NCP177AMX125TCG [ONSEMI]

Linear Voltage Regulator - Fast Transient Response, Enable;
NCP177AMX125TCG
型号: NCP177AMX125TCG
厂家: ONSEMI    ONSEMI
描述:

Linear Voltage Regulator - Fast Transient Response, Enable

文件: 总11页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP177  
Linear Voltage Regulator -  
Fast Transient Response,  
Enable  
500 mA  
www.onsemi.com  
The NCP177 is CMOS LDO regulator featuring 500 mA output  
current. The input voltage is as low as 1.6 V and the output voltage can  
be set from 0.7 V.  
1
Features  
XDFN4  
CASE 711AJ  
Operating Input Voltage Range: 1.6 V to 5.5 V  
Output Voltage Range: 0.7 V to 3.6 V  
Quiescent Current typ. 60 mA  
MARKING DIAGRAM  
Low Dropout: 200 mV Typ. at 500 mA, V  
High Output Voltage Accuracy 0.8%  
= 1.8 V  
OUTNOM  
XX M  
1
Stable with Small 1 mF Ceramic Capacitors  
Overcurrent Protection  
XX = Specific Device Code  
Thermal Shutdown Protection: 175°C  
M
= Date Code  
With (NCP177A) and Without (NCP177B) Output Discharge  
Function  
Available in XDFN4 1 mm x 1 mm x 0.4 mm Package  
PINOUT DIAGRAM  
This is a PbFree Device  
IN  
EN  
Typical Applications  
4
3
Battery Powered Equipment  
Portable Communication Equipment  
Cameras, Image Sensors and Camcorders  
EPAD  
1
OUT  
2
GND  
VIN  
VOUT  
IN  
OUT  
CIN  
1 μF  
COUT  
1 μF  
NCP177  
ON  
(Top View)  
EN  
GND  
OFF  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 10 of this data sheet.  
Figure 1. Typical Application  
Schematic  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
October, 2019 Rev. 5  
NCP177/D  
NCP177  
IN  
OUT  
IN  
OUT  
PROG . VOLTAGE  
REFERENCE AND  
SOFT START  
PROG . VOLTAGE  
REFERENCE AND  
SOFT START  
EN  
EN  
0.7 V  
0.7 V  
THERMAL  
SHUTDOWN  
THERMAL  
SHUTDOWN  
GND  
GND  
NCP177A (with output active discharge)  
NCP177B (without output active discharge)  
Figure 2. Internal Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
OUT  
GND  
EN  
Description  
1
2
3
4
Regulated output voltage pin  
Power supply ground pin  
Enable pin (active “H”)  
IN  
Power supply input voltage pin  
EPAD  
Exposed pad should be tied to ground plane for better power dissipation  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
IN  
Value  
0.3 to 6.0  
0.3 to VIN + 0.3  
0.3 to 6.0  
Internally Limited  
150  
Unit  
V
Input Voltage (Note 1)  
Output Voltage  
OUT  
EN  
V
Chip Enable Input  
V
Output Current  
I
mA  
°C  
°C  
V
OUT  
Maximum Junction Temperature  
Storage Temperature  
TJ(MAX)  
TSTG  
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JESD22A114  
ESD Machine Model tested per JESD22A115  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN4 (Note 3)  
Thermal Resistance, JunctiontoAir  
RqJA  
223  
°C/W  
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD517  
www.onsemi.com  
2
 
NCP177  
ELECTRICAL CHARACTERISTICS  
V
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUT J  
IN  
OUTNOM  
IN  
EN  
OUT  
IN  
The specifications in bold are guaranteed at 40°C T 85°C. (Note 4)  
J
Parameter  
Input Voltage  
Test Conditions  
Symbol  
Min  
1.6  
Typ  
Max  
5.5  
0.8  
1.0  
1.2  
1.5  
0.1  
Unit  
V
V
IN  
Output Voltage  
V
V
1.8 V  
T = +25°C  
J
V
OUT  
0.8  
2.0  
1.2  
2.5  
%
OUT_NOM  
40°C T 85°C  
J
< 1.8 V  
T = +25°C  
J
OUT_NOM  
40°C T 85°C  
J
Line Regulation  
V
IN  
= V  
+ 0.5 V to 5.25 V  
LineReg  
LoadReg  
0.02  
%/V  
OUTNOM  
V
1.6 V  
IN  
Load Regulation  
1 mA I  
500 mA, V 1.75 V  
1
10  
380  
285  
240  
200  
175  
90  
mV  
mV  
OUT  
IN  
Dropout Voltage (Note 5)  
I
= 500 mA  
1.4 V V  
1.8 V V  
2.1 V V  
2.5 V V  
3.0 V V  
= 0 mA  
< 1.8 V  
< 2.1 V  
< 2.5 V  
< 3.0 V  
< 3.6 V  
V
DO  
295  
200  
160  
130  
110  
60  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Quiescent Current  
Standby Current  
I
I
Q
mA  
mA  
OUT  
V
EN  
= 0 V  
I
0.1  
1
STBY  
Output Current Limit  
V
= V  
100 mV, V 1.75 V  
I
OUT  
510  
300  
510  
1.0  
800  
600  
800  
mA  
OUT  
OUTNOM  
IN  
V
= V  
100 mV, V 1.6 V  
OUTNOM IN  
OUT  
Short Circuit Current  
V
= 0 V, V 1.75 V  
I
mA  
V
OUT  
IN  
SC  
EN Pin Threshold Voltage  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
V
ENL  
0.4  
0.6  
Enable Input Current  
V
EN  
= V = 5.5 V  
I
EN  
0.15  
75  
mA  
IN  
Power Supply Rejection Ratio  
f = 1 kHz, Ripple 0.2 Vpp,  
= V + 1.0 V, I = 30 mA  
PSRR  
dB  
V
IN  
OUTNOM  
OUT  
(V  
2.0 V, V = 3.0 V)  
OUT  
IN  
Output Noise  
f = 10 Hz to 100 kHz  
= 4.0 V, V = 0 V, V = V  
54  
60  
mV  
RMS  
Output Discharge Resistance  
(NCP177A option only)  
V
IN  
R
W
EN  
OUT  
OUTNOM  
ACTDIS  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature rising from 25°C  
Temperature falling from T  
TSD_TEMP  
TSD_HYST  
175  
20  
°C  
°C  
SD_TEMP  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
5. Measured when the output voltage falls 3% below the nominal output voltage (the voltage measured under the condition V = V  
IN  
OUTNOM  
+ 0.5 V).  
www.onsemi.com  
3
 
NCP177  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUTNOM  
IN  
EN  
OUT  
IN  
OUT  
J
1.814  
1.804  
0.708  
0.703  
0.698  
0.693  
1.794  
1.784  
V
= 1.8 V  
1.774  
1.764  
V
= 0.7 V  
40  
0.688  
0.683  
OUTNOM  
OUTNOM  
40  
20  
0
20  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
V
= 3.3 V  
= 3.8 V to 5.25 V  
OUTNOM  
3.324  
IN  
3.314  
3.304  
3.294  
3.284  
3.274  
3.264  
3.254  
0.02  
0.04  
0.06  
V
= 3.3 V  
40  
OUTNOM  
3.244  
3.234  
0.08  
0.10  
40  
20  
0
20  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Temperature  
Figure 6. Line Regulation vs. Temperature  
5
4
275  
250  
225  
200  
175  
150  
125  
100  
75  
V
= 3.3 V  
= 1 mA to 500 mA  
OUTNOM  
V
= 1.8 V  
OUTNOM  
I
OUT  
T = 85°C  
J
3
T = 25°C  
J
2
1
0
T = 40°C  
J
1  
2  
3  
50  
4  
5  
40  
25  
0
20  
0
20  
40  
60  
80  
0
100  
200  
300  
400  
500  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 7. Load Regulation vs. Temperature  
Figure 8. Dropout Voltage vs. Output Current  
www.onsemi.com  
4
NCP177  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUT J  
OUTNOM  
IN  
EN  
OUT  
IN  
275  
250  
225  
200  
175  
150  
125  
100  
75  
160  
V
= 3.3 V  
V
= 1.8 V  
OUTNOM  
OUTNOM  
140  
120  
100  
80  
I
= 500 mA  
OUT  
T = 85°C  
J
T = 25°C  
J
I
I
= 250 mA  
OUT  
60  
T = 40°C  
J
40  
= 100 mA  
= 10 mA  
OUT  
50  
20  
0
25  
0
40  
I
OUT  
20  
0
20  
40  
60  
80  
0
100  
200  
300  
400  
500  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 9. Dropout Voltage vs. Temperature  
Figure 10. Dropout Voltage vs. Output Current  
1.0  
0.9  
0.8  
0.7  
160  
140  
120  
100  
80  
V
= 3.3 V  
OUTNOM  
V
EN  
= 0 V  
I
= 500 mA  
= 250 mA  
OUT  
0.6  
0.5  
I
I
0.4  
0.3  
OUT  
60  
40  
0.2  
= 100 mA  
= 10 mA  
OUT  
20  
0
V
= 0.7 V to 3.3 V  
0.1  
0
40  
OUTNOM  
I
OUT  
40  
20  
0
20  
40  
60  
80  
20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Dropout Voltage vs. Temperature  
Figure 12. Standby Current vs. Temperature  
90  
90  
80  
70  
60  
50  
40  
30  
20  
I
= 0 mA  
85  
80  
75  
70  
65  
60  
OUT  
V
V
= 3.3 V  
= 0.7 V  
OUTNOM  
OUTNOM  
V
= 1.8 V  
OUTNOM  
T = 40°C  
J
T = 25°C  
J
T = 85°C  
J
V
= 1.8 V  
5.0  
55  
50  
OUTNOM  
I
= 0 mA  
10  
0
40  
OUT  
20  
0
20  
40  
60  
80  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 13. Quiescent Current vs. Temperature  
Figure 14. Quiescent Current vs. Input Voltage  
www.onsemi.com  
5
NCP177  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUT J  
OUTNOM  
IN  
EN  
OUT  
IN  
350  
300  
250  
200  
150  
100  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
V
= 0 V  
1.4 V  
OUTFORCED  
1.8 V  
T = 40°C  
J
3.3 V  
T = 25°C  
J
V
= 0.7 V  
OUTNOM  
T = 85°C  
J
50  
0
V
= 1.8 V  
OUTNOM  
550  
500  
0
100  
200  
300  
400  
500  
40  
20  
0
20  
40  
60  
80  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 15. Ground Current vs. Output Current  
Figure 16. Short Circuit Current vs.  
Temperature  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
1.0  
0.9  
0.8  
0.7  
0.6  
V
= V  
0.1 V  
OUTFORCED  
OUTNOM  
OFF > ON  
ON > OFF  
1.8 V  
1.4 V  
3.3 V  
V
= 0.7 V  
OUTNOM  
0.5  
0.4  
V
= 1.8 V  
0
OUTNOM  
550  
500  
40  
20  
0
20  
40  
60  
80  
40  
20  
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Current Limit vs.  
Temperature  
Figure 18. Enable Threshold Voltage vs.  
Temperature  
70  
0.6  
V
V
V
= 1.8 V  
OUTNOM  
60  
50  
= 5.5 V  
0.5  
0.4  
0.3  
0.2  
IN  
= 5.5 V  
EN  
40  
30  
20  
V
V
V
V
= 1.8 V  
OUTNOM  
= 4.0 V  
= 0 V  
IN  
0.1  
0
EN  
10  
0
= V  
60  
OUTFORCED  
OUTNOM  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Enable Input Current vs.  
Temperature  
Figure 20. Output Discharge Resistance vs.  
Temperature (NCP177A option only)  
www.onsemi.com  
6
NCP177  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUT J  
OUTNOM  
IN  
EN  
OUT  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
6
5
4
3
2
C
= 1 mF X7R 0805  
OUT  
V
V
= 1.8 V, V = 3.0 V  
IN  
OUT_NOM  
OUT_NOM  
= 3.3 V, V = 4.3 V  
IN  
C
= 1 mF X7R 0805  
OUT  
Integral Noise:  
10 Hz 100 kHz: 54 mVrms  
10 Hz 1 MHz: 62 mVrms  
1
0
V
V
= 1.8 V, V = 3.0 V  
IN  
= 3.3 V, V = 4.3 V  
OUT_NOM  
OUT_NOM  
10  
0
IN  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio  
Figure 22. Output Voltage Noise Spectral  
Density  
V
= 1.8 V  
V
= 1.8 V  
OUTNOM  
OUTNOM  
I
IN  
I
IN  
V
IN  
V
IN  
V
OUT  
V
OUT  
1 ms/div  
50 ms/div  
Figure 23. TurnON/OFF VIN Driven (slow)  
Figure 24. TurnON VIN Driven (fast)  
V
IN  
V
= 1.8 V  
OUTNOM  
V
= 1.8 V  
3.3 V  
V
IN  
OUTNOM  
V
EN  
t
R
= t = 1 ms  
F
I
IN  
2.3 V  
Without output discharge  
With output discharge  
V
OUT  
1.8 V  
V
OUT  
1 ms/div  
5 ms/div  
Figure 25. TurnON/OFF EN Driven  
Figure 26. Line Transient Response  
www.onsemi.com  
7
NCP177  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.6 V (whichever is higher), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C  
OUT J  
OUTNOM  
IN  
EN  
OUT  
IN  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
370  
350  
330  
310  
290  
P
P
, 2 oz Cu  
, 1 oz Cu  
D(MAX)  
V
IN  
V
= 1.8 V  
500 mA  
OUTNOM  
D(MAX)  
1 mA  
t
R
= t = 1 ms  
F
I
OUT  
270  
250  
230  
V
1.8 V  
OUT  
q
, 1 oz Cu  
, 2 oz Cu  
JA  
T = 25°C  
T = 125°C (for P  
J
A
0.1  
0
q
210  
190  
JA  
curve)  
300  
D(MAX)  
0
100  
200  
400  
500  
600  
20 ms/div  
2
PCB COPPER AREA (mm )  
Figure 27. Load Transient Response  
Figure 28. qJA and PD(MAX) vs. Copper Area  
APPLICATIONS INFORMATION  
General  
Output Capacitor Selection (COUT)  
The NCP177 is a high performance 500 mA low dropout  
The LDO requires an output capacitor connected as close  
as possible to the output and ground pins. The recommended  
capacitor value is 1 mF, ceramic X7R or X5R type due to its  
low capacitance variations over the specified temperature  
range. The LDO is designed to remain stable with minimum  
effective capacitance of 0.8 mF. When selecting the capacitor  
the changes with temperature, DC bias and package size  
needs to be taken into account. Especially for small package  
size capacitors such as 0201 the effective capacitance drops  
rapidly with the applied DC bias voltage (refer the  
capacitor’s datasheet for details).  
linear regulator (LDO) delivering excellent noise and  
dynamic performance. Thanks to its adaptive ground current  
behavior the device consumes only 60 mA of quiescent  
current (noload condition).  
The regulator features low noise of 48 mV , PSRR of  
RMS  
75 dB at 1 kHz and very good line/load transient  
performance. Such excellent dynamic parameters, small  
dropout voltage and small package size make the device an  
ideal choice for powering the precision noise sensitive  
circuitry in portable applications.  
A logic EN input provides ON/OFF control of the output  
voltage. When the EN is low the device consumes as low as  
100 nA typ. from the IN pin.  
The device is fully protected in case of output overload,  
output short circuit condition or overheating, assuring a very  
robust design.  
There is no requirement for the minimum value of  
equivalent series resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 0.5 W. Larger  
capacitance and lower ESR improves the load transient  
response and high frequency PSRR. Only ceramic  
capacitors are recommended, the other types like tantalum  
capacitors not due to their large ESR.  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
to ensure device stability. The X7R or X5R capacitor should  
be used for reliable performance over temperature range.  
The value of the input capacitor should be 1 mF or greater for  
the best dynamic performance. This capacitor will provide  
a low impedance path for unwanted AC signals or noise  
modulated onto the input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramic capacitor for its low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during load current changes.  
Enable Operation  
The LDO uses the EN pin to enable/disable its operation  
and to deactivate/activate the output discharge function  
(Aversion only).  
If the EN pin voltage is < 0.4 V the device is disabled and  
the pass transistor is turned off so there is no current flow  
between the IN and OUT pins. On Aversion the active  
discharge transistor is active so the output voltage is pulled  
to GND through 60 W (typ.) resistor.  
If the EN pin voltage is > 1.0 V the device is enabled and  
regulates the output voltage. The active discharge transistor  
is turned off.  
www.onsemi.com  
8
NCP177  
The EN pin has internal pulldown current source with  
The power dissipated by the LDO for given application  
conditions can be calculated by the next equation:  
value of 300 nA typ. which assures the device is turned off  
when the EN pin is unconnected. In case when the EN  
function isn’t required the EN pin should be tied directly to  
IN pin.  
ǒ Ǔ  
D + VIN @ IGND ) VIN * VOUT @ IOUT [W]  
P
(eq. 2)  
Where: I  
is the LDO’s ground current, dependent on the  
GND  
output load current.  
Connecting the exposed pad and N/C pin to a large ground  
planes helps to dissipate the heat from the chip.  
Output Current Limit  
Output current is internally limited to a 750 mA typ. The  
LDO will source this current when the output voltage drops  
down from the nominal output voltage (test condition is  
The relation of θ and P  
to PCB copper area and  
JA  
D(MAX)  
Cu layer thickness could be seen on the Figure 26.  
V
– 100 mV). If the output voltage is shorted to  
OUTNOM  
ground, the short circuit protection will limit the output  
current to 700 mA typ. The current limit and short circuit  
protection will work properly over the whole temperature  
and input voltage ranges. There is no limitation for the short  
circuit duration.  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case when V  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
> V .  
OUT  
IN  
Thermal Shutdown  
When the LDO’s die temperature exceeds the thermal  
shutdown threshold value the device is internally disabled.  
The IC will remain in this state until the die temperature  
decreases by value called thermal shutdown hysteresis.  
Once the IC temperature falls this way the LDO is back  
enabled. The thermal shutdown feature provides the  
protection against overheating due to some application  
failure and it is not intended to be used as a normal working  
function.  
Power Supply Rejection Ratio  
The LDO features very high power supply rejection ratio.  
The PSRR at higher frequencies (in the range above  
100 kHz) can be tuned by the selection of C  
and proper PCB layout. A simple LC filter could be added  
to the LDO’s IN pin for further PSRR improvement.  
capacitor  
OUT  
Enable TurnOn Time  
The enable turnon time is defined as the time from EN  
assertion to the point in which V  
nominal value. This time is dependent on various  
application conditions such as V , C and T .  
will reach 98% of its  
OUT  
Power Dissipation  
Power dissipation caused by voltage drop across the LDO  
and by the output current flowing through the device needs  
to be dissipated out from the chip. The maximum power  
dissipation is dependent on the PCB layout, number of used  
Cu layers, Cu layers thickness and the ambient temperature.  
The maximum power dissipation can be computed by  
following equation:  
OUTNOM OUT  
A
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors as close as  
IN  
OUT  
possible to the device pins and make the PCB traces wide.  
In order to minimize the solution size, use 0402 or 0201  
capacitors size with appropriate effective capacitance.  
Larger copper area connected to the pins will also improve  
the device thermal resistance. The actual power dissipation  
can be calculated from the equation above (Power  
Dissipation section). Exposed pad and N/C pin should be  
tied to the ground plane for good power dissipation.  
TJ * TA  
qJA  
125 * TA  
PD(MAX)  
+
+
[W]  
(eq. 1)  
qJA  
Where: (T T ) is the temperature difference between the  
J
A
junction and ambient temperatures and θ is the thermal  
JA  
resistance (dependent on the PCB as mentioned above).  
For reliable operation junction temperature should be  
limited do +125°C.  
www.onsemi.com  
9
NCP177  
ORDERING INFORMATION  
Part Number  
Voltage Option  
Option  
Marking  
JA  
Package  
Shipping  
NCP177AMX070TCG  
NCP177AMX090TCG  
NCP177AMX100TCG  
NCP177AMX110TCG  
NCP177AMX120TCG  
NCP177AMX125TCG  
NCP177AMX135TCG  
NCP177AMX150TCG  
NCP177AMX180TCG  
NCP177AMX330TCG  
NCP177BMX070TCG  
NCP177BMX100TCG  
NCP177BMX110TCG  
NCP177BMX120TCG  
NCP177BMX125TCG  
NCP177BMX135TCG  
NCP177BMX150TCG  
NCP177BMX180TCG  
NCP177BMX330TCG  
0.70 V  
0.90 V  
1.00 V  
1.10 V  
1.20 V  
1.25 V  
1.35 V  
1.50 V  
1.80 V  
3.30 V  
0.70 V  
1.00 V  
1.10 V  
1.20 V  
1.25 V  
1.35 V  
1.50 V  
1.80 V  
3.30 V  
JM  
JC  
JD  
JE  
With output discharge  
JK  
JF  
JG  
JH  
XDFN4  
(PbFree)  
JJ  
3000 / Tape & Reel  
HA  
HC  
HD  
HE  
HL  
Without output discharge  
HF  
HG  
HH  
HJ  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
10  
NCP177  
PACKAGE DIMENSIONS  
XDFN4 1.0x1.0, 0.65P  
CASE 711AJ  
ISSUE A  
4X L2  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
4X b2  
2X  
0.05  
C
MILLIMETERS  
DETAIL A  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
0.05  
C
2X  
A
TOP VIEW  
A3  
b
b2 0.02  
0.10 REF  
0.15  
0.25  
0.12  
(A3)  
0.05  
0.05  
C
D
1.00 BSC  
D2 0.43  
0.53  
A
E
e
L
1.00 BSC  
0.65 BSC  
0.20  
C
0.30  
0.17  
SEATING  
PLANE  
NOTE 4  
A1  
L2 0.07  
C
SIDE VIEW  
e
e/2  
RECOMMENDED  
DETAIL A  
4X L  
D2  
MOUNTING FOOTPRINT*  
1
4
2
2X  
0.52  
0.65  
PITCH  
PACKAGE  
OUTLINE  
D2  
455  
3
4X  
0.39  
4X  
0.11  
1.20  
4X b  
M
0.05  
C A B  
NOTE 3  
BOTTOM VIEW  
4X  
4X  
0.26  
0.24  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP177/D  

相关型号:

NCP177AMX135TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX150TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX180TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX330TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX070TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX100TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX110TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX120TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX125TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX135TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX150TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177BMX180TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI