NCP140AMXC280TCG [ONSEMI]

LDO Voltage Regulator - Capacitor Free, Low Noise 150 mA;
NCP140AMXC280TCG
型号: NCP140AMXC280TCG
厂家: ONSEMI    ONSEMI
描述:

LDO Voltage Regulator - Capacitor Free, Low Noise 150 mA

文件: 总15页 (文件大小:779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP140  
LDO Voltage Regulator -  
Capacitor Free, Low Noise  
150 mA  
The NCP140 is a 150 mA very low dropout regulator which offers  
excellent voltage accuracy and clean output voltage for power  
sensitive application. The NCP140 is very suitable for battery  
powered application due to very low quiescent current and virtually  
zero current at disable mode. This device is stable with or without  
output capacitors and allows minimize footprint and BOM. The  
XDFN4 package is optimized for use in space constrained  
applications.  
www.onsemi.com  
T
MARKING  
DIAGRAMS  
XM  
M
XDFN4, 0.8x0.8  
CASE 711BF  
1
1
Features  
Stable Operation with or without Capacitors  
Operating Input Voltage Range: 1.6 V to 5.5 V  
X
= Specific Device Code  
MM = Date Code  
Available in Fixed Voltage Options: 1.5 V to 5 V  
Contact Factory for Other Voltage Options  
XDFN4, 1.0x1.0  
CASE 711AJ  
XX M  
1
1% Typical Accuracy @ 25°C  
Very Low Quiescent Current of Typ. 45 mA  
Standby Current: 0.1 mA  
1
XX = Specific Device Code  
M
= Date Code  
Very Low Dropout: 125 mV for 3.3 V @ 150 mA  
High PSRR: 55 dB @ 1 kHz  
Available in XDFN4 0.8 mm x 0.8 mm x 0.4 mm Package  
XDFN4 1.0 mm x 1.0 mm x 0.4 mm Package  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
PIN CONNECTIONS  
EN  
3
IN  
4
Typical Applications  
Batterypowered Equipment  
Smartphones, Tablets  
Cameras, DVRs, STB and Camcorders  
2
1
GND  
OUT  
V
IN  
V
OUT  
(Bottom View)  
IN  
OUT  
NCP140  
GND  
EN  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
ON  
OFF  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
September, 2019 Rev. 2  
NCP140/D  
NCP140  
IN  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
EN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
INTEGRATED  
SOFTSTART  
OUT  
*ACTIVE DISCHARGE  
EN  
GND  
*Active output discharge is available only for NCP140Axxx options.  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
OUT  
GND  
EN  
Description  
1
2
3
4
Regulated output voltage pin. A small ceramic capacitor can be connected to improve fast load transient.  
Ground pin  
Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode.  
Input pin  
IN  
EPAD  
Expose pad must be connect to GND pin as short as possible. Soldered to a large ground copper plane al-  
lows for effective heat removal.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
0.3 V to 6  
Output Voltage  
V
OUT  
0.3 V to V + 0.3 V or 6 V  
V
IN  
Chip Enable Input  
V
0.3 V to 6 V  
unlimited  
150  
V
CE  
SC  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
s
T
°C  
°C  
V
J
T
STG  
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22A114  
ESD Machine Model tested per EIA/JESD22A115  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
252  
Unit  
°C/W  
°C/W  
Thermal Characteristics, XDFN4 0.8 mm x 0.8 mm Thermal Resistance, JunctiontoAir (Note 3)  
Thermal Characteristics, XDFN4 1.0 mm x 1.0 mm Thermal Resistance, JunctiontoAir (Note 3)  
R
q
JA  
R
265  
q
JA  
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD517  
www.onsemi.com  
2
 
NCP140  
ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V  
+ 0.5 V; I  
= 1 mA, C = C  
= none, unless  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
otherwise noted. V = 0.9 V. Typical values are at T = +25°C. Min/Max values are for 40°C T 85°C (Note 3)  
EN  
J
J
Parameter  
Test Conditions  
Symbol Min  
Typ.  
Max  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
V
IN  
1.6  
5.5  
V
V
1.8 V, T = 25°C  
V
OUT  
1
%
OUT  
J
< 1.8 V, T = 25°C  
20  
mV  
%
OUT  
J
V
V
1.8 V, 40°C T 85°C  
2  
+2  
+50  
5.0  
30  
OUT  
OUT  
J
< 1.8 V, 40°C T 85°C  
50  
mV  
mV  
mV  
mV  
J
Line Regulation  
V
+ 0.5 V V 5.5 V  
Line  
Reg  
1.0  
10  
OUT(NOM)  
IN  
Load Regulation  
I
= 0 mA to 150 mA  
Load  
Reg  
OUT  
Dropout Voltage (Note 5)  
V
= 1.8 V  
= 3.3 V  
V
DO  
255  
125  
230  
250  
45  
390  
220  
OUT(NOM)  
OUT(NOM)  
I
= 150 mA  
OUT  
V
Output Current Limit  
Short Circuit Current  
Quiescent Current  
V
= 90% V  
I
CL  
mA  
mA  
mA  
mA  
V
OUT  
OUT(NOM)  
V
OUT  
= 0V  
I
SC  
I
= 0 mA  
I
Q
75  
OUT  
Shutdown Current  
V
0.4 V, V = 5.5 V  
I
0.1  
1.0  
EN  
IN  
DIS  
EN Pin Threshold Voltage  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
0.9  
V
0.4  
1.0  
ENL  
EN  
EN Pin Current  
V
EN  
= 5.5 V  
I
0.01  
100  
mA  
ms  
TurnOn Time  
C
= 1 mF, I  
=150 mA,  
OUT  
T
ON  
OUT  
OUT  
From assertion of V to V  
= 98%V  
EN  
OUT(NOM)  
Power Supply Rejection Ratio  
Output Noise Voltage  
f = 100 Hz  
f = 1 kHz  
PSRR  
62  
55  
17  
dB  
V
IN  
= 3.5 V, V  
= 2.5 V,  
OUT(NOM)  
I
= 10 mA  
OUT  
V
OUT  
= 2.3 V, V  
= 1.8 V,  
V
N
mV  
RMS  
IN  
OUT(NOM)  
I
= 10 mA f = 100 Hz to 100 kHz  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Output Discharge PullDown  
Temperature increasing from T = +25°C  
T
160  
20  
°C  
°C  
W
J
SD  
Temperature falling from T  
T
SDH  
SD  
V
EN  
0.4 V, A options only  
R
100  
DISCH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
5. Dropout voltage is characterized when V  
falls 100 mV below V  
.
OUT  
OUT(NOM)  
www.onsemi.com  
3
 
NCP140  
TYPICAL CHARACTERISTICS  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
3.34  
3.33  
I
= 1 mA  
OUT  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
I
= 1 mA  
OUT  
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
V
V
C
C
= 2.3 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 1.8 V  
= 3.3 V  
= 1 mF  
OUT  
OUT  
= 1 mF  
IN  
IN  
3.25  
3.24  
1.765  
1.760  
= 1 mF  
= 1 mF  
OUT  
OUT  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature  
OUT = 1.8 V  
Figure 4. Output Voltage vs. Temperature −  
V
VOUT = 3.3 V  
5.0  
4.5  
2.50  
2.25  
V
V
= 4.3 to 5.5 V  
= 3.3 V  
V
V
= 2.3 to 5.5 V  
IN  
IN  
= 1.8 V  
OUT  
OUT  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
C
C
= 1 mF  
= 1 mF  
C
C
= 1 mF  
IN  
OUT  
IN  
= 1 mF  
OUT  
0.5  
0
0.25  
0
40 25 10  
5
20  
35  
50  
65  
80  
95  
40 20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Line Regulation vs. Temperature −  
OUT = 1.8 V  
Figure 6. Line Regulation vs. Temperature −  
V
VOUT = 3.3 V  
15.0  
13.5  
12.0  
10.5  
9.0  
15.0  
13.5  
12.0  
10.5  
9.0  
V
V
I
C
C
= 3.8 V  
V
V
I
C
C
= 2.3 V  
IN  
IN  
= 3.3 V  
= 1.8 V  
OUT  
OUT  
= 0 to 150 mA  
= 1 mF  
= 0 to 150 mA  
= 1 mF  
OUT  
OUT  
IN  
OUT  
IN  
OUT  
= 1 mF  
= 1 mF  
7.5  
7.5  
6.0  
6.0  
V
V
C
C
= 3.8 V  
4.5  
4.5  
IN  
= 1.8 V  
= 1 mF  
OUT  
3.0  
3.0  
IN  
1.5  
0
1.5  
0
40 20  
= 1 mF  
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Load Regulation vs. Temperature −  
OUT = 1.8 V  
Figure 8. Load Regulation vs. Temperature −  
V
VOUT = 3.3 V  
www.onsemi.com  
4
NCP140  
TYPICAL CHARACTERISTICS  
47  
46  
45  
44  
43  
42  
41  
40  
39  
47  
46  
T = 85°C  
J
T = 85°C  
45  
44  
43  
42  
41  
40  
39  
J
T = 25°C  
J
T = 25°C  
J
T = 40°C  
J
T = 40°C  
J
V
V
C
C
= 3.8 V  
V
V
C
C
= 2.3 V  
IN  
IN  
= 3.3 V  
= 1 mF  
= 1.8 V  
OUT  
OUT  
= 1 mF  
IN  
IN  
= 1 mF  
38  
37  
38  
37  
= 1 mF  
OUT  
OUT  
0
15 30 45  
60 75 90 105 120 135 150  
0
15 30 45 60 75 90 105 120 135 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Ground Current vs. Load Current −  
OUT = 1.8 V  
Figure 10. Ground Current vs. Load Current −  
V
VOUT = 3.3 V  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T = 85°C  
J
T = 25°C  
J
T = 40°C  
J
T = 85°C  
J
V
V
= 3.8 V  
V
V
= 2.3 V  
IN  
IN  
T = 25°C  
J
= 3.3 V  
= 1.8 V  
= 1 mF  
OUT  
OUT  
C
C
I
= 1 mF  
C
C
I
IN  
IN  
10  
= 1 mF  
= 1 mF  
OUT  
OUT  
= 0 mA  
= 0 mA  
5
0
5
0
OUT  
OUT  
T = 40°C  
J
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
IN  
, INPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Quiescent Current vs. Input Voltage −  
OUT = 1.8 V  
Figure 12. Quiescent Current vs. Input Voltage −  
V
VOUT = 3.3 V  
350  
315  
280  
245  
210  
175  
140  
105  
70  
200  
180  
160  
140  
120  
100  
80  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
V
C
C
= 3.3 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
T = 85°C  
IN  
IN  
J
OUT  
OUT  
T = 85°C  
J
T = 25°C  
J
T = 25°C  
J
T = 40°C  
J
T = 40°C  
J
60  
40  
35  
0
20  
0
0
15 30 45 60 75 90 105 120 135 150  
, OUTPUT CURRENT (mA)  
0
15 30 45  
60 75 90 105 120 135 150  
I
I , OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 13. Dropout Voltage vs. Load Current −  
OUT = 1.8 V  
Figure 14. Dropout Voltage vs. Load Current −  
V
VOUT = 3.3 V  
www.onsemi.com  
5
NCP140  
TYPICAL CHARACTERISTICS  
350  
315  
280  
1245  
210  
175  
140  
105  
70  
200  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
OUT  
V
C
C
= 3.3 V  
= 1 mF  
= 1 mF  
OUT  
180  
160  
140  
120  
100  
80  
I
= 150 mA  
= 75 mA  
OUT  
IN  
IN  
OUT  
OUT  
I
= 150 mA  
= 75 mA  
OUT  
I
OUT  
I
OUT  
60  
40  
I
= 10 mA  
80 95  
OUT  
I
= 10 mA  
80  
OUT  
20  
0
35  
0
40 25 10  
5
20  
35  
50  
65  
95  
40 25 10  
5
20  
35  
50  
65  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Dropout Voltage vs. Temperature −  
Figure 16. Dropout Voltage vs. Temperature −  
V
OUT = 1.8 V  
VOUT = 3.3 V  
300  
285  
270  
255  
240  
225  
210  
195  
180  
300  
285  
270  
255  
240  
V
= 3.3 V  
= 1.8 V  
OUT  
V
= 3.3 V  
= 1.8 V  
OUT  
V
OUT  
225  
210  
195  
180  
V
OUT  
V
V
C
C
= V  
+ 0.5 V  
V
V
C
C
= V  
+ 0.5 V  
IN  
OUT(nom)  
= 0 V (short)  
IN  
OUT(nom)  
= 90% V  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
OUT  
OUT(nom)  
IN  
165  
150  
165  
150  
= 1 mF  
= 1 mF  
50 65  
T , JUNCTION TEMPERATURE (°C)  
OUT  
40 25 10  
5
20  
35  
80 95  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 17. Current Limit vs. Temperature  
Figure 18. Short Circuit Current vs.  
Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
500  
450  
400  
350  
300  
250  
200  
150  
100  
OFF > ON  
ON > OFF  
V
V
C
C
= 4.3 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 3.3 V  
= 3.3 V  
= 1 mF  
OUT  
OUT  
= 1 mF  
IN  
IN  
0.1  
0
40 20  
50  
0
= 1 mF  
= 1 mF  
OUT  
OUT  
0
20  
40  
60  
80 100 120 140  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Enable Threshold Voltage vs.  
Temperature  
Figure 20. Enable Current vs. Temperature  
www.onsemi.com  
6
NCP140  
TYPICAL CHARACTERISTICS  
100  
80  
150  
140  
130  
120  
110  
100  
90  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
= 1 mF  
OUT  
60  
IN  
40  
= 1 mF  
OUT  
20  
0
20  
40  
60  
V
V
C
C
= 4.3 V  
80  
IN  
= 3.3 V  
= 1 mF  
OUT  
70  
IN  
80  
60  
50  
40 20  
= 1 mF  
OUT  
100  
40 20  
0
20  
40  
60  
80  
100 120 140  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Disable Current vs. Temperature  
Figure 22. Discharge Resistivity vs.  
Temperature  
10K  
1K  
I
= 150 mA  
OUT  
RMS Output Noise (mV)  
I
10 Hz 100 kHz  
26.21  
100 Hz 100 kHz  
17.94  
OUT  
100  
10 mA  
150 mA  
27.51  
19.11  
V
V
C
C
= 2.8 V  
IN  
= 1.8 V  
= 1 mF  
10  
1
OUT  
I
= 10 mA  
OUT  
IN  
= 1 mF  
OUT  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (kHz)  
Figure 23. Output Voltage Noise Spectral Density VOUT = 1.8 V  
80  
70  
90  
I
= 1 mA  
V
V
C
C
= 2.3 V+100mVpp  
IN  
V
V
C
C
= 3.8 V+100mVpp  
= 3.3 V  
OUT  
IN  
80  
70  
60  
50  
40  
30  
= 1.8 V  
OUT  
I
= 1 mA  
OUT  
I
= 10 mA  
OUT  
OUT  
= none  
IN  
= none  
IN  
OUT  
60  
50  
40  
30  
20  
= 1 mF MLCC 1206  
OUT  
= 1 mF MLCC 1206  
I
= 10 mA  
OUT  
I
= 75 mA  
OUT  
I
= 75 mA  
OUT  
I
= 150 mA  
OUT  
20  
10  
0
I
= 150 mA  
OUT  
10  
0
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 24. PSRR for Various Output Currents,  
OUT = 1.8 V  
Figure 25. PSRR for Various Output Currents,  
VOUT = 3.3 V  
V
www.onsemi.com  
7
NCP140  
TYPICAL CHARACTERISTICS  
80  
70  
60  
50  
40  
30  
20  
80  
C
= 470 nF  
OUT  
70  
60  
50  
40  
30  
20  
V
= 3.8 V  
IN  
C
= 1 mF  
OUT  
V
IN  
= 3.3 V  
V
= 5.5 V  
C
= 4.7 mF  
IN  
OUT  
V
IN  
= 2.3 V  
V
V
I
C
C
= 100mVpp  
= 3.3 V  
RIPPLE  
V
V
C
C
= 3.8 V+100mVpp  
IN  
OUT  
= 3.3 V  
OUT  
= 10 mA  
OUT  
= none  
IN  
10  
0
10  
0
= none  
IN  
OUT  
= MLCC 1206  
C
= none  
OUT  
OUT  
= none  
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 26. PSRR for Different Output Capacitor,  
OUT = 3.3 V  
Figure 27. PSRR for Different Output VIN,  
V
V
OUT = 3.3 V  
V
EN  
V
EN  
I
I
INPUT  
INPUT  
V
= 2.3 V  
= 1.8 V  
V
V
= 2.3 V  
IN  
IN  
V
OUT  
= 1.8 V  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
V
OUT  
V
OUT  
IN  
IN  
OUT  
OUT  
200 ms/div  
100 ms/div  
Figure 28. Enable Turnon Response −  
OUT = None, IOUT = 10 mA  
Figure 29. Enable Turnon Response −  
C
COUT = None, IOUT = 150 mA  
V
EN  
V
EN  
I
I
INPUT  
INPUT  
V
V
= 2.3 V  
V
V
= 2.3 V  
IN  
IN  
= 1.8 V  
= 1.8 V  
OUT  
OUT  
V
OUT  
V
OUT  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
IN  
IN  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
200 ms/div  
200 ms/div  
Figure 30. Enable Turnon Response −  
Figure 31. Enable Turnon Response −  
COUT = 470 nF, IOUT = 10 mA  
COUT = 470 nF, IOUT = 150 mA  
www.onsemi.com  
8
NCP140  
TYPICAL CHARACTERISTICS  
3.3 V  
3.3 V  
2.3 V  
V
IN  
2.3 V  
V
IN  
V
OUT  
V
OUT  
V
C
= 1.8 V, I  
= 10 mA  
= 470 nF (MLCC)  
V
C
= 1.8 V, I  
= 10 mA  
= none  
OUT  
OUT  
OUT  
OUT  
= none, C  
= none, C  
IN  
OUT  
IN  
OUT  
20 ms/div  
20 ms/div  
Figure 32. Line Transient Response −  
OUT = None  
Figure 33. Line Transient Response −  
C
COUT = 470 nF  
I
OUT  
t
= 1 ms  
FALL  
t
= 1 ms  
RISE  
I
OUT  
V
OUT  
V
OUT  
V
V
C
C
= 3.8 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 3.3 V  
= none  
= 3.3 V  
= none  
OUT  
OUT  
IN  
IN  
= none  
= none  
OUT  
OUT  
5 ms/div  
5 ms/div  
Figure 34. Load Transient Response −  
1 mA to 150 mA COUT = None  
Figure 35. Load Transient Response −  
150 mA to 1 mA COUT = None  
I
OUT  
t
= 1 ms  
FALL  
t
= 1 ms  
RISE  
I
OUT  
V
OUT  
V
OUT  
V
C
C
= 3.8 V, V  
= 1 mF (MLCC)  
= 3.3 V  
IN  
OUT  
V
C
C
= 3.8 V, V  
= 1 mF (MLCC)  
= 3.3 V  
IN  
OUT  
IN  
IN  
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
5 ms/div  
50 ms/div  
Figure 36. Load Transient Response −  
1 mA to 150 mA COUT = 1 mF  
Figure 37. Load Transient Response −  
150 mA to 1 mA COUT = 1 mF  
www.onsemi.com  
9
NCP140  
TYPICAL CHARACTERISTICS  
I
OUT  
t
= 2 ms  
FALL  
t
= 2 ms  
I
RISE  
OUT  
V
OUT  
V
OUT  
V
C
= 3.8 V, V  
= none, C  
= 1.8 V  
= none  
V
C
= 3.8 V, V  
OUT  
= none, C  
IN OUT  
= 1.8 V  
= none  
IN  
OUT  
IN  
IN  
OUT  
5 ms/div  
5 ms/div  
Figure 38. Load Transient Response −  
1 mA to 150 mA tRISE = 2 ms  
Figure 39. Load Transient Response −  
150 mA to 1 mA tFALL = 2 ms  
TSD cycling  
V
V
= 3.8 V  
V
OUT  
IN  
V
EN  
= 3.3 V  
OUT  
C
= 1 mF (MLCC)  
IN  
Overheating  
Thermal  
Shutdown  
V
OUT  
C
= 1 mF  
OUT  
I
OUT  
C
= 470 nF  
OUT  
V
V
C
C
= 5.5 V  
IN  
= 1.8 V  
= none  
OUT  
IN  
= none  
OUT  
C
= none  
OUT  
10 ms/div  
100 ms/div  
Figure 40. Over Temperature Protection TSD  
Figure 41. Enable TurnOff  
V
IN  
V
OUT  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
= none  
OUT  
IN  
= none  
OUT  
20 ms/div  
Figure 42. Slow VIN Ramp  
www.onsemi.com  
10  
NCP140  
APPLICATIONS INFORMATION  
General  
Output Current Limit  
The NCP140 is high performance low dropout regulator  
Output Current is internally limited within the IC to a  
typical 230 mA. The NCP140 will source this amount of  
current measured with a voltage drops on the 90% of the  
capable of supplying 150 mA and providing very stable  
output voltage with or without capacitors. The device is  
designed to remain stable with any type of capacitor or even  
without input and output capacitor. The NCP140 also offers  
low quiescent current and very small packages suitable for  
space constrains application. In connection with no  
capacitor requirements the regulator is very useful in  
wearable application, smartphones and everywhere where is  
high power density required.  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to approximately 250 mA. The current  
limit and short circuit protection will work properly over  
whole temperature range and also input voltage range. There  
is no limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
Input and Output Capacitor Selection  
In spite of the NCP140 is designed as capless device  
capacitors can be added to improve dynamic behavior such  
as fast load transient or PSRR. Recommendation for  
selection input and output capacitor is very similar as for  
high performance LDO. Low ESR ceramic capacitor is the  
most beneficial for improvement load transient and PSRR  
but suitable is almost any type of capacitor. The NCP140  
remains stable with electrolytic and tantalum capacitor too.  
threshold (T 160°C typical), Thermal Shutdown event  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
SD  
Thermal Shutdown Reset threshold (T  
140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Enable Operation  
The NCP140 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turnedoff so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active (only A option) so that  
Power Dissipation  
As power dissipated in the NCP140 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
the output voltage V  
is pulled to GND through a 100 W  
OUT  
resistor. In the disable state the device consumes as low as  
typ. 10 nA from the V .  
The maximum power dissipation the NCP140 can handle  
is given by:  
IN  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCP140 regulates the output voltage and  
the active discharge transistor is turnedoff.  
The EN pin has internal pulldown current source with  
typ. value of 100 nA which assures that the device is  
turnedoff when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
ƪ
ƫ
85° C * TA  
PD(MAX)  
+
(eq. 1)  
qJA  
The power dissipated by the NCP140 for given  
application conditions can be calculated from the following  
equation:  
ǒ
Ǔ
ǒV  
Ǔ
D [ VIN IGND@IOUT ) IOUT IN * VOUT  
(eq. 2)  
P
www.onsemi.com  
11  
 
NCP140  
350  
300  
250  
200  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
q
q
, 1 oz Cu  
, 2 oz Cu  
JA  
JA  
P
P
, T = 25°C, 2 oz Cu  
D(MAX) A  
150  
100  
, T = 25°C, 1 oz Cu  
D(MAX)  
A
50  
0
0.40  
0.35  
0
100  
200  
300  
400  
500  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 43. qJA and PD (MAX) vs. Copper Area (XDFN40.8 x 0.8 mm)  
350  
300  
250  
200  
150  
100  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
q
q
, 1 oz Cu  
, 2 oz Cu  
JA  
JA  
P
P
, T = 25°C, 2 oz Cu  
D(MAX) A  
, T = 25°C, 1 oz Cu  
D(MAX)  
A
50  
0
0.30  
0.25  
0
100  
200  
300  
400  
500  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 44. qJA and PD (MAX) vs. Copper Area (XDFN41 x 1 mm)  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT(NOM) OUT  
A
OUT  
IN  
PCB Layout Recommendations  
Larger copper area connected to the pins will improve the  
device thermal resistance and improve maximum power  
dissipation. The actual power dissipation can be calculated  
from the equation above (Equation 2). Expose pad should be  
tied the shortest path to the GND pin.  
TurnOn Time  
The turnon time is defined as the time period from EN  
assertion to the point in which V  
will reach 98% of its  
OUT  
www.onsemi.com  
12  
NCP140  
ORDERING INFORMATION  
Nominal  
Output  
Voltage  
Device  
Description  
Marking  
GA  
Package  
Shipping  
NCP140AMXC180TCG  
NCP140AMXC280TCG  
NCP140AMXC300TCG  
NCP140AMXC330TCG  
NCP140BMXC330TCG  
NCP140AMXD180TCG  
NCP140AMXD280TCG  
NCP140AMXD300TCG  
NCP140AMXD330TCG  
NCP140BMXD330TCG  
1.8 V  
2.8 V  
3.0 V  
3.3 V  
3.3 V  
1.8 V  
2.8 V  
3.0 V  
3.3 V  
3.3 V  
GC  
XDFN4  
(PbFree)  
CASE 711BF  
Active Output Discharge  
GE  
3000 / Tape & Reel  
GD  
Without Active Output Discharge  
G2  
GA  
GC  
XDFN4  
(PbFree)  
CASE 711AJ  
Active Output Discharge  
GE  
3000 / Tape & Reel  
GD  
Without Active Output Discharge  
G2  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
13  
NCP140  
PACKAGE DIMENSIONS  
XDFN4 0.8x0.8, 0.48P  
CASE 711BF  
ISSUE O  
NOTES:  
EXPOSED Cu  
MOLD CMPD  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINALS.  
PIN ONE  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
REFERENCE  
DETAIL B  
E
ALTERNATE  
2X  
0.05  
C
CONSTRUCTION  
MILLIMETERS  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
A
L2  
0.05  
C
L2  
2X  
A3  
b
D
D2 0.20  
E
E2 0.20  
e
L
0.127 REF  
TOP VIEW  
0.17  
0.80 BSC  
0.27  
0.30  
0.30  
L2  
L2  
DETAIL B  
A
0.05  
C
(A3)  
A1  
0.80 BSC  
L1  
DETAIL A  
DETAIL A  
0.48 BSC  
ALTERNATE  
0.17  
−−−  
0.27  
0.10  
CONSTRUCTION  
0.05  
C
L1  
L2  
SEATING  
PLANE  
NOTE 4  
0.06 REF  
C
SIDE VIEW  
0.32  
4X  
0.12  
e
RECOMMENDED  
MOUNTING FOOTPRINT*  
e/2  
4X  
0.19  
4X  
0.36  
4X 0.29  
E2  
455D2  
1
2
3
DETAIL C  
DETAIL A  
0.32  
1.00  
4
4X b  
4X L  
M
0.10  
C A  
B
DETAIL C  
M
0.05  
C
NOTE 3  
0.48  
PITCH  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
14  
NCP140  
PACKAGE DIMENSIONS  
XDFN4 1.0x1.0, 0.65P  
CASE 711AJ  
ISSUE A  
4X L2  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
4X b2  
2X  
0.05  
C
MILLIMETERS  
DETAIL A  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
0.05  
C
2X  
A
TOP VIEW  
A3  
b
b2 0.02  
0.10 REF  
0.15  
0.25  
0.12  
(A3)  
0.05  
0.05  
C
D
1.00 BSC  
D2 0.43  
0.53  
A
E
e
L
1.00 BSC  
0.65 BSC  
0.20  
C
0.30  
0.17  
SEATING  
PLANE  
NOTE 4  
A1  
L2 0.07  
C
SIDE VIEW  
RECOMMENDED  
MOUNTING FOOTPRINT*  
e
e/2  
DETAIL A  
4X L  
D2  
02.5X2  
0.65  
1
4
2
PITCH  
PACKAGE  
OUTLINE  
4X  
0.39  
D2  
4X  
0.11  
455  
1.20  
3
4X b  
M
0.05  
C A B  
4X  
4X  
0.26  
0.24  
NOTE 3  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP140/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY