NCP153MX330180TCG [ONSEMI]

LDO Regulator, 130 mA, Dual Output, Low Iq, High PSRR, with Foldback;
NCP153MX330180TCG
型号: NCP153MX330180TCG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator, 130 mA, Dual Output, Low Iq, High PSRR, with Foldback

光电二极管 输出元件 调节器
文件: 总15页 (文件大小:804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP153  
LDO Regulator - Dual,  
Low IQ  
130 mA  
The NCP153 is 130 mA, Dual Output Linear Voltage Regulator that  
provides a very stable and accurate voltage with very low noise and  
high Power Supply Rejection Ratio (PSRR) suitable for RF  
applications. In order to optimize performance for battery operated  
portable applications, the NCP153 employs the Adaptive Ground  
Current Feature for low ground current consumption during lightload  
conditions. Device also incorporates foldback current protection to  
reduce short circuit current and protect powered devices.  
www.onsemi.com  
MARKING  
DIAGRAM  
GA M  
XDFN6, 1.2x1.2  
CASE 711AT  
Features  
GA = Specific Device Code  
= Date Code  
Operating Input Voltage Range: 1.9 V to 5.25 V  
Two Independent Output Voltages:  
M
(for details please refer to the Ordering Information section)  
Very Low Dropout: 130 mV Typical at 130 mA  
PIN CONNECTIONS  
Low IQ of typ. 50 mA per Channel  
High PSRR: 75 dB at 1 kHz  
Two Independent Enable Pins  
Over Current Protection: 165 mA Typical  
Foldback Short Circuit Protection  
Thermal Shutdown  
OUT1  
1
2
3
6
5
4
EN1  
IN  
OUT2  
GND  
EN2  
Stable with a 0.22 mF Ceramic Output Capacitor  
Available in XDFN6 1.2 x 1.2 mm Package  
Active Output Discharge for Fast Output TurnOff  
These are PbFree Devices  
XDFN6  
(Top view)  
Typical Applications  
Smartphones, Tablets, Wireless Handsets  
Wireless LAN, Bluetooth , ZigBee Interfaces  
Other Battery Powered Applications  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
®
®
NCP153  
V
IN1  
V
OUT2  
IN  
OUT2  
OUT1  
EN1  
EN2  
V
OUT1  
GND  
C
IN1  
C
OUT2  
0.22 mF  
C
OUT1  
0.22 mF  
0.22 mF  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
September, 2019 Rev. 2  
NCP153/D  
NCP153  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
EN1  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT1  
ACTIVE  
DISCHARGE  
EN1  
EN2  
GND  
IN  
ACTIVE  
DISCHARGE  
BANDGAP  
REFERENCE  
OUT2  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
THERMAL  
SHUTDOWN  
ENABLE  
LOGIC  
EN2  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN6  
Pin  
Name  
Description  
1
OUT1  
Regulated output voltage of the first channel. A small 0.22 mF ceramic capacitor is needed from this pin to  
ground to assure stability.  
2
OUT2  
Regulated output voltage of the second channel. A small 0.22 mF ceramic capacitor is needed from this pin  
to ground to assure stability.  
3
4
GND  
EN2  
Power supply ground. Soldered to the copper plane allows for effective heat dissipation.  
Driving EN2 over 0.9 V turnson OUT2. Driving EN below 0.4 V turnsoff the OUT2 and activates the active  
discharge.  
5
6
IN  
Input pin common for both channels. It is recommended to connect 0.22 mF ceramic capacitor close to the  
device pin.  
EN1  
Driving EN1 over 0.9 V turnson OUT1. Driving EN below 0.4 V turnsoff the OUT1 and activates the active  
discharge.  
EP  
Exposed pad must be tied to ground. Soldered to the copper plane allows for effective thermal dissipation.  
www.onsemi.com  
2
NCP153  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
Output Voltage  
VIN  
0.3 V to 6 V  
V
,
0.3 V to VIN + 0.3 V or 6 V  
V
OUT1  
V
OUT2  
Enable Inputs  
V
,
0.3 V to 6 V  
V
EN1  
V
EN2  
Output Short Circuit Duration  
t
Indefinite  
150  
s
°C  
°C  
V
SC  
Maximum Junction Temperature  
Storage Temperature  
T
J(MAX)  
T
STG  
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22A114  
ESD Machine Model tested per EIA/JESD22A115  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN6 1.2 x 1.2 mm,  
Thermal Resistance, JunctiontoAir  
°C/W  
q
q
170  
JA  
JL  
Thermal Characterization Parameter, JunctiontoLead (Pin 2)  
3. Single component mounted on 1 oz, FR4 PCB with 645mm2 Cu area.  
www.onsemi.com  
3
 
NCP153  
ELECTRICAL CHARACTERISTIC  
40°C T 85°C; V = V  
+ 1 V or 2.5 V, whichever is greater; V = 0.9 V, I  
= 1 mA, C = C  
= 0.22 mF. Typical  
J
IN  
OUT(NOM)  
EN  
OUT  
IN  
OUT  
values are at T = +25°C. Min/Max values are specified for T = 40°C and T = 85°C respectively. (Note 4)  
J
J
J
Parameter  
Test Conditions  
Symbol Min  
1.9  
Typ  
Max  
5.25  
+2  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
V
IN  
V
V
> 2 V  
V
OUT  
2  
%
OUT  
40°C T 85°C  
J
2 V  
60  
+60  
0.1  
mV  
%/V  
mV  
OUT  
Line Regulation  
Load Regulation  
V
+ 0.5 V or 2.5 V V 5 V  
Reg  
0.02  
15  
OUT  
IN  
LINE  
I
= 1 mA to 130 mA, T = +25°C  
Reg  
50  
OUT  
J
LOAD  
V
= 1.8 V  
= 3.3 V  
265  
130  
280  
150  
OUT(nom)  
OUT(nom)  
Dropout Voltage (Note 5)  
I
= 130 mA, T = +25°C  
V
DO  
mV  
OUT  
J
V
Output Current  
OCP Level  
T = +25°C  
I
130  
135  
mA  
mA  
mA  
mA  
J
OUT  
V
OUT  
V
OUT  
I
= 90% V  
, T = +25°C  
I
OCP  
165  
55  
195  
100  
OUT(nom)  
J
Short Circuit Current  
Quiescent Current  
= 0 V, T = +25°C  
I
SC  
J
= 0 mA, EN1 = V , EN2 = 0 V or EN2 = V  
,
I
Q
50  
OUT  
EN1 = 0 V  
IN  
IN  
I
= I  
= 0 mA, V  
= V  
= V  
IN  
I
85  
200  
1
mA  
mA  
V
OUT1  
OUT2  
EN1  
EN2  
Q
Shutdown Current (Note 6)  
V
0.4 V, V = 5.25 V  
I
DIS  
0.1  
EN  
IN  
EN Pin Threshold Voltage  
High Threshold  
Low Threshold  
V
V
Voltage increasing  
Voltage decreasing  
V
V
0.9  
EN  
EN  
EN_HI  
EN_LO  
0.4  
1.0  
EN Pin Input Current  
V
V
= V = 5.25 V  
I
EN  
0.3  
75  
mA  
EN  
IN  
Power Supply Rejection Ratio  
= V  
+1 V for V  
OUT  
> 2 V, V =  
IN  
= 10 mA  
f = 1 kHz PSRR  
dB  
IN  
OUT  
OUT  
OUT  
2.5 V, for V  
2 V, I  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
= 4 V, V < 0.4 V  
V
75  
50  
mV  
rms  
N
Active Discharge Resistance  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
V
IN  
R
DIS  
W
EN  
Temperature increasing from T = +25°C  
T
SD  
160  
20  
°C  
°C  
J
Temperature falling from T  
T
SDH  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = T  
J
A
= 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
5. Characterized when V  
falls 100 mV below the regulated voltage at V = V  
+ 1 V.  
OUT  
IN  
OUT(NOM)  
6. Shutdown Current is the current flowing into the IN pin when the device is in the disable state.  
www.onsemi.com  
4
 
NCP153  
TYPICAL CHARACTERISTICS  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
3.35  
3.34  
3.33  
3.32  
I
= 1 mA  
OUT  
3.31  
3.30  
3.29  
3.28  
3.27  
I
= 1 mA  
OUT  
I
= 130 mA  
I
= 130 mA  
OUT  
OUT  
V
V
C
C
= 4.3 V  
V
V
C
C
= 2.8 V  
IN  
IN  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
= 1.8 V  
= 0.22 mF  
= 0.22 mF  
OUT  
OUT  
IN  
IN  
3.26  
3.25  
1.76  
1.75  
OUT  
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature –  
OUT = 1.8 V  
Figure 4. Output Voltage vs. Temperature –  
VOUT = 3.3 V  
V
450  
400  
350  
300  
250  
200  
150  
100  
750  
675  
600  
525  
450  
375  
V
= V  
OUT1LOAD  
OUT2LOAD  
= V ,  
V
V
V
C
C
= 4.3 V  
V
= 4.3 V  
IN  
EN1  
EN2 IN  
IN  
T = 85°C  
J
= 3.3 V  
V
OUT  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
OUT  
OUT  
= V  
= V  
C
C
EN1  
EN2  
IN  
IN  
T = 25°C  
= 0.22 mF  
J
IN  
= 0.22 mF  
OUT  
V
= V  
= V ,  
EN2 IN  
EN1  
OUT1LOAD  
300  
225  
150  
T = 40°C  
J
V
= 0 V, V  
OUT1LOAD  
= V ,  
EN2 IN  
EN1  
50  
0
75  
0
0.001 0.01  
0.1  
1
10  
100  
1000  
0
13 26 39 52 65 78 91 104 117 130  
, OUTPUT CURRENT (mA)  
I
, OUTPUT CURRENT (mA)  
I
OUT  
OUT  
Figure 5. Ground Current vs. Output Current –  
One Output Load  
Figure 6. Ground Current vs. Output Current –  
Different Load Combinations  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.05  
0.04  
0.03  
0.02  
0.01  
0
85°C  
40°C  
25°C  
0.01  
0.02  
0.03  
V
V
I
C
C
= 2.5 V to 5.25 V  
IN  
V
V
C
C
= 4.3 V  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
IN  
= 1.8 V  
OUT  
OUT  
= 1 mA  
OUT  
IN  
= 0.22 mF  
IN  
0.04  
0.05  
10  
0
OUT  
= 0.22 mF  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
, INPUT VOLTAGE (V)  
40 25 10  
5
20  
35  
50  
65  
80 95  
V
IN  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Quiescent Current vs. Input Voltage  
– Both Outputs ON  
Figure 8. Line Regulation vs. Temperature  
V
OUT = 1.8 V  
www.onsemi.com  
5
NCP153  
TYPICAL CHARACTERISTICS  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
V
V
= 2.5 V  
9
8
7
6
5
4
3
2
IN  
= 3.3 V  
OUT  
I
= 1 mA to 130 mA  
= 0.22 mF  
OUT  
C
C
IN  
= 0.22 mF  
OUT  
0.01  
0.02  
0.03  
V
V
I
C
C
= 4.3 V to 5.25 V  
IN  
= 3.3 V  
OUT  
= 1 mA  
OUT  
= 0.22 mF  
IN  
0.04  
0.05  
1
0
= 0.22 mF  
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Line Regulation vs. Temperature −  
Figure 10. Load Regulation vs. Temperature −  
V
OUT = 3.3 V  
VOUT = 1.8 V  
300  
270  
240  
210  
180  
150  
120  
90  
10  
9
V
V
C
C
= 2.8 V  
IN  
T = 85°C  
= 1.8 V  
= 0.22 mF  
= 0.22 mF  
J
OUT  
8
IN  
T = 25°C  
J
7
OUT  
6
5
T = 40°C  
J
4
V
V
= 4.3 V  
IN  
= 3.3 V  
3
OUT  
I
= 1 mA to 130 mA  
= 0.22 mF  
OUT  
2
60  
C
C
IN  
1
0
= 0.22 mF  
30  
0
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
0
13 26 39  
52 65 78 91 104 117 130  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
OUT  
Figure 11. Load Regulation vs. Temperature −  
OUT = 3.3 V  
Figure 12. Dropout Voltage vs. Output Current  
– VOUT = 1.8 V  
V
200  
180  
160  
140  
120  
100  
80  
350  
315  
280  
245  
210  
175  
140  
105  
70  
V
V
C
C
= 2.8 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 1.8 V  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
OUT  
OUT  
T = 85°C  
J
= 0.22 mF  
IN  
I
= 130 mA  
= 75 mA  
IN  
OUT  
= 0.22 mF  
OUT  
OUT  
T = 25°C  
J
I
OUT  
T = 40°C  
J
60  
40  
I
= 0 mA  
50  
OUT  
20  
0
35  
0
0
13 26 39  
52 65 78 91 104 117 130  
40 25 10  
5
20  
35  
65  
80 95  
I , OUTPUT CURRENT (mA)  
OUT  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Dropout Voltage vs. Output Current  
– VOUT = 3.3 V  
Figure 14. Dropout Voltage vs. Temperature –  
VOUT = 1.8 V  
www.onsemi.com  
6
NCP153  
TYPICAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
300  
270  
240  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
= 0.22 mF  
IN  
= 0.22 mF  
OUT  
210  
I
= 130 mA  
OUT  
180  
150  
I
= 75 mA  
OUT  
120  
V
V
C
C
= 4.3 V  
60  
90  
IN  
= 3.3 V  
I
= 0 mA  
OUT  
OUT  
40  
60  
= 0.22 mF  
IN  
30  
0
20  
0
= 0.22 mF  
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Dropout Voltage vs. Temperature –  
OUT = 3.3 V  
Figure 16. Current Limit vs. Temperature  
V
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
100  
90  
80  
70  
60  
50  
40  
30  
20  
T = 40°C  
J
T = 25°C  
J
T = 85°C  
J
V
V
C
C
= 4.3 V  
= 0 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
OUT  
OUT  
= 0.22 mF  
= 0.22 mF  
IN  
IN  
0.4  
0
10  
0
OUT  
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
0
20 40 60  
80 100 120 140 160 180 200  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
OUT  
Figure 17. Short Circuit Current vs.  
Temperature  
Figure 18. Current Foldback Protection 3.3 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
200  
180  
160  
140  
120  
100  
80  
T = 40°C  
J
T = 25°C  
J
T = 85°C  
J
V
V
C
C
= 5.5 V  
60  
IN  
V
V
= 2.8 V  
IN  
= 3.3 V  
OUT  
= 1.8 V  
OUT  
40  
= 0.22 mF  
IN  
C
C
= 0.22 mF  
IN  
0.2  
0
20  
0
= 0.22 mF  
OUT  
= 0.22 mF  
OUT  
0
20 40 60  
80 100 120 140 160 180 200  
40 25 10  
5
20  
35  
50  
65  
80  
95  
I , OUTPUT CURRENT (mA)  
OUT  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Current Foldback Protection 1.8 V  
Figure 20. Disable Current vs. Temperature  
www.onsemi.com  
7
NCP153  
TYPICAL CHARACTERISTICS  
100  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Unstable Operation  
10  
1
OFF > ON  
ON > OFF  
V
OUT  
= 3.3 V  
V
OUT  
= 1.8 V  
Stable Operation  
V
V
C
C
= 4.3 V  
IN  
0.1  
= 3.3 V  
OUT  
= 0.22 mF  
IN  
0.1  
0
= 0.22 mF  
OUT  
0.01  
0
13 26 39  
52 65 78 91 104 117 130  
40 25 10  
5
20  
35  
50  
65  
80 95  
I , OUTPUT CURRENT (mA)  
OUT  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 22. Stability vs. ESR  
Figure 21. Enable Voltage Threshold vs.  
Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
V
C
C
= 4.3 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
= 3.3 V  
= 0.22 mF  
= 0.22 mF  
OUT  
OUT  
OUT  
IN  
IN  
50  
0
5
0
OUT  
40 25 10  
5
20  
35  
50  
65  
80  
95  
40 25 10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. Current To Enable Pin vs.  
Temperature  
Figure 24. Discharge Resistance vs.  
Temperature  
100  
90  
100  
90  
80  
70  
60  
80  
1 mA  
1 mA  
70  
10 mA  
10 mA  
60  
50  
40  
30  
20  
50  
40  
30  
20  
V
V
C
C
= 2.8 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 1.8 V  
= none  
= 3.3 V  
= none  
OUT  
OUT  
IN  
IN  
100 mA  
10M  
100 mA  
1M 10M  
= 0.22 mF  
= 0.22 mF  
10  
0
10  
0
OUT  
OUT  
100  
1K  
10K  
100K  
1M  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Power Supply Rejection Ratio,  
OUT = 1.8 V, COUT = 0.22 mF  
Figure 26. Power Supply Rejection Ratio,  
V
VOUT = 3.3 V, COUT=0.22 mF  
www.onsemi.com  
8
NCP153  
TYPICAL CHARACTERISTICS  
10K  
1K  
10 mA  
RMS Output Noise (mV)  
10 Hz 100 kHz 100 Hz 100 kHz  
100 mA  
I
OUT  
1 mA  
10 mA  
100 mA  
68.07  
67.30  
68.31  
67.07  
66.31  
67.35  
100  
V
V
C
C
= 2.8 V  
IN  
= 1.8 V  
OUT  
= 0.22 mF  
IN  
1 mA  
10  
1
= 0.22 mF  
OUT  
MLCC, X7R,  
1206 size  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
Figure 27. Output Voltage Noise Spectral  
Density for VOUT = 1.8 V, COUT = 220 nF  
10K  
1K  
10 mA  
100 mA  
RMS Output Noise (mV)  
10 Hz 100 kHz 100 Hz 100 kHz  
I
OUT  
100  
1 mA  
10 mA  
100 mA  
108.34  
107.18  
109.12  
106.75  
105.56  
107.54  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
= 0.22 mF  
IN  
10  
1
1 mA  
= 0.22 mF  
OUT  
MLCC, X7R,  
1206 size  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
Figure 28. Output Voltage Noise Spectral  
Density for VOUT = 3.3 V, COUT = 220 nF  
www.onsemi.com  
9
NCP153  
TYPICAL CHARACTERISTICS  
V
I
V
V
= 4.3 V  
V
EN  
IN  
EN  
= 3.3 V  
OUT1  
I
IN  
IN  
V
V
V
= 3.8 V  
IN  
V
= 1.8 V  
OUT2  
= 3.3 V  
= disable  
OUT1  
OUT2  
I
= 10 mA  
= 1 mA  
OUT1  
V
V
V
V
OUT1  
OUT1  
I
= 10 mA  
= C  
OUT1  
C
= 1 mF  
OUT2  
I
OUT1  
OUT2  
OUT2  
OUT2  
C
= C  
= 1 mF  
OUT1  
OUT2  
40 ms/div  
40 ms/div  
Figure 29. Enable Turnon Response –  
Figure 30. Enable Turnon Response –  
VR1 = 10 mA, VR2 = Off  
VR1 = 10 mA, VR2 = 1 mA  
V
IN  
t
= 1 ms  
FALL  
t
= 1 ms  
V
IN  
RISE  
V
OUT2  
V
V
OUT2  
V
= 3.8 V to 4.8 V  
= 10 mA  
V
= 4.8 V to 3.8 V  
= 10 mA  
IN  
IN  
V
OUT1  
I
I
OUT2  
OUT1  
OUT2  
C
C
= 220 nF  
= 220 nF  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
OUT1  
OUT2  
2 ms/div  
2 ms/div  
Figure 31. Line Transient Response – Rising  
Edge, VEN1 = VEN2 = VIN, VOUT1 = 3.3 V,  
IOUT1 = 10 mA  
Figure 32. Line Transient Response – Falling  
Edge, VEN1 = VEN2 = VIN, VOUT1 = 3.3 V,  
IOUT1 = 10 mA  
I
OUT1  
t
= 1 ms  
t
= 1 ms  
RISE  
FALL  
I
OUT1  
V
V
= 4.3 V  
V
= 4.3 V  
IN  
IN  
V
V
= 3.3 V  
V
OUT1  
= 3.3 V  
OUT1  
V
V
OUT1  
OUT1  
V
OUT2  
I
= 1.8 V  
= 0 mA  
V
I
= 1.8 V  
= 0 mA  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
C
C
= 220 nF  
= 220 nF  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
OUT1  
OUT2  
4 ms/div  
4 ms/div  
Figure 33. Load Transient Response – Rising  
Edge, IOUT = 1 mA to 130 mA – 3.3 V  
Figure 34. Load Transient Response– Falling  
Edge, IOUT = 130 mA to 1 mA – 3.3 V  
www.onsemi.com  
10  
NCP153  
TYPICAL CHARACTERISTICS  
V
V
V
= 4.3 V  
I
IN  
OUT2  
= 3.3 V  
= 1.8 V  
OUT1  
OUT2  
t
= 1 ms  
FALL  
I
= 0 mA  
OUT1  
t
= 1 ms  
RISE  
I
OUT2  
V
V
= 4.3 V  
V
V
IN  
OUT1  
V
V
= 3.3 V  
OUT1  
OUT1  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
V
OUT2  
I
= 1.8 V  
= 0 mA  
OUT2  
OUT2  
OUT1  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
4 ms/div  
4 ms/div  
Figure 35. Load Transient Response – Rising  
Edge, IOUT = 1 mA to 130 mA – 1.8 V  
Figure 36. Load Transient Response – Falling  
Edge, IOUT = 130 mA to 1 mA – 1.8 V  
V
V
V
I
= 4.3 V  
I
IN  
OUT2  
= 3.3 V  
= 1.8 V  
OUT1  
OUT2  
t
= 1 ms  
FALL  
= 0 mA  
t
= 1 ms  
OUT1  
RISE  
I
OUT2  
V
V
V
I
= 4.3 V  
IN  
= 3.3 V  
OUT1  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
= 1.8 V  
OUT2  
V
V
OUT1  
= 0 mA  
V
V
OUT1  
OUT1  
OUT2  
OUT2  
C
C
= 220 nF  
= 220 nF  
OUT1  
OUT2  
4 ms/div  
4 ms/div  
Figure 37. Load Transient Response – Rising  
Edge, IOUT = 0.1 mA to 130 mA  
Figure 38. Load Transient Response – Falling  
Edge, IOUT = 130 mA to 0.1 mA  
V
V
V
= 4.3 V  
IN  
V
IN  
= 3.3 V  
= 1.8 V  
OUT1  
OUT2  
V
EN  
t
= 1 ms  
FALL  
V
V
OUT1  
OUT2  
V
V
V
= 4.3 V  
V
OUT1  
IN  
C
= 4.7 mF  
OUT  
= 3.3 V  
= 1.8 V  
OUT1  
OUT2  
C
= 1 mF  
OUT  
I
I
= 10 mA  
= 10 mA  
OUT1  
OUT2  
C
C
= C  
=
IN  
OUT1  
= 220 nF  
OUT1  
20 ms/div  
200 ms/div  
Figure 39. Turnon/off Slow Rising VIN  
Figure 40. Enable Turnoff  
www.onsemi.com  
11  
NCP153  
APPLICATIONS INFORMATION  
General  
disable state the device consumes as low as typ. 10 nA from  
the V .  
The NCP153 is a dual output high performance 130 mA  
IN  
Low Dropout Linear Regulator. This device delivers very  
high PSRR (75 dB at 1 kHz) and excellent dynamic  
performance as load/line transients. In connection with low  
quiescent current this device is very suitable for various  
battery powered applications such as tablets, cellular  
phones, wireless and many others. Each output is fully  
protected in case of output overload, output short circuit  
condition and overheating, assuring a very robust design.  
The NCP153 device is housed in XDFN6 1.2 mm x  
1.2 mm package which is useful for space constrains  
application.  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCP153 regulates the output voltage and  
the active discharge transistor is turnedoff.  
The both EN pin has internal pulldown current source  
with typ. value of 300 nA which assures that the device is  
turnedoff when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
Foldback Short Circuit Protection  
The internal foldback limits short circuit current to typical  
55 mA and protects powered device against overheating.  
Maximum output current is internaly limited to 165 mA  
(typ). The current limit and short circuit protection will work  
properly over whole temperature range and also input  
voltage range. There is no limitation for the short circuit  
duration. Thess protections are independent for each  
channel. Short circuit on the one channel do not influence  
second channel which will work according to specification.  
Input Capacitor Selection (CIN)  
It is recommended to connect at least a 0.22 mF Ceramic  
X5R or X7R capacitor as close as possible to the IN pin of  
the device. Thiscapacitor will provide a low impedance path  
for unwanted AC signals or noise modulated onto constant  
input voltage. There is no requirement for the min. or max.  
ESR of the input capacitor but it is recommended to use  
ceramic capacitors for their low ESR and ESL. A good input  
capacitor will limit the influence of input trace inductance  
and source resistance during sudden load current changes.  
Larger input capacitor may be necessary if fast and large  
load transients are encountered in the application.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold (T 160°C typical), Thermal Shutdown event  
SD  
is detected and the affected channel is turnoff. Second  
channel still working. The channel which is overheated will  
remain in this state until the die temperature decreases below  
Output Decoupling (COUT  
)
The NCP153 requires an output capacitor for each output  
connected as close as possible to the output pin of the  
regulator. The recommended capacitor value is 0.22 mF and  
X7R or X5R dielectric due to its low capacitance variations  
over the specified temperature range. The NCP153 is  
designed to remain stable with minimum effective  
capacitance of 0.15 mF to account for changes with  
temperature, DC bias and package size. Especially for small  
package size capacitors such as 0201 the effective  
capacitance drops rapidly with the applied DC bias.  
the Thermal Shutdown Reset threshold (T  
typical). Once the device temperature falls below the 140°C  
the appropriate channel is enabled again. The thermal  
140°C  
SDU  
shutdown feature provides the protection from  
a
catastrophic device failure due to accidental overheating.  
This protection is not intended to be used as a substitute for  
proper heat sinking. The long duration of the short circuit  
condition to some output channel could cause turnoff other  
output when heat sinking is not enough and temperature of  
the other output reach T temperature.  
SD  
There is no requirement for the minimum value of  
Power Dissipation  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
As power dissipated in the NCP153 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
maximum value of ESR should be less than 2 W. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR. It is not  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
The maximum power dissipation the NCP153 can handle  
is given by:  
Enable Operation  
The NCP153 uses the dedicated EN pin for each output  
channel. This feature allows driving outputs separately.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turnedoff so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
ƪ
ƫ
125° C * TA  
(eq. 1)  
PD(MAX)  
+
qJA  
The power dissipated by the NCP153 for given  
application conditions can be calculated from the following  
equations:  
V
OUT  
is pulled to GND through a 50 W resistor. In the  
www.onsemi.com  
12  
NCP153  
ǒV Ǔ  
D [ VIN   IGND ) IOUT1 IN * VOUT1  
P
(eq. 2)  
ǒV  
Ǔ
) IOUT2 IN * VOUT2  
240  
220  
200  
180  
160  
140  
120  
100  
80  
1.25  
1.00  
0.75  
0.50  
0.25  
P
, T = 25°C, 2 oz Cu  
A
D(MAX)  
P , T = 25°C, 1 oz Cu  
D(MAX) A  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
60  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 41. qJA vs. Copper Area (XDFN6)  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT(NOM) OUT  
A
OUT  
IN  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place input and output capacitors close to the  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from the equation above (Equation 2). Expose  
pad should be tied the shortest path to the GND pin.  
Power Supply Rejection Ratio  
The NCP153 features very good Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
100 kHz 10 MHz can be tuned by the selection of C  
capacitor and proper PCB layout.  
OUT  
TurnOn Time  
The turnon time is defined as the time period from EN  
assertion to the point in which V  
will reach 98% of its  
OUT  
ORDERING INFORMATION  
Voltage Option*  
(OUT1/OUT2)  
Marking  
Rotation  
Device  
Marking  
Package  
Shipping  
NCP153MX330180TCG  
3.3 V/1.8 V  
GA  
0°  
XDFN-6  
(Pb-Free)  
5000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact factory for other voltage options. Output voltage range 1.0 V to 3.3 V with step 50 mV.  
ZigBee is a registered trademark of ZigBee Alliance.  
Bluetooth is a registered trademark of Bluetooth SIG.  
www.onsemi.com  
13  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
XDFN6 1.20x1.20, 0.40P  
CASE 711AT  
ISSUE C  
SCALE 4:1  
DATE 04 DEC 2015  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO THE PLATED  
TERMINALS.  
D
A
B
4. COPLANARITY APPLIES TO THE PAD AS  
WELL AS THE TERMINALS.  
PIN ONE  
MILLIMETERS  
E
REFERENCE  
DIM  
A
MIN  
0.30  
0.00  
0.13  
1.15  
0.84  
1.15  
0.20  
TYP  
0.37  
0.03  
0.18  
1.20  
0.94  
1.20  
MAX  
0.45  
0.05  
0.23  
1.25  
1.04  
1.25  
0.40  
A1  
b
D
L
D2  
E
TOP VIEW  
DETAIL A  
0.30  
0.40 BSC  
E2  
e
OPTIONAL  
A
CONSTRUCTION  
L
0.15  
0.00  
0.20  
0.05  
0.25  
0.10  
0.05  
0.05  
C
C
L1  
A1  
GENERIC  
MARKING DIAGRAM*  
SEATING  
PLANE  
NOTE 4  
C
SIDE VIEW  
D2  
XX M  
6X  
L1  
E2  
XX = Specific Device Code  
1
3
M
= Date Code  
*This information is generic. Please refer  
to device data sheet for actual part mark-  
ing. PbFree indicator, “G” or microdot “  
G”, may or may not be present.  
6X  
L
6
4
DETAIL A  
RECOMMENDED  
MOUNTING FOOTPRINT*  
6X b  
e
M
0.10  
C A B  
6X  
0.37  
BOTTOM VIEW  
NOTE 3  
1.08  
PACKAGE  
OUTLINE  
1.40  
0.40  
1
0.40  
PITCH  
6X  
0.24  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON76141F  
XDFN6, 1.20 X 1.20, 0.40P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY