NCP171AMX080060TCG [ONSEMI]

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA;
NCP171AMX080060TCG
型号: NCP171AMX080060TCG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA

输出元件 调节器
文件: 总22页 (文件大小:1480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LDO Regulator - Ultra-Low  
Iq, Dual Power Mode  
50ꢀnA, 80ꢀmA  
NCP171  
The NCP171 is a Dual mode LDO offering up to 80 mA in Active  
Mode and as low as 50 nA of Iq in Low Power Mode. The Dual Mode  
function is selectable with the ECO pin allowing for dynamic  
switching between Active and Low Power Modes, ideal in long life  
battery powered applications.  
www.onsemi.com  
The output Voltage in Low Power mode can be lowered by an  
internally factory programmed value ranging 50 mV, 100 mV, 150 mV  
or 200 mV with respect to the nominal output voltage in Active Mode.  
This feature further lowers the application consumption in sleep mode.  
The NCP171 is in the SLIQ (Super Low Iq) LDO family and is  
available in small XDFN4 1.2 x 1.2 package.  
1
XDFN4 1.2x1.2  
AM SUFFIX  
CASE 711BC  
Features  
MARKING DIAGRAM  
Operating Input Voltage Range: 1.7 V to 5.5 V  
Output Voltage Range: 0.6 V to 3.3 V (50 mV steps)  
XXM  
1
Low Power Mode / Active Mode Externally Controlled by ECO pin  
Internally Factory Programmable Output Voltage Offset for Low  
Power/Active Mode to 50 mV, 100 mV, 150 mV, 200 mV  
Quiescent Current of 50 nA at No Load, (Low Power mode)  
Maximum Current 80 mA in Active Mode and 5 mA in Low Power  
Mode  
XX = Specific Device Code  
M
= Date Code  
PIN CONNECTIONS  
Low Dropout: 41 mV Typ. at 80 mA (Vout = 3.3 V)  
2% Output Voltage Accuracy in Active Mode  
ENA  
ECO  
4
3
IN  
High PSRR: 65 dB at 1 kHz in Active Mode  
Active Output Discharge for Fast Output TurnOff  
Current Limitation, Thermal Shutdown  
Available in Small XDFN4 1.2x1.2 Package  
These are PbFree Devices  
GND  
1
2
OUT  
(Top View)  
Typical Applications  
IoT  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 20 of this data sheet.  
RFID  
Portable Communication Equipment  
Consumer Electronics  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
December, 2019 Rev. 2  
NCP171/D  
NCP171  
Active Mode part  
ECO  
Current Limit &  
Thermal Shutdown  
Low Power part  
Vin  
Vout  
Active Discharge  
Vref  
Voltage Scaling  
ENA  
GND  
Figure 2. Simplified Schematic Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN4  
Pin Name  
Description  
1
ECO  
Low Power and Active mode control pin. Pulling this pin to ground switches the device into  
Low Power mode and pushing this pin to output voltage switches the device into Active mode.  
2
3
4
OUT  
IN  
Output pin  
Input pin  
ENA  
Enable pin. Driving ENA above 1.2 V turns on the regulator. Driving ENA below 0.4 V puts the  
regulator into shutdown mode.  
5(EP)  
GND  
Ground  
www.onsemi.com  
2
NCP171  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
6.0  
Unit  
V
Input Voltage (Note 1)  
V
IN  
Output Voltage  
V
V
0.3 to V  
0.3 to V  
0.3 to V  
120  
V
OUT  
ENA  
ECO  
OUT  
IN  
IN  
IN  
Enable pin  
V
ECO pin  
V
V
Output Current  
I
mA  
mW  
°C  
°C  
V
Power Dissipation XDFN4  
Maximum Junction Temperature  
Storage Temperature  
P
400  
D
T
85  
J(MAX)  
T
STG  
55 to 125  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78  
Table 3. THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN4  
Thermal Resistance, JunctiontoAir  
R
170  
°C/W  
q
JA  
3. This data was derived by thermal simulations for a single device mounted on the 40 mm x 40 mm x 1.6 mm FR4 PCB with 2ounce 800 sq  
mm copper area on top and bottom.  
www.onsemi.com  
3
 
NCP171  
Table 4. ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V  
+ 0.5 V or 1.7 V, whichever is greater; I  
=
J
IN  
OUTNOM  
OUT  
100 mA at Low Power Mode / 1 mA at Active Mode, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 4)  
J
IN  
OUT  
Parameter  
Operating Input Voltage  
Output Voltage  
Test Conditions  
Symbol  
Min  
1.7  
Typ  
Max  
5.5  
Unit  
V
VIN  
40°C T 85°C,  
Low Power Mode (LP)  
ECO = 0  
V
=
x0.97  
x1.03  
V
J
OUTAC  
OUTLP  
I
< 5 mA  
V
+
OUT  
NCP171A3MXxxxyyy  
V
OFFSET  
40°C T 85°C,  
OUT  
Low Power Mode (LP)  
ECO = 0  
NCP171AMXxxxyyy  
x0.95  
x1.05  
V
J
I
< 5 mA  
T = +25°C,  
Active Mode (AC)  
ECO = Voutnom  
x0.98  
x0.97  
x1.02  
x1.03  
V
V
J
0 I  
<80 mA  
OUT  
40°C T 85°C,  
Active Mode  
ECO = Voutnom  
J
0 I  
<80 mA  
OUT  
Offset (Note 5)  
Line Regulation  
T = +25°C  
V
50, 100,  
150, 200  
mV  
mV  
J
OFFSET  
V
= V  
+ 0.5 V to  
Line  
Reg  
10  
10  
10  
I
= 100 mA, LP Mode  
IN  
OUT  
IN  
OUT  
5.5 V, V 1.7 V  
I
= 1 mA, AC Mode  
OUT  
Load Regulation  
1 mA I  
80 mA, V = V  
+ 0.5 V or  
Load  
mV  
mV  
mV  
OUT  
IN  
OUT  
Reg  
V
IN  
1.7 V Active Mode, ECO = Voutnom  
0 mA < I  
< 5 mA, V = V + 0.5 V or  
OUT  
1.7 V Low Power Mode, ECO = 0  
30  
OUT  
IN  
V
IN  
Dropout Voltage (Note 6)  
IOUT = 80 mA,  
Active Mode,  
ECO = V  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 1.8 V  
= 2.5 V  
= 2.8 V  
= 3.0 V  
= 3.3 V  
81  
51  
47  
43  
41  
110  
80  
75  
65  
55  
OUTNOM  
Output Current  
Active Mode, ECO = VOUTNOM  
Low Power Mode, ECO = 0  
I
80  
5
mA  
mA  
mA  
OUTAM  
Output Current  
I
OUTLP  
Output Current Limit  
V
= 90% V  
,
I
140  
9
170  
15  
OUT  
OUT(nom)  
SC  
Active mode, ECO = V  
OUTNOM  
Output Current Limit  
Quiescent Current  
V
= 90% V  
,
I
mA  
nA  
OUT  
OUT(nom)  
SC  
Low Power mode, ECO = 0  
IOUT = 0  
T = +25°C  
J
I
Q
50  
Low Power Mode  
IOUT = 0 mA,  
40°C T 85°C  
150  
95  
nA  
mA  
nA  
J
Low Power Mode  
IOUT = 0 mA,  
Active Mode  
40°C T 85°C  
55  
30  
J
Shutdown Current (Note 7)  
V
ENA  
0.4 V, V = 5.5 V  
I
DIS  
IN  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = T  
J
A
= 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible  
5. The Offset voltage is internally programed to 50 mV, 100 mV, 150 mV or 200 mV. See the table ORDERING INFORMATION for more details.  
6. The Dropout at Nominal Output Voltage below 1.8 V and output current 80 mA was not defined and tested. The dropout at Nominal Output  
Voltage above 1.8 V was characterized when VOUT falls 3% below the nominal regulated voltage.  
7. Shutdown Current is the current flowing into the IN pin when the device is in the disable state (V  
8. Guaranteed by design and characterization.  
< 0.4 V).  
ENA  
www.onsemi.com  
4
 
NCP171  
Table 4. ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V  
+ 0.5 V or 1.7 V, whichever is greater; I  
=
J
IN  
OUTNOM  
OUT  
100 mA at Low Power Mode / 1 mA at Active Mode, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 4)  
J
IN  
OUT  
Parameter  
Ground Current  
Test Conditions  
Symbol  
Min  
Typ  
230  
Max  
Unit  
I
nA  
Low Power Mode, Iout = 10 mA  
Low Power Mode, Iout = 100 mA  
Low Power Mode, Iout = 1 mA  
Low Power Mode, Iout = 5 mA  
GND  
620  
1500  
2500  
120  
Active Mode, I  
= 1 mA  
= 10 mA  
= 80 mA  
mA  
OUT  
OUT  
OUT  
Active Mode, I  
Active Mode, I  
190  
420  
ENA Pin Threshold Voltage  
ECO Pin Threshold Voltage  
Power Supply Rejection Ratio  
ENA Input Voltage “H”  
V
1.2  
0.5  
V
V
V
ENAH  
ENA Input Voltage “L”  
V
0.4  
0.2  
ENAL  
ECO Input Voltage “H”  
ECO Input Voltage “L”  
V
ECOH  
V
ECOL  
V
IN  
= V  
IN  
+ 1 V or 2.0 V whichever is higher,  
PSRR  
65  
dB  
OUT  
ΔV = 0.1 V  
, IOUT = 10 mA, f = 1 kHz,  
pkpk  
Active Mode  
Output Noise Voltage  
V
= 0.8 V, I  
= 80 mA, f = 10 Hz to  
V
54  
165  
20  
mV  
rms  
OUT  
OUT  
N
100 kHz, Active Mode  
Thermal Shutdown Temperature  
(Note 8)  
Temperature increasing from T = +25°C,  
T
SD  
°C  
°C  
J
Active Mode  
Thermal Shutdown Hysteresis  
(Note 8)  
Temperature falling from T , Active Mode  
T
SDH  
SD  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = T  
J
A
= 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible  
5. The Offset voltage is internally programed to 50 mV, 100 mV, 150 mV or 200 mV. See the table ORDERING INFORMATION for more details.  
6. The Dropout at Nominal Output Voltage below 1.8 V and output current 80 mA was not defined and tested. The dropout at Nominal Output  
Voltage above 1.8 V was characterized when VOUT falls 3% below the nominal regulated voltage.  
7. Shutdown Current is the current flowing into the IN pin when the device is in the disable state (V  
8. Guaranteed by design and characterization.  
< 0.4 V).  
ENA  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
5
 
NCP171  
APPLICATION INFORMATION  
A typical application circuit for NCP171 series is shown  
in Figure 3.  
Low power mode to Active mode and reversely are depicted  
in Typical Characteristics chapter.  
Enable Operation  
The NCP171 device uses the ENA pin to enable/disable  
its device. If the ENA pin voltage is higher than 1.2 V the  
device is guaranteed to be enabled. The voltage below 0.4 V  
at the ENA pin assures turnedoff output voltage. The active  
discharge transistor is active so that the output voltage  
VOUT is pulled to GND through the internal NMOS with  
R
DS(on)  
about 50 ohms. In the disable state the device  
consumes as low as 30 nA from the VIN. In the case where  
the ENABLE function isn’t required the ENA pin should be  
tied directly to VIN.  
Figure 3. Typical Application Schematic  
Thermal  
Input Decoupling Capacitor (C1)  
As power across the NCP171 increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and also the ambient  
temperature affect the rate of temperature rise for the part.  
This is stating that when the NCP171 has good thermal  
conductivity through the PCB, the junction temperature will  
be relatively low with high power dissipation.  
A 1.0 mF ceramic input decoupling capacitor should be  
connected as close as possible to the input and ground pin of  
the NCP171. Higher values and lower ESR improves line  
transient response.  
Output Decoupling Capacitor (C2)  
A 1.0 mF ceramic output decoupling capacitor is sufficient  
to achieve stable operation of the IC. If tantalum capacitor  
is used, and its ESR is high, the loop oscillation may result.  
If output capacitor is composed from few ceramic capacitors  
in parallel, the operation can be unstable. The capacitor  
should be connected as close as possible to the output and  
ground pin. Larger values and lower ESR improves dynamic  
parameters. The maximum capacitor 4.7 mF could be  
connected to the output in order to keep stable operation.  
The power dissipation across the device can be roughly  
represented by the equation:  
ǒ
Ǔ
PD + VIN * VOUT @ IOUT [W]  
(eq. 1)  
The maximum power dissipation depends on the thermal  
resistance of the case and circuit board, the temperature  
differential between the junction and ambient, PCB  
orientation and the rate of air flow.  
ECO Mode, Voltage Scaling  
The maximum allowable power dissipation can be  
calculated using the following equation:  
The NCP171 has two distinct modes of operation, Active  
mode and Low Power mode, selectable with the ECO pin.  
When asserted low the ECO pin switches the device to Low  
Power mode with reduced load of 5 mA and while  
significantly reducing the quiescent current down to 50 nA.  
Further system level power reduction is made possible by  
reducing the output Voltage by the internally programmed  
offsets of 50 mV, 100 mV, 150 mV and 200 mV in Low  
Power mode. When asserted high the ECO pin switches the  
device to Active mode. Active mode features higher loads,  
up to 80 mA, Faster transient, High PSRR and lower noise.  
Upon startup by Enable or Input Voltage the NCP171  
defaults into Active mode, regardless of the state of the ECO  
pin, to enable fast and stable startup to the target output  
voltage. The duration of this enforced Active mode is  
typically 35 ms. This function helps to absorb high current  
spikes for the proper charging of output capacitor and startup  
current of the customer’s application. The transitions from  
ǒ
Ǔ
PMAX + TJUNCTION * TAMBIENT ńqJA [W] (eq. 2)  
Where (T  
– T ) is the temperature  
AMBIENT  
JUNCTION  
differential between the junction and the surrounding  
environment and q is the thermal resistance from the  
JA  
junction to the ambient.  
Connecting the exposed pad or non connected pins to a  
large ground pad or plane helps to conduct away heat and  
improves thermal relief.  
PCB layout  
Make VIN and GND line sufficient. If their impedance is  
high, noise pickup or unstable operation may result. Connect  
capacitors C1 and C2 as close as possible to the IC, and make  
wiring as short as possible.  
www.onsemi.com  
6
 
NCP171  
TYPICAL CHARACTERISTICS  
80  
70  
60  
50  
70  
NCP171AMX080075TCG  
V
I
= 0.75 V, C = C = 1 mF,  
= 0, Low Power Mode  
OUT(nom)  
IN  
OUT  
68  
66  
OUT  
T = 85°C  
A
T = 25°C  
A
T = 85°C  
A
T = 40°C  
A
NCP171AMX080075TCG  
T = 25°C  
A
V
I
= 0.8 V, C = C = 1 mF,  
= 0, Active Mode  
T = 40°C  
A
OUT(nom)  
IN  
OUT  
64  
OUT  
40  
30  
62  
60  
1.5 2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5.5  
5.5  
1.5 2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 4. Quiescent Current vs. Input Voltage  
in Low Power Mode  
Figure 5. Quiescent Current vs. Input Voltage  
in Active Mode  
80  
70  
60  
74  
72  
70  
68  
NCP171AMX180175TCG  
NCP171AMX180175TCG  
V
I
= 1.75 V, C = C  
= 1 mF,  
V
I
= 1.8 V, C = C  
= 1 mF,  
OUT(nom)  
IN  
OUT  
OUT(nom)  
IN  
OUT  
= 0, Low Power Mode  
= 0, Active Mode  
OUT  
OUT  
T = 85°C  
A
T = 25°C  
A
T = 85°C  
A
T = 40°C  
A
T = 25°C  
A
50  
T = 40°C  
A
40  
30  
66  
64  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 6. Quiescent Current vs. Input Voltage  
in Low Power Mode  
Figure 7. Quiescent Current vs. Input Voltage  
in Active Mode  
80  
70  
60  
50  
75  
73  
71  
69  
NCP171AMX280275TCG  
V
I
= 2.75 V, C = C  
= 1 mF,  
OUT(nom)  
IN  
OUT  
= 0, Low Power Mode  
OUT  
T = 85°C  
T = 25°C  
T = 40°C  
A
A
T = 85°C  
A
A
T = 25°C  
NCP171AMX280275TCG  
A
T = 40°C  
A
V
I
= 2.8 V, C = C = 1 mF,  
OUT(nom)  
IN  
OUT  
= 0, Active Mode  
OUT  
40  
30  
67  
65  
3.0  
3.5  
4.0  
4.5  
5.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 8. Quiescent Current vs. Input Voltage  
in Low Power Mode  
Figure 9. Quiescent Current vs. Input Voltage  
in Active Mode  
www.onsemi.com  
7
NCP171  
TYPICAL CHARACTERISTICS  
80  
70  
60  
50  
76  
NCP171AMX330310TCG  
NCP171AMX330310TCG  
V
I
= 3.1 V, C = C  
= 0, Low Power Mode  
= 1 mF,  
V
I
= 3.3 V, C = C  
= 0, Active Mode  
= 1 mF,  
OUT(nom)  
IN  
OUT  
OUT(nom)  
IN  
OUT  
74  
72  
70  
OUT  
OUT  
T = 85°C  
T = 25°C  
T = 40°C  
A
A
T = 85°C  
T = 25°C  
T = 40°C  
A
A
A
A
40  
30  
68  
66  
3.5  
4.0  
4.5  
5.0  
5.5  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 10. Quiescent Current vs. Input Voltage  
in Low Power Mode  
Figure 11. Quiescent Current vs. Input Voltage  
in Active Mode  
70  
69  
68  
67  
66  
65  
64  
63  
62  
80  
70  
V
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.0 V  
= 3.0 V  
= 2.0 V  
= 1.7 V  
NCP171AMX080075TCG  
IN  
IN  
IN  
IN  
IN  
IN  
V
= 0.8 V, I  
= 0 mA  
OUT(nom)  
OUT  
C
= C  
= 1 mF, Active Mode  
IN  
OUT  
60  
50  
V
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.0 V  
= 3.0 V  
= 2.0 V  
= 1.7 V  
IN  
IN  
IN  
IN  
IN  
IN  
NCP171AMX080075TCG  
= 0.75 V, I = 0 mA  
40  
30  
V
= C  
OUT(nom)  
OUT  
61  
60  
40  
C
= 1 mF, Low Power Mode  
IN  
OUT  
40  
20  
0
20  
40  
60  
80  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Quiescent Current vs. Temperature  
in Low Power Mode  
Figure 13. Quiescent Current vs. Temperature  
in Active Mode  
80  
70  
60  
50  
74  
72  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.0 V  
= 2.3 V  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.0 V  
= 2.3 V  
70  
68  
NCP171AMX180175TCG  
= 1.75 V, I = 0 mA  
NCP171AMX180175TCG  
40  
30  
66  
64  
V
= C  
V
= 1.8 V, I  
= 0 mA  
OUT(nom)  
OUT  
OUT(nom)  
OUT  
C
= 1 mF, Low Power Mode  
C
= C  
= 1 mF, Active Mode  
IN  
OUT  
IN  
OUT  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Quiescent Current vs. Temperature  
in Low Power Mode  
Figure 15. Quiescent Current vs. Temperature  
in Active Mode  
www.onsemi.com  
8
NCP171  
TYPICAL CHARACTERISTICS  
80  
70  
60  
50  
75  
NCP171AMX280275TCG  
NCP171AMX280275TCG  
= 2.8 V, I = 0 mA  
V
= 2.75 V, I  
= 0 mA  
OUT(nom)  
OUT  
V
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
73  
71  
IN  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
Active Mode  
V
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.5 V  
= 3.3 V  
IN  
IN  
IN  
IN  
IN  
IN  
V
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.5 V  
= 3.3 V  
69  
IN  
IN  
IN  
IN  
IN  
IN  
40  
30  
67  
65  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Quiescent Current vs. Temperature  
in Low Power Mode  
Figure 17. Quiescent Current vs. Temperature  
in Active Mode  
80  
70  
60  
50  
76  
74  
72  
NCP171AMX330310TCG  
NCP171AMX330310TCG  
V
= 3.1 V, I  
= 0 mA  
V
= 3.3 V, I  
= 0 mA  
OUT(nom)  
OUT  
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
C
= C  
= 1 mF,  
IN  
OUT  
IN  
OUT  
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.8 V  
IN  
IN  
IN  
IN  
IN  
Low Power Mode  
Active Mode  
70  
V
V
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
= 4.0 V  
= 3.8 V  
IN  
IN  
IN  
IN  
IN  
68  
66  
40  
30  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Quiescent Current vs. Temperature  
in Low Power Mode  
Figure 19. Quiescent Current vs. Temperature  
in Active Mode  
0.750  
0.748  
0.746  
0.744  
0.803  
0.802  
0.801  
0.800  
T = 85°C  
A
T = 25°C  
A
T = 40°C  
A
NCP171AMX080075TCG  
V
= 0.8 V, I  
= 1 mA  
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Active Mode  
T = 85°C  
A
T = 25°C  
A
NCP171AMX080075TCG  
T = 40°C  
A
V
= 0.75 V, I  
= 0.1 mA  
0.742  
0.740  
OUT(nom)  
OUT  
0.799  
0.798  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
3.0 3.5 4.0  
INPUT VOLTAGE (V)  
1.5 2.0  
2.5  
4.5  
5.0  
5.5  
1.5 2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
INPUT VOLTAGE (V)  
Figure 20. Output Voltage vs. Input Voltage in  
Low Power Mode  
Figure 21. Output Voltage vs. Input Voltage in  
Active Mode  
www.onsemi.com  
9
NCP171  
TYPICAL CHARACTERISTICS  
0.750  
0.748  
0.746  
0.744  
0.803  
V
IN  
V
IN  
= 1.7 V  
= 5.5 V  
V
IN  
V
IN  
V
IN  
= 5.5 V  
= 3.0 V  
= 1.7 V  
0.802  
0.801  
0.800  
NCP171AMX080075TCG  
= 0.75 V, I  
NCP171AMX080075TCG  
= 0.8 V, I = 1 mA  
V
= 0.1 mA  
0.799  
0.798  
0.742  
0.740  
OUT(nom)  
OUT  
V
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
C
= C  
= 1 mF, Active Mode  
IN  
OUT  
Low Power Mode  
40 20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Output Voltage vs. Temperature in  
Low Power Mode  
Figure 23. Output Voltage vs. Temperature in  
Active Mode  
1.746  
1.744  
1.742  
1.740  
1.746  
1.744  
T = 85°C  
A
T = 25°C  
A
T = 40°C  
A
1.742  
1.740  
V
IN  
V
IN  
V
IN  
= 5.5 V  
= 4.0 V  
= 2.3 V  
NCP171AMX180175TCG  
V
C
= 1.75 V, I  
= 0.1 mA  
OUT(nom)  
OUT  
= C  
= 1 mF,  
IN  
OUT  
NCP171AMX180175TCG  
= 1.75 V, I = 0.1 mA  
Low Power Mode  
V
OUT(nom)  
OUT  
1.738  
1.736  
1.738  
1.736  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
40  
20  
0
20  
40  
60  
80  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 24. Output Voltage vs. Input Voltage in  
Low Power Mode  
Figure 25. Output Voltage vs Temperature in  
Low Power Mode  
1.804  
1.802  
1.800  
1.798  
1.804  
1.802  
1.800  
1.798  
T = 85°C  
V
IN  
V
IN  
= 2.3 V  
= 5.5 V  
A
T = 25°C  
A
T = 40°C  
A
NCP171AMX180175TCG  
V
= 1.8 V, I  
= 1 mA  
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Active Mode  
NCP171AMX180175TCG  
= 1.8 V, I = 1.8 mA  
1.796  
1.794  
1.796  
1.794  
V
OUT(nom)  
OUT  
C
= C  
= 1 mF, Active Mode  
IN  
OUT  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
40  
20  
0
20  
40  
60  
80  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 26. Output Voltage vs. Input Voltage in  
Active Mode  
Figure 27. Output Voltage vs. Temperature in  
Active Mode  
www.onsemi.com  
10  
NCP171  
TYPICAL CHARACTERISTICS  
2.750  
2.745  
2.740  
2.735  
2.804  
2.800  
NCP171AMX280275TCG  
NCP171AMX280275TCG  
V
= 2.75 V, I  
= 0.1 mA  
2.796  
2.792  
OUT(nom)  
OUT  
V
= 2.8 V, I  
= 1 mA  
C
= C  
= 1 mF,  
OUT(nom)  
OUT  
IN  
OUT  
C
= C  
= 1 mF,  
Low Power Mode  
IN  
OUT  
Active Mode  
T = 85°C  
T = 85°C  
A
2.730  
2.725  
A
2.788  
2.784  
T = 25°C  
T = 25°C  
A
A
T = 40°C  
A
T = 40°C  
A
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 28. Output Voltage vs. Input Voltage in  
Low Power Mode  
Figure 29. Output Voltage vs. Input Voltage in  
Active Mode  
2.750  
2.745  
2.740  
2.735  
2.804  
2.800  
2.796  
2.792  
V
IN  
V
IN  
= 3.3 V  
= 5.5 V  
V
IN  
V
IN  
= 3.3 V  
= 5.5 V  
NCP171AMX280275TCG  
NCP171AMX280275TCG  
V
C
= 2.8 V, I  
= 1 mA  
V
C
= 2.75 V, I  
= 0.1 mA  
OUT(nom)  
OUT  
OUT(nom)  
OUT  
2.730  
2.725  
2.788  
2.784  
= C  
= 1 mF,  
= C  
= 1 mF,  
IN  
OUT  
IN  
OUT  
Active Mode  
Low Power Mode  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. Output Voltage vs. Temperature in  
Low Power Mode  
Figure 31. Output Voltage vs Temperature in  
Active Mode  
3.096  
3.092  
3.088  
3.084  
3.304  
3.300  
3.296  
3.292  
T = 85°C  
A
T = 25°C  
A
T = 40°C  
A
NCP171AMX330310TCG  
V
= 3.1 V, I  
= 0.1 mA  
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
NCP171AMX330310TCG  
= 3.3 V, I = 1 mA  
V
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Active Mode  
T = 85°C  
3.080  
3.076  
A
3.288  
3.284  
T = 25°C  
A
T = 40°C  
A
3.5  
4.0  
4.5  
INPUT VOLTAGE (V)  
5.0  
5.5  
3.5  
4.0  
4.5  
INPUT VOLTAGE (V)  
5.0  
5.5  
Figure 32. Output Voltage vs. Input Voltage in  
Low Power Mode  
Figure 33. Output Voltage vs. Input Voltage in  
Active Mode  
www.onsemi.com  
11  
NCP171  
TYPICAL CHARACTERISTICS  
3.096  
3.092  
3.088  
3.084  
3.305  
V
IN  
V
IN  
= 3.6 V  
= 5.5 V  
3.300  
V
IN  
= 3.8 V 5.5 V  
3.295  
3.290  
NCP171AMX330310TCG  
NCP171AMX330310TCG  
V
= 3.1 V, I  
= 0.1 mA  
V
= 3.3 V, I  
= 1 mA  
OUT(nom)  
OUT  
3.080  
3.076  
3.285  
3.280  
OUT(nom)  
OUT  
C
= C  
= 1 mF,  
C
= C  
= 1 mF,  
IN  
OUT  
IN  
OUT  
Low Power Mode  
Active Mode  
20 40  
TEMPERATURE (°C)  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
60  
80  
TEMPERATURE (°C)  
Figure 34. Output Voltage vs. Temperature in  
Low Power Mode  
Figure 35. Output Voltage vs. Temperature in  
Active Mode  
0.748  
0.746  
0.803  
0.802  
0.801  
NCP171AMX080075TCG  
V
= 0.75 V, V = 1.7 V  
OUT(nom)  
IN  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
0.744  
0.742  
NCP171AMX080075TCG  
T = 85°C  
A
V
= 0.8 V, V = 1.7 V  
OUT(nom)  
IN  
T = 25°C  
0.800  
A
C
= C  
= 1 mF,  
IN  
OUT  
T = 40°C  
A
Active Mode  
T = 85°C  
0.740  
0.738  
0.799  
0.798  
A
T = 25°C  
A
T = 40°C  
A
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 36. Output Voltage vs. Output Current  
in Low Power Mode  
Figure 37. Output Voltage vs. Output Current  
in Active Mode  
1.750  
1.746  
1.742  
1.738  
1.802  
1.800  
1.798  
1.796  
NCP171AMX180175TCG  
T = 85°C  
A
V
= 1.8 V, V = 2.3 V  
OUT(nom)  
IN  
T = 25°C  
A
C
= C  
= 1 mF,  
IN  
OUT  
T = 40°C  
A
Active Mode  
NCP171AMX180175TCG  
= 1.75 V, V = 2.3 V  
T = 85°C  
A
V
T = 25°C  
1.734  
1.730  
1.794  
1.792  
OUT(nom)  
IN  
A
C
= C  
= 1 mF,  
T = 40°C  
A
IN  
OUT  
Low Power Mode  
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 38. Output Voltage vs. Output Current  
in Low Power Mode  
Figure 39. Output Voltage vs. Output Current  
in Active Mode  
www.onsemi.com  
12  
NCP171  
TYPICAL CHARACTERISTICS  
2.755  
2.750  
2.745  
2.740  
2.806  
2.802  
2.798  
NCP171AMX280275TCG  
T = 85°C  
A
NCP171AMX280275TCG  
= 2.75 V, V = 3.3 V  
V
= 2.8 V, V = 3.3 V  
T = 85°C  
OUT(nom)  
IN  
A
T = 25°C  
A
V
2.794  
C
= C  
= 1 mF,  
T = 25°C  
OUT(nom)  
IN  
IN  
OUT  
A
T = 40°C  
A
C
= C  
= 1 mF,  
Active Mode  
T = 40°C  
A
IN  
OUT  
Low Power Mode  
2.735  
2.730  
2.790  
2.786  
0
1
2
3
4
5
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
80  
80  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 40. Output Voltage vs. Output Current  
in Low Power Mode  
Figure 41. Output Voltage vs. Output Current  
in Active Mode  
3.098  
3.094  
3.090  
3.086  
3.298  
3.296  
3.294  
NCP171AMX330310TCG  
NCP171AMX330310TCG  
V
C
= 3.1 V, V = 3.6 V  
V
C
= 3.3 V, V = 3.8 V  
= 1 mF,  
OUT(nom)  
IN  
OUT(nom)  
= C  
Active Mode  
IN  
= C  
= 1 mF,  
IN  
OUT  
IN  
OUT  
Low Power Mode  
T = 85°C  
T = 25°C  
T = 40°C  
A
3.292  
A
A
T = 85°C  
3.082  
3.078  
3.290  
3.288  
A
T = 25°C  
A
T = 40°C  
A
0
1
2
3
4
5
10  
20  
30  
40  
50  
60  
70  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 42. Output Voltage vs. Output Current  
in Low Power Mode  
Figure 43. Output Voltage vs. Output Current  
in Active Mode  
100  
80  
100  
80  
NCP171AMX180175TCG  
NCP171AMX180175TCG  
V
C
= 1.8 V,  
= 1 mF,  
OUT(nom)  
= C  
Active Mode  
V
C
= 1.75 V,  
= 1 mF,  
OUT(nom)  
IN  
OUT  
= C  
IN  
OUT  
Low Power Mode  
60  
60  
40  
40  
T = 85°C  
T = 25°C  
T = 40°C  
T = 85°C  
A
T = 25°C  
T = 40°C  
A
A
20  
0
20  
0
A
A
A
0
1
2
3
4
5
10  
20  
30  
40  
50  
60  
70  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 44. Dropout vs. Output Current in Low  
Power Mode  
Figure 45. Dropout vs. Output Current in  
Active Mode  
www.onsemi.com  
13  
NCP171  
TYPICAL CHARACTERISTICS  
25  
20  
15  
10  
70  
NCP171AMX280275TCG  
= 2.75 V,  
NCP171AMX280275TCG  
V = 2.8 V,  
OUT(nom)  
V
OUT(nom)  
60  
50  
40  
C
= C  
= 1 mF,  
C
= C  
= 1 mF,  
IN  
OUT  
IN  
OUT  
Low Power Mode  
Active Mode  
T = 85°C  
T = 85°C  
A
5
0
30  
20  
A
T = 25°C  
T = 25°C  
A
A
T = 40°C  
A
T = 40°C  
A
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 46. Dropout vs. Output Current in Low  
Power Mode  
Figure 47. Dropout vs. Output Current in  
Active Mode  
20  
16  
12  
8
55  
50  
45  
NCP171AMX330310TCG  
NCP171AMX330310TCG  
V
= 3.1 V,  
OUT(nom)  
V
= 3.1 V,  
OUT(nom)  
C
= C  
= 1 mF,  
IN  
OUT  
C
= C  
= 1 mF,  
IN  
OUT  
Low Power Mode  
Active Mode  
40  
T = 85°C  
T = 85°C  
A
35  
30  
4
0
A
T = 25°C  
T = 25°C  
A
A
T = 40°C  
A
T = 40°C  
A
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 48. Dropout vs. Output Current in Low  
Power Mode  
Figure 49. Dropout vs. Output Current in  
Active Mode  
100  
80  
100  
80  
I
I
I
I
= 1 mA  
OUT  
OUT  
OUT  
OUT  
NCP171AMX080075TCG  
= 10 mA  
= 50 mA  
= 80 mA  
V
V
= 0.75 V, C  
= 1.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
IN  
Low Power Mode  
60  
60  
40  
40  
NCP171AMX080075TCG  
20  
0
20  
0
V
V
= 0.8 V, C  
= 1.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
I
I
= 1 mA  
= 5 mA  
OUT  
OUT  
IN  
Active Mode  
10  
100  
1K  
10K  
100K  
1M  
10M  
10 100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50. PSRR vs. Frequency in Low Power  
Mode  
Figure 51. PSRR vs. Frequency in Active Mode  
www.onsemi.com  
14  
NCP171  
TYPICAL CHARACTERISTICS  
100  
80  
100  
I
I
I
I
= 1 mA  
NCP171AMX180175TCG  
OUT  
OUT  
OUT  
OUT  
= 10 mA  
= 50 mA  
= 80 mA  
V
V
= 1.75 V, C  
= 2.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
80  
60  
40  
IN  
Low Power Mode  
60  
40  
NCP171AMX180175TCG  
20  
0
20  
0
V
V
= 1.8 V, C  
= 2.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
I
I
= 1 mA  
= 5 mA  
OUT  
OUT  
IN  
Active Mode  
10  
100  
1K  
10K  
100K  
1M  
10M  
10 100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. PSRR vs. Frequency in Low Power  
Mode  
Figure 53. PSRR vs. Frequency in Active Mode  
100  
80  
100  
80  
I
I
I
I
= 1 mA  
NCP171AMX280275TCG  
OUT  
OUT  
OUT  
OUT  
= 10 mA  
= 50 mA  
= 80 mA  
V
V
= 2.75 V, C  
= 3.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
IN  
Low Power Mode  
60  
60  
40  
40  
NCP171AMX280275TCG  
20  
0
20  
0
V
V
= 2.8 V, C  
= 3.8 V + 200 mVpp Modulation,  
= 1 mF,  
OUT(nom)  
OUT  
I
I
= 1 mA  
= 5 mA  
OUT  
OUT  
IN  
Active Mode  
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. PSRR vs. Frequency in Low Power  
Mode  
Figure 55. PSRR vs. Frequency in Active Mode  
100  
80  
100  
80  
NCP171AMX330310TCG  
I
I
I
I
= 1 mA  
OUT  
OUT  
OUT  
OUT  
V
V
= 3.1 V, C  
= 4.1 V + 200 mVpp Modulation,  
= 1 mF,  
= 10 mA  
= 50 mA  
= 80 mA  
OUT(nom)  
OUT  
IN  
Low Power Mode  
60  
60  
40  
40  
NCP171AMX330310TCG  
V
V
= 3.8 V, C  
= 4.3 V + 200 mVpp Modulation,  
= 1 mF,  
20  
0
20  
0
OUT(nom)  
OUT  
I
I
= 1 mA  
= 5 mA  
OUT  
OUT  
IN  
Active Mode  
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 56. PSRR vs. Frequency in Low Power  
Mode  
Figure 57. PSRR vs. Frequency in Active Mode  
www.onsemi.com  
15  
NCP171  
TYPICAL CHARACTERISTICS  
2.5  
2.0  
1.5  
1.0  
5
I
I
I
= 1 mA  
= 10 mA  
= 80 mA  
NCP171AMX080075TCG  
NCP171AMX180175TCG  
OUT  
OUT  
OUT  
V
= 0.8 V, V = 1.7 V  
V
= 1.8 V, V = 2.8 V  
OUT(nom)  
IN  
OUT(nom)  
IN  
C
= 1 mF, Active Mode  
C
= 1 mF, Active Mode  
4
3
2
OUT  
OUT  
10 Hz 100 kHz, 67.72 mVrms  
100 Hz 100 kHz, 66.61 mVrms  
10 Hz 1 MHz, 107.9 mVrms  
10 Hz 100 kHz, 77.9 mVrms  
100 Hz 100 kHz, 74.7 mVrms  
10 Hz 1 MHz, 116.1 mVrms  
10 Hz 100 kHz, 55.41 mVrms  
100 Hz 100 kHz, 53.47 mVrms  
10 Hz 1 MHz, 132.76 mVrms  
10 Hz 100 kHz, 64.22 mVrms  
100 Hz 100 kHz, 60.3 mVrms  
10 Hz 1 MHz, 133.3 mVrms  
10 Hz 100 kHz, 53.36 mVrms  
100 Hz 100 kHz, 51.43 mVrms  
10 Hz 1 MHz, 153.62 mVrms  
10 Hz 100 kHz, 63.5 mVrms  
100 Hz 100 kHz, 59.8 mVrms  
10 Hz 1 MHz, 152.65 mVrms  
I
= 1 mA  
1
0
0.5  
0
OUT  
I
I
= 10 mA  
= 80 mA  
OUT  
OUT  
10  
100  
1K  
10K  
100K  
1M  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58. Noise vs. Frequency  
Figure 59. Noise vs. Frequency  
5
4
3
2
10  
8
I
I
I
= 1 mA  
= 10 mA  
= 80 mA  
NCP171AMX330310TCG  
OUT  
OUT  
OUT  
NCP171AMX280275TCG  
V
= 3.3 V, V = 4.3 V  
V
= 2.8 V, V = 3.8 V  
OUT(nom)  
IN  
OUT(nom)  
IN  
C
= 1 mF, Active Mode  
C
= 1 mF, Active Mode  
OUT  
OUT  
10 Hz 100 kHz, 84.7 mVrms  
100 Hz 100 kHz, 78.5 mVrms  
10 Hz 1 MHz, 119.6 mVrms  
10 Hz 100 kHz, 89.1 mVrms  
100 Hz 100 kHz, 81.2 mVrms  
10 Hz 1 MHz, 121.9 mVrms  
6
4
10 Hz 100 kHz, 77.5 mVrms  
100 Hz 100 kHz, 70.9 mVrms  
10 Hz 1 MHz, 136.6 mVrms  
10 Hz 100 kHz, 83.7 mVrms  
100 Hz 100 kHz, 75.2 mVrms  
10 Hz 1 MHz, 140.8 mVrms  
10 Hz 100 kHz, 78.1 mVrms  
100 Hz 100 kHz, 71.8 mVrms  
10 Hz 1 MHz, 155.3 mVrms  
10 Hz 100 kHz, 85.3 mVrms  
100 Hz 100 kHz, 77.4 mVrms  
10 Hz 1 MHz, 159.5 mVrms  
1
0
2
0
I
= 1 mA  
OUT  
I
I
= 10 mA  
= 80 mA  
OUT  
OUT  
10  
100  
1K  
10K  
100K  
1M  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 60. Noise vs. Frequency  
Figure 61. Noise vs. Frequency  
Figure 62. Line Transient Response in Low  
Power Mode  
Figure 63. Line Transient Response in Active  
Mode  
www.onsemi.com  
16  
NCP171  
TYPICAL CHARACTERISTICS  
Figure 64. Line Transient Response in Low  
Figure 65. Line Transient Response in Active  
Mode  
Power Mode  
Figure 66. Line Transient Response in Low  
Power Mode  
Figure 67. Line Transient Response in Active  
Mode  
Figure 68. Line Transient Response in Low  
Power Mode  
Figure 69. Line Transient Response in Active  
Mode  
www.onsemi.com  
17  
NCP171  
TYPICAL CHARACTERISTICS  
Figure 70. Load Transient Response in Low  
Figure 71. Load Transient Response in Active  
Mode  
Power Mode  
Figure 72. Load Transient Response in Low  
Power Mode  
Figure 73. Load Transient Response in Active  
Mode  
Figure 74. Load Transient Response in Low  
Power Mode  
Figure 75. Load Transient Response in Active  
Mode  
www.onsemi.com  
18  
NCP171  
TYPICAL CHARACTERISTICS  
Figure 76. Load Transient Response in Low  
Figure 77. Load Transient Response in Active  
Mode  
Power Mode  
Figure 78. Startup by Enable in Low Power  
Mode  
Figure 79. Startup by Enable in Low Power  
Mode  
Figure 80. Startup by Input Voltage in Low  
Power Mode  
Figure 81. Output Voltage vs. ECO Voltage  
www.onsemi.com  
19  
NCP171  
TYPICAL CHARACTERISTICS  
Figure 82. Transition from Low Power Mode to  
Active Mode  
Figure 83. Transition from Active Mode to Low  
Power Mode  
ORDERING INFORMATION  
Nominal Output  
Voltage  
Output Voltage  
Offset  
Active  
Discharge  
Device  
Marking  
JA  
Package  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
XDFN4  
Shipping  
NCP171AMX080075TCG  
NCP171AMX080060TCG  
NCP171AMX100080TCG  
NCP171AMX120100TCG  
NCP171AMX165160TCG  
NCP171AMX170165TCG  
NCP171A3MX170165TCG  
NCP171AMX180175TCG  
NCP171AMX250245TCG  
NCP171AMX280275TCG  
NCP171AMX330325TCG  
NCP171AMX330310TCG  
0.8 V  
0.8 V  
1.0 V  
1.2 V  
1.65 V  
1.7 V  
1.7 V  
1.8 V  
2.5 V  
2.8 V  
3.3 V  
3.3 V  
50 mV  
200 mV  
200 mV  
200 mV  
50 mV  
50 mV  
50 mV  
50 mV  
50 mV  
50 mV  
50 mV  
200 mV  
Yes  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
JT  
Yes  
JP  
Yes  
JM  
JL  
Yes  
Yes  
JN  
Yes  
JQ  
JU  
Yes  
Yes  
JD  
Yes  
JH  
Yes  
JE  
Yes  
JF  
Yes  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
20  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
XDFN4 1.2x1.2, 0.8P  
CASE 711BC  
ISSUE O  
1
DATE 15 SEP 2015  
SCALE 4:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
A
B
E
D
DETAIL B  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
MILLIMETERS  
DETAIL B  
DIM MIN  
0.35  
A1 0.00  
MAX  
0.45  
0.05  
ALTERNATE  
A
TOP VIEW  
A3  
CONSTRUCTION  
A3  
b
0.13 REF  
SIDE VIEW  
A
0.25  
0.35  
0.25  
1.25  
0.68  
1.25  
0.68  
0.05  
C
C
b1 0.15  
1.15  
D2 0.58  
1.15  
E2 0.58  
4X  
(0.12)  
A1  
D
4X (0.12)  
0.05  
E
SEATING  
NOTE 4  
C
PLANE  
SIDE VIEW  
D2  
e
L
0.80 BSC  
0.25  
0.35  
0.23  
4X b  
L1 0.13  
M
0.05  
C A B  
e/2  
4X  
L
GENERIC  
MARKING DIAGRAM*  
NOTE 3  
e
1
2
DETAIL A  
E2  
L1  
XXM  
1
3
4
XX = Specific Device Code  
b1  
BOTTOM VIEW  
DETAIL A  
M
= Date Code  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
RECOMMENDED  
MOUNTING FOOTPRINT*  
4X  
PbFree indicator, “G” or microdot “ G”,  
PACKAGE  
OUTLINE  
1.50  
C 0.195  
0.22  
may or may not be present.  
0.25  
4X  
0.35  
0.80 PITCH  
1
2X  
0.63  
4X  
0.48  
455  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON04908G  
XDFN4, 1.2X1.2, 0.8P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCP171AMX080075TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX100080TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX120100TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX165160TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX170165TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX180175TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX250245TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX280275TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX330310TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP171AMX330325TCG

LDO Regulator - Ultra-Low Iq, Dual Power Mode 50nA, 80mA
ONSEMI

NCP1729

Switched Capacitor Voltage Inverter
ONSEMI

NCP1729/D

Switched Capacitor Voltage Inverter
ETC