  
0.10 C A B  
4.30  
20X  
0.58  
D2  
DETAIL A  
20X L  
6
2.88  
0.10 C A B  
11  
E2  
1
1
2.88  
4.30  
20  
K
20X b  
e
0.10 C A B  
0.05  
C
NOTE 3  
PKG  
OUTLINE  
BOTTOM VIEW  
20X  
0.35  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
11  
NCN5150  
PACKAGE DIMENSIONS  
SOIC16  
CASE 751B05  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T B  
SOLDERING FOOTPRINT*  
8X  
6.40  
16X  
1.12  
1
16  
16X  
0.58  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCN5150/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY