NCP3163MNR2G [ONSEMI]

3.4 A, Step−Up/Down/Inverting 50−300 kHz Switching Regulator; 3.4 A,步上/下/负输出50〜300 kHz的开关稳压器
NCP3163MNR2G
型号: NCP3163MNR2G
厂家: ONSEMI    ONSEMI
描述:

3.4 A, Step−Up/Down/Inverting 50−300 kHz Switching Regulator
3.4 A,步上/下/负输出50〜300 kHz的开关稳压器

稳压器 开关
文件: 总20页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP3163  
3.4 A, Step−Up/Down/  
Inverting 50−300 kHz  
Switching Regulator  
The NCP3163 Series is a performance enhancement to the popular  
MC33163 and MC34163 monolithic DC−DC converters. These  
devices consist of an internal temperature compensated reference,  
comparator, controlled duty cycle oscillator with an active current  
limit circuit, driver and high current output switch. This controller was  
specifically designed to be incorporated in step−down, step−up, or  
voltage−inverting applications with a minimum number of external  
components. The NCP3163 comes in an exposed pad package which  
can greatly increase the power dissipation of the built in power switch.  
http://onsemi.com  
MARKING  
DIAGRAMS  
16  
16  
1
NCP3163xPW  
AWLYYWWG  
SOIC−16W  
EXPOSED PAD  
PW SUFFIX  
CASE 751AG  
Features  
Output Switch Current in Excess of 3.0 A  
1
1
3.4 A Peak Switch Current  
Frequency is Adjustable from 50 kHz to 300 kHz  
Operation from 2.5 V to 40 V Input  
Externally Adjustable Operating Frequency  
Precision 2% Reference for Accurate Output Voltage Control  
Driver with Bootstrap Capability for Increased Efficiency  
Cycle−by−Cycle Current Limiting  
18  
18  
NCP3163x  
AWLYYWW G  
G
18−LEAD DFN  
MN SUFFIX  
CASE 505  
1
Internal Thermal Shutdown Protection  
Low Voltage Indicator Output for Direct Microprocessor Interface  
Exposed Pad Power Package  
NCP3163x = Specific Device Code  
= Assembly Location  
A
Low Standby Current  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
This is a Pb−Free Device  
G
G
= Pb−Free Package  
= Pb−Free Package  
Current  
Limit  
8
7
6
5
9
+
(Note: Microdot may be in either location)  
V
in  
10  
11  
12  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 18 of this data sheet.  
+
V
CC  
C
in  
Oscillator  
*For additional information on our Pb−Free strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
R
S
Q
Thermal  
4
3
13  
14  
V
CC  
+
+
2
1
15  
16  
+
+
LVI  
V
CC  
V
+
out  
(Bottom View)  
Figure 1. Typical Buck Application Circuit  
C
O
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
May, 2006 − Rev. 1  
NCP3163/D  
NCP3163  
Current  
Limit  
0.25 V  
I
8
7
6
5
9
+
PKsense  
Driver Collector  
Switch Collector  
R
SC  
10  
11  
12  
V
CC  
V
CC  
Timing Capacitor  
Q1  
Oscillator  
C
T
Q2  
60  
Shutdown  
R
S
R
DT  
Q
Thermal  
4
3
13  
14  
Gnd  
Latch  
CC  
V
Voltage Feedback 1  
Voltage Feedback 2  
LVI Output  
Switch Emitter  
45 k  
2.0 mA  
+
+
2
1
15  
16  
Feedback  
Comparator  
1.25 V  
15 k  
+
+
7.0 V  
Bootstrap Input  
1.125 V  
(Bottom View)  
LVI  
V
CC  
+
= Sink Only  
Positive True Logic  
Figure 2. Representative Block Diagram  
PIN FUNCTION DESCRIPTION  
SOIC16  
DFN18  
15  
PIN NAME  
LVI Output  
DESCRIPTION  
1
2
This pin will sink current when FB1 and FB2 are less than the LVI threshold (V ).  
th  
16  
Voltage Feedback 2  
Connecting this pin to a resistor divider off of the output will regulate the application  
according to the V design equation in Figure 22.  
out  
3
4
6
17  
18  
1
Voltage Feedback 1  
GND  
Connecting this pin directly to the output will regulate the device to 5.05 V.  
Ground pin for all internal circuits and power switch.  
Timing Capacitor  
Connect a capacitor to this pin to set the frequency. The addition of a parallel resis-  
tor will decrease the maximum duty cycle and increase the frequency.  
7
8
3
4
V
Power pin for the IC.  
CC  
I
Sense  
When (V −V  
) > 250 mV the circuit resets the output driver on a pulse by  
pk  
CC  
IPKsense  
pulse basis.  
9
5
6,7,8,9  
10,11,12,13  
14  
Drive Collector  
Switch Collector  
Switch Emitter  
Bootstrap Input  
Voltage driver collector  
10,11  
14,15  
16  
Internal switch transistor collector  
Internal switch transistor emitter  
Connect this pin to V for operation at low V levels. For some topologies, a  
CC  
CC  
series resistor and capacitor can be utilized to improve the converter efficiency.  
5,12,13  
2
No Connect  
These pins have no connection.  
Exposed  
Pad  
Exposed  
Pad  
Exposed Pad  
The exposed pad beneath the package must be connected to GND (pin 4). Addi-  
tionally, using proper layout techniques, the exposed pad can greatly enhance the  
power dissipation capabilities of the NCP3163.  
http://onsemi.com  
2
 
NCP3163  
MAXIMUM RATINGS (Note 1)  
Rating  
Symbol  
Value  
0 to +40  
−1.0 to +40  
−2.0 to +40  
+40  
Unit  
V
Power Supply Voltage  
V
CC  
Switch Collector Voltage Range  
Switch Emitter Voltage Range  
Switch Collector to Emitter Voltage  
Switch Current  
V
CSW  
V
ESW  
V
V
V
V
CESW  
I
3.4  
A
SW  
Driver Collector Voltage (Pin 8)  
Driver Collector Current (Pin 8)  
Bootstrap Input Current Range  
V
−1.0 to +40  
150  
V
CC  
CC  
I
mA  
mA  
V
I
−100 to +100  
BST  
Current Sense Input Voltage Range  
V
(V − 7.0) to (V + 1.0)  
CC CC  
IPKSNS  
Feedback and Timing Capacitor Input Voltage Range  
Low Voltage Indicator Output Voltage Range  
Low Voltage Indicator Output Sink Current  
V
−1.0 to +7.0  
V
in  
V
CLVI  
CLVI  
−1.0 to +40  
10  
V
I
mA  
Power Dissipation and Thermal Characteristics  
Thermal Characteristics  
°C/W  
Thermal Resistance, Junction−to−Case  
Thermal Resistance, Junction−to−Air  
R
R
15  
56  
q
JC  
JA  
q
Storage Temperature Range  
T
−65 to +150  
+150  
°C  
°C  
°C  
stg  
Maximum Junction Temperature  
T
Jmax  
Operating Ambient Temperature (Note 3)  
NCP3163PW  
T
A
0 to +70  
NCP3163BPW  
−40 to +85  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 1500 V per MIL−STD−883, Method 3015.  
Machine Model Method 150 V.  
2. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.  
3. Maximum package power dissipation limits must be observed. Maximum Junction Temperature must not be exceeded.  
4. The pins which are not defined may not be loaded by external signals.  
PIN CONNECTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Bootstrap Input  
LVI Output  
Voltage Feedback 2  
Voltage Feedback 1  
18  
17  
16  
15  
14  
13  
12  
11  
10  
Timing Capacitor  
N/C  
GND  
1
2
3
4
5
6
7
GND  
Voltage Feedback 1  
Voltage Feedback 2  
LVI Output  
Switch  
Emitter  
V
CC  
I
pk  
Sense  
GND  
N/C  
Bootstrap Input  
Switch Emitter  
Switch Emitter  
Switch Emitter  
Switch Emitter  
Driver Collector  
Switch Collector  
Switch Collector  
Switch Collector  
Switch Collector  
N/C  
Timing Capacitor  
Switch Collector  
Driver Collector  
EP Flag  
8
9
V
CC  
I
pk  
Sense  
(Top View)  
Note: Pin 18 must be tied to EP Flag on PCB  
http://onsemi.com  
3
 
NCP3163  
ELECTRICAL CHARACTERISTICS (V = 15 V, Pin 16 = V , C = 270 pF, R = 15 kW, for typical values T = 25°C, for min/max  
CC  
CC  
T
T
A
values T is the operating ambient temperature range that applies (Note 5), unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Frequency  
f
kHz  
OSC  
T = 25°C, V = 15 V  
225  
212  
250  
250  
275  
288  
A
CC  
Total Variation over V = 2.5 V to 40 V and Temperature (Note 5)  
CC  
Charge Current  
I
225  
25  
mA  
mA  
chg  
Discharge Current  
I
dischg  
Charge to Discharge Current Ratio  
Sawtooth Peak Voltage  
Sawtooth Valley Voltage  
I
/I  
8.0  
9.0  
10  
chg dischg  
V
V
1.25  
0.55  
V
OSC(P)  
OSC(V)  
V
FEEDBACK COMPARATOR 1  
Threshold Voltage  
V
V
th(FB1)  
T = 25°C  
4.9  
4.85  
5.05  
5.2  
5.25  
A
Total Variation over V = 2.5 V to 40 V and Temperature (Note 5)  
CC  
Threshold Voltage  
REGline  
%/V  
(FB1)  
Line Regulation (V = 2.5 V to 40 V, T = 25°C)  
0.008  
100  
0.03  
200  
CC  
A
Input Bias Current (V  
= 5.05 V)  
I
mA  
FB1  
IB(FB1)  
FEEDBACK COMPARATOR 2  
Threshold Voltage  
V
V
th(FB2)  
T = 25°C, V = 15 V  
1.225  
1.213  
1.25  
1.275  
1.287  
A
CC  
Total Variation over V = 2.5 V to 40 V and Temperature (Note 5)  
CC  
Threshold Voltage  
REGline  
%/V  
(FB1)  
Line Regulation (V = 2.5 V to 40 V, T = 25°C)  
0.008  
0.03  
0.4  
CC  
A
Input Bias Current (V  
= 1.25 V)  
I
− 0.4  
mA  
FB2  
IB(FB2)  
CURRENT LIMIT COMPARATOR  
Threshold Voltage  
V
mV  
th(Sense)  
IB(Sense)  
T = 25°C  
230  
250  
270  
A
Total Variation over V = 2.5 V to 40 V, and Temperature (Note 5)  
CC  
Input Bias Current (V  
= 15 V)  
I
1.0  
20  
mA  
Ipk (Sense)  
DRIVER AND OUTPUT SWITCH (Note 6)  
Saturation Voltage (I = 2.5 A, Pins 14, 15 grounded)  
V
V
SW  
CE(sat)  
Non−Darlington Connection (R  
Darlington Connection (Pins 9, 10, 11 connected) (Note 7)  
= 110 W to V , I /I  
20)  
0.6  
1.0  
1.0  
1.4  
Pin 9  
CC SW DRV  
Collector Off−State Leakage Current (V = 40 V)  
I
0.02  
2.0  
100  
4.0  
mA  
mA  
V
CE  
C(off)  
Bootstrap Input Current Source (V = V + 5.0 V)  
I
0.5  
BS  
CC  
source(DRV)  
Bootstrap Input Zener Clamp Voltage (I = 25 mA)  
V
V
+ 6.0  
V
+ 7.0  
V
+ 9.0  
CC  
Z
Z
CC  
CC  
LOW VOLTAGE INDICATOR  
Input Threshold (V  
Increasing)  
Decreasing)  
V
1.07  
1.125  
15  
1.18  
V
mV  
V
FB2  
th  
Input Hysteresis (V  
V
FB2  
H
Output Sink Saturation Voltage (I  
= 2.0 mA)  
V
0.15  
0.01  
0.4  
5.0  
sink  
OL(LVI)  
Output Off−State Leakage Current (V  
= 15 V)  
I
mA  
OH  
OH  
TOTAL DEVICE  
Standby Supply Current (V = 2.5 V to 40 V, Pin 8 = V  
,
I
CC  
6.0  
10  
mA  
CC  
CC  
Pins 6, 14, 15 = GND, remaining pins open)  
5. Maximum package power dissipation limits must be observed.  
6. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
7. T  
= 0°C for NCP3163  
= − 40°C for NCP3163B  
T
= + 70°C for NCP3163  
= + 85°C for NCP3163B  
low  
high  
http://onsemi.com  
4
 
NCP3163  
300  
250  
200  
150  
V
= 15 V  
CC  
T = 25°C  
A
R = 15 kW  
t
R = open  
t
100  
50  
0
100  
200  
300  
400  
500  
600  
700  
C , TIMER CAPACITANCE (pF)  
T
Figure 3. Oscillator Frequency vs. Timer  
Capacitance (CT)  
2.0  
0
4.0  
V
= 15 V  
C = 230 pF  
V
= 15 V  
C = 620 pF  
CC  
CC  
2.0  
0
T
R = 20 kW  
T
T
−ꢀ2.0  
−ꢀ4.0  
−ꢀ6.0  
−ꢀ2.0  
−ꢀ4.0  
−ꢀ6.0  
−ꢀ8.0  
−ꢀ10  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
−ꢀ50  
−ꢀ25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
TEMPERATURE (°C)  
Figure 4. Oscillator Frequency Change vs.  
Temperature when only CT is connected to Pin 6  
Figure 5. Oscillator Frequency Change vs.  
Temperature when CT and RT are connected to Pin 6  
140  
120  
1300  
V
V
= 15 V  
= 5.05 V  
CC  
V
= 15 V  
V
Max = 1275 mV  
FB1  
CC  
th  
1280  
1260  
1240  
1220  
1200  
V
V
Typ = 1250 mV  
Min = 1225 mV  
th  
th  
100  
80  
60  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 6. Feedback Comparator 1 Input Bias  
Current vs. Temperature  
Figure 7. Feedback Comparator 2 Threshold  
Voltage vs. Temperature  
http://onsemi.com  
5
NCP3163  
7.6  
2.8  
2.4  
V
= 15 V  
Pin 16 = V + 5.0 V  
CC  
I = 25 mA  
Z
CC  
7.4  
7.2  
7.0  
6.8  
2.0  
1.6  
1.2  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Bootstrap Input Current  
Source vs. Temperature  
Figure 9. Bootstrap Input Zener Clamp  
Voltage vs. Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
Darlington Configuration  
V
CC  
Emitter Sourcing Current to GND  
Pins 7, 8, 10, 11 = V  
Pins 4, 5, 12, 13 = GND  
Darlington, Pins 9, 10, 11 Connected  
Grounded Emitter Configuration  
Collector Sinking Current From V  
Pins 7, 8 = V = 15 V  
CC  
Pins 4, 5, 12, 13, 14, 15 = GND  
T = 25°C, (Note 2)  
A
−ꢀ0.4  
CC  
T = 25°C, (Note 2)  
A
−ꢀ0.8  
−1.2  
−1.6  
−ꢀ2.0  
CC  
Bootstrapped, Pin 16 = V + 5.0 V  
CC  
Saturated Switch, R  
= 110 W to V  
CC  
Pin9  
Non−Bootstrapped, Pin 16 = V  
CC  
GND  
1.6  
0
0.8  
1.6  
I , EMITTER CURRENT (A)  
2.4  
3.2  
0
0.8  
2.4  
3.2  
I , COLLECTOR CURRENT (A)  
C
E
Figure 10. Output Switch Source Saturation  
vs. Emitter Current  
Figure 11. Output Switch Sink Saturation  
vs. Collector Current  
0
0.5  
0.4  
V
ꢁ=ꢁ5 V  
CC  
GND  
T ꢁ=ꢁ25°C  
A
I = 10 mA  
C
−ꢀ0.4  
−ꢀ0.8  
−ꢀ1.2  
−ꢀ1.6  
−ꢀ2.0  
0.3  
0.2  
0.1  
0
I = 10 mA  
C
V
= 15 V  
CC  
Pins 7, 8, 9, 10, 16 = V  
CC  
Pins 4, 6 = GND  
Pin 14 Driven Negative  
−ꢀ55  
−ꢀ25  
0
25  
50 75 100  
125  
0
2.0  
4.0  
6.0  
8.0  
T , AMBIENT TEMPERATURE (°C)  
A
I , OUTPUT SINK CURRENT (mA)  
sink  
Figure 12. Output Switch Negative Emitter  
Voltage vs. Temperature  
Figure 13. Low Voltage Indicator Output Sink  
Saturation Voltage vs. Sink Current  
http://onsemi.com  
6
 
NCP3163  
254  
252  
250  
248  
246  
1.6  
V
= 15 V  
CC  
V
V
= 15 V  
CC  
= 15 V  
Ipk (Sense)  
1.4  
1.2  
1.0  
0.8  
0.6  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 14. Current Limit Comparator Threshold  
Voltage vs. Temperature  
Figure 15. Current Limit Comparator Input Bias  
Current vs. Temperature  
8.0  
6.0  
4.0  
7.2  
6.4  
V
= 15 V  
Pins 7, 8, 16 = V  
CC  
CC  
Pins 4, 6, 14 = GND  
Remaining Pins Open  
5.6  
4.8  
4.0  
Pins 7, 8, 16 = V  
CC  
Pins 4, 6, 14 = GND  
Remaining Pins Open  
T = 25°C  
A
2.0  
0
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
V
T , AMBIENT TEMPERATURE (°C)  
CC  
A
Figure 16. Standby Supply Current  
vs. Supply Voltage  
Figure 17. Standby Supply Current  
vs. Temperature  
3.0  
2.6  
C = 620 pF  
T
Pins 7,8 = V  
CC  
Pins 4, 14 = GND  
Pin 9 = 1.0 kW to 15 V  
Pin 10 = 100 W to 15 V  
Pin 16 Open  
2.2  
1.8  
Pin 16 = V  
CC  
1.4  
1.0  
−ꢀ55  
−ꢀ25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 18. Minimum Operating Supply  
Voltage vs. Temperature  
http://onsemi.com  
7
 
NCP3163  
INTRODUCTION  
The NCP3163 is a monolithic power switching regulator  
oscillator cycle, a partial cycle plus a complete cycle,  
multiple cycles, or a partial cycle plus multiple cycles.  
optimized for DC−to−DC converter applications. The  
combination of its features enables the system designer to  
directly implement step−up, step−down, and voltage−  
inverting converters with a minimum number of external  
components. Potential applications include cost sensitive  
consumer products as well as equipment for the automotive,  
computer, and industrial markets. A representative block  
diagram is shown in Figure 2.  
Oscillator  
The oscillator frequency and on−time of the output switch  
are programmed by the value selected for timing capacitor  
C . Capacitor C is charged and discharged by a 9 to 1 ratio  
T
T
internal current source and sink, generating a negative going  
sawtooth waveform at Pin 6. As C charges, an internal  
T
pulse is generated at the oscillator output. This pulse is  
connected to the NOR gate center input, preventing output  
switch conduction, and to the AND gate upper input,  
allowing the latch to be reset if the comparator output is low.  
Thus, the output switch is always disabled during ramp−up  
and can be enabled by the comparator output only at the start  
of ramp−down. The oscillator peak and valley thresholds are  
1.25 V and 0.55 V, respectively, with a charge current of  
225 mA and a discharge current of 25 mA, yielding a  
maximum on−time duty cycle of 90%. A reduction of the  
maximum duty cycle may be required for specific converter  
configurations. This can be accomplished with the addition  
OPERATING DESCRIPTION  
The NCP3163 operates as a fixed on−time, variable  
off−time voltage mode ripple regulator. In general, this  
mode of operation is somewhat analogous to a capacitor  
charge pump and does not require dominant pole loop  
compensation for converter stability. The Typical Operating  
Waveforms are shown in Figure 19. The output voltage  
waveform shown is for a step−down converter with the  
ripple and phasing exaggerated for clarity. During initial  
converter startup, the feedback comparator senses that the  
output voltage level is below nominal. This causes the  
output switch to turn on and off at a frequency and duty cycle  
controlled by the oscillator, thus pumping up the output filter  
capacitor. When the output voltage level reaches nominal,  
the feedback comparator sets the latch, immediately  
terminating switch conduction. The feedback comparator  
will inhibit the switch until the load current causes the output  
voltage to fall below nominal. Under these conditions,  
output switch conduction can be inhibited for a partial  
of an external deadtime resistor (R ) placed across C . The  
DT  
T
resistor increases the discharge current which reduces the  
on−time of the output switch. The converter output can be  
inhibited by clamping C to ground with an external NPN  
T
small−signal transistor. To calculate the frequency when  
only C is connected to Pin 6, use the equations found in  
T
Figure 22. When R is also used, the frequency and  
T
maximum duty cycle can be calculated with the NCP3163  
design tool found at www.onsemi.com.  
1
Comparator Output  
0
1.25 V  
Timing Capacitor C  
T
0.55 V  
t
9t  
1
Oscillator Output  
0
On  
Output Switch  
Off  
Nominal Output  
Voltage Level  
Output Voltage  
Startup  
Quiescent Operation  
Figure 19. Typical Operating Waveforms  
http://onsemi.com  
8
 
NCP3163  
Feedback and Low Voltage Indicator Comparators  
output state is controlled by the highest voltage applied to  
either of the two noninverting inputs.  
Output voltage control is established by the Feedback  
comparator. The inverting input is internally biased at 1.25 V  
and is not pinned out. The converter output voltage is  
typically divided down with two external resistors and  
monitored by the high impedance noninverting input at Pin 2.  
The maximum input bias current is 0.4 mA, which can cause  
an output voltage error that is equal to the product of the input  
bias current and the upper divider resistance value. For  
applications that require 5.0 V, the converter output can be  
directly connected to the noninverting input at Pin 3. The high  
impedance input, Pin 2, must be grounded to prevent noise  
pickup. The internal resistor divider is set for a nominal  
voltage of 5.05 V. The additional 50 mV compensates for a  
1.0% voltage drop in the cable and connector from the  
converter output to the load. The Feedback comparator’s  
The Low Voltage Indicator (LVI) comparator is designed  
for use as a reset controller in microprocessor−based  
systems. The inverting input is internally biased at 1.125 V,  
which sets the noninverting input thresholds to 90% of  
nominal. The LVI comparator has 15 mV of hysteresis to  
prevent erratic reset operation. The Open Collector output is  
capable of sinking in excess of 6.0 mA (see Figure 13). An  
external resistor (R ) and capacitor (C  
) can be used to  
DLY  
LVI  
program a reset delay time (t ) by the formula shown  
DLY  
below, where V  
is the microprocessor reset input  
th(MPU)  
threshold. Refer to Figure 20.  
1
V
ǒ Ǔ  
th(MPU)  
tDLY = RLVI CDLY In  
1 −  
Vout  
3
14  
+
+
Feedback  
Comparator  
2
15  
16  
R
LVI  
1.25 V  
+
+
Low Voltage  
Indicator Output  
1
C
LVI  
1.125 V  
DLY  
L
V
out  
C
O
(Bottom View)  
Figure 20. Partial Application Schematic Showing  
Implementation of LVI Delay with RLVI and CDLY  
Current Limit Comparator, Latch and Thermal  
Shutdown  
200 ns. The parasitic inductance associated with R and the  
SC  
circuit layout should be minimized. This will prevent  
unwanted voltage spikes that may falsely trip the Current  
Limit comparator.  
Internal thermal shutdown circuitry is provided to protect  
the IC in the event that the maximum junction temperature  
is exceeded. When activated, typically at 170°C, the Latch  
is forced into the “Set” state, disabling the Output Switch.  
This feature is provided to prevent catastrophic failures from  
accidental device overheating. It is not intended to be used  
as a replacement for proper heatsinking.  
With a voltage mode ripple converter operating under  
normal conditions, output switch conduction is initiated by  
the oscillator and terminated by the Voltage Feedback  
comparator. Abnormal operating conditions occur when the  
converter output is overloaded or when feedback voltage  
sensing is lost. Under these conditions, the Current Limit  
comparator will protect the Output Switch.  
The switch current is converted to a voltage by inserting  
a fractional ohm resistor, R , in series with V and output  
SC  
CC  
switch transistor Q . The voltage drop across R  
is  
2
SC  
Driver and Output Switch  
monitored by the Current Sense comparator. If the voltage  
To aid in system design flexibility and conversion  
efficiency, the driver current source and collector, and  
output switch collector and emitter are pinned out  
separately. This allows the designer the option of driving the  
output switch into saturation with a selected force gain or  
driving it near saturation when connected as a Darlington.  
The output switch has a typical current gain of 70 at 2.5 A  
and is designed to switch a maximum of 40 V collector to  
emitter, with up to 3.4 A peak collector current. The  
drop exceeds 250 mV with respect to V , the comparator  
will set the latch and terminate output switch conduction on  
CC  
a
cycle−by−cycle basis. This Comparator/Latch  
configuration ensures that the Output Switch has only a  
single on−time during a given oscillator cycle. The  
calculation for a value of R is:  
SC  
0.25 V  
(Switch)  
R
SC  
+
I
pk  
Figures14 and 15 show that the Current Sense comparator  
threshold is tightly controlled over temperature and has a  
typical input bias current of 1.0 mA. The propagation delay  
from the comparator input to the Output Switch is typically  
minimum value for R is:  
SC  
0.25 V  
3.4 A  
R
+
+ 0.0735 W  
SC(min)  
http://onsemi.com  
9
 
NCP3163  
When configured for step−down or voltage−inverting  
low ESR capacitors. The equation below is used to calculate  
a minimum value bootstrap capacitor based on a minimum  
zener voltage and an upper limit current source.  
applications (see application notes at the end of this  
document) the inductor will forward bias the output rectifier  
when the switch turns off. Rectifiers with a high forward  
voltage drop or long turn−on delay time should not be used.  
If the emitter is allowed to go sufficiently negative, collector  
current will flow, causing additional device heating and  
reduced conversion efficiency.  
t
Dt  
DV  
on  
C
+ I  
+ 4.0 mA  
+ 0.001 t  
on  
B(min)  
4.0 V  
Parametric operation of the NCP3163 is guaranteed over  
a supply voltage range of 2.5 V to 40 V. When operating  
below 3.0 V, the Bootstrap Input should be connected to  
Figure 12 shows that by clamping the emitter to 0.5 V, the  
collector current will be in the range 10 mA over  
temperature. A 1N5822 or equivalent Schottky barrier  
rectifier is recommended to fulfill these requirements.  
A bootstrap input is provided to reduce the output switch  
saturation voltage in step−down and voltage−inverting  
converter applications. This input is connected through a  
series resistor and capacitor to the switch emitter and is used  
V
. Figure 18 shows that functional operation down to  
CC  
1.7 V at room temperature is possible.  
Package  
The NCP3163 is contained in a heatsinkable 16−lead  
plastic package in which the die is mounted on a special heat  
tab copper alloy pad. This pad is designed to be soldered  
directly to a GND connection on the printed circuit board to  
improve thermal conduction. Since this pad directly  
contacts the substrate of the die, it is important that this pad  
be always soldered to GND, even if surface mount heat  
sinking is not being used. Figure 21 shows recommended  
layout techniques for this package.  
to raise the internal 2.0 mA bias current source above V  
.
CC  
An internal zener limits the bootstrap input voltage to V  
CC  
+7.0 V. The capacitor’s equivalent series resistance must  
limit the zener current to less than 100 mA. An additional  
series resistor may be required when using tantalum or other  
Vias to 2nd Layer Metal  
for Maximum Heat Sinking  
Exposed Pad  
0.175  
0.188  
Minimum  
Recommended  
Exposed Copper  
0.145  
Flare Metal for Maximum Heat Sinking  
Figure 21. Layout Guidelines to Obtain Maximum  
Package Power Dissipation  
APPLICATIONS  
Figures 23 through 30 show the simplicity and flexibility  
equations for the key parameters. Additionally, a complete  
application design aid for the NCP3163 can be found at  
www.onsemi.com.  
of the NCP3163. Three main converter topologies are  
demonstrated with actual test data shown below each of the  
circuit diagrams. Figure 22 gives the relevant design  
http://onsemi.com  
10  
 
NCP3163  
Calculation  
Step−Down  
) V  
Step−Up  
Voltage−Inverting  
(See Notes 1,2,3)  
|V | ) V  
V
V
) V – V  
t
t
on  
off  
out  
F
out  
out  
F
F
in  
V
* V  
V
* V  
* V  
V
– V  
sat  
in  
sat  
out  
sat  
in  
in  
t
t
t
t
t
t
on  
off  
on  
off  
on  
off  
t
on  
t
t
t
on  
on  
on  
ƒ ǒ Ǔ  
ƒ ǒ Ǔ  
ƒ ǒ Ǔ  
) 1  
) 1  
) 1  
t
t
t
off  
off  
off  
*6  
*6  
*6  
32.143 · 10  
32.143 · 10  
32.143 · 10  
*12  
*12  
*12  
C
* 20 @ 10  
* 20 @ 10  
* 20 @ 10  
T
f
f
f
t
t
t
t
on  
on  
I
I
out ǒ ) 1  
Ǔ
I
out ǒ ) 1  
Ǔ
I
L(avg)  
out  
off  
off  
DI  
DI  
DI  
L
L
L
I
pk (Switch)  
I
)
I
)
I
)
L(avg)  
L(avg)  
L(avg)  
2
2
2
0.25  
pk (Switch)  
0.25  
pk (Switch)  
0.25  
pk (Switch)  
R
SC  
I
I
I
V
in  
* V  
* V  
V
* V  
V
* V  
sat  
DI  
out  
sat  
sat  
in  
in  
ǒ
Ǔ on  
t
ǒ Ǔ on  
t
ǒ Ǔ on  
t
L
DI  
DI  
L
L
L
t
I
t
I
on  
on  
C
1
out  
out  
2
V
ǒ
Ǔ2  
DI  
) (ESR)  
[
[
ripple(pp)  
L
8 ƒ C  
C
O
O
O
R
R
R
2
1
2
1
2
1
V
ǒ
) 1  
Ǔ
V
ǒ
) 1  
Ǔ
V
ǒ
) 1  
Ǔ
V
out  
ref  
ref  
ref  
R
R
R
The following Converter Characteristics must be chosen:  
V
− Nominal operating input voltage.  
− Desired output voltage.  
in  
V
out  
I
− Desired output current.  
out  
DI − Desired peak−to−peak inductor ripple current. For maximum output current it is suggested that DI be chosen to be less  
L
L
than 10% of the average inductor current I  
. This will help prevent I  
L(avg)  
from reaching the current limit  
pk (Switch)  
threshold set by R . If the design goal is to use a minimum inductance value, let DI = 2(I ). This will  
L(avg)  
SC  
L
proportionally reduce converter output current capability.  
p Maximum output switch frequency.  
− Desired peak−to−peak output ripple voltage. For best performance the ripple voltage should be kept to a low value  
V
ripple(pp)  
since it will directly affect line and load regulation. Capacitor C should be a low equivalent series resistance (ESR)  
O
electrolytic designed for switching regulator applications.  
NOTES: 1. V − Saturation voltage of the output switch, refer to Figures 10 and 11.  
sat  
NOTES: 2. V − Output rectifier forward voltage drop. Typical value for 1N5822 Schottky barrier rectifier is 0.5 V.  
F
NOTES: 3. The calculated t /t must not exceed the minimum guaranteed oscillator charge to discharge ratio of 8, at the minimum  
on off  
NOTES: 3. operating input voltage.  
Figure 22. Design Equations  
http://onsemi.com  
11  
NCP3163  
Current  
Limit  
0.25 V  
8
7
6
5
9
+
R
SC  
10  
11  
12  
V
in  
C
in  
V
CC  
Oscillator  
Q
1
C
R
T
T
Q
2
R
Q
60  
S
Thermal  
Latch  
4
3
13  
14  
V
CC  
45 k  
R
+
+
1
Feedback  
Comparator  
2
1
15  
16  
D
2.0 mA  
7.0 V  
1.25 V 15 k  
1.125 V  
+
+
R
2
C
R
B
LVI  
V
B
CC  
L
V
out  
C
O
(Bottom View)  
Figure 23. Typical Buck Application Schematic  
Value of Components  
Name  
Value  
47 mH  
Name  
Value  
15 kW  
L
R
R
R
C
R
1
D
C
C
C
R
2 A, 40 V Schottky Rectifier  
47 mF, 35 V  
24.9 kW  
80 mW, 1 W  
4.7 nF  
2
in  
sc  
b
100 mF, 10 V  
out  
270 pF 10%  
15 kW  
200 W  
t
t
b
Test Results for Vout = 3.3 V  
Test  
Condition  
= 8.0 V to 24 V, I = 2.5 A  
Results  
13 mV  
25 mV  
100 mVpp  
70.3%  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
in  
in  
in  
in  
out  
V
V
V
V
= 12 V, I = 0 to 2.5 A  
out  
= 12 V, I = 0 to 2.5 A  
out  
Efficiency  
= 12 V, I = 2.5 A  
out  
Short Circuit Current  
= 12 V, R = 0.1 W  
3.1 A  
L
Test Results for Vout = 5.05 V  
Test  
Condition  
Results  
54 mV  
28 mV  
150 mVpp  
75.5%  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
= 10.2 V to 24 V, I = 2.5 A  
out  
= 12 V, I = 0 to 2.5 A  
out  
= 12 V, I = 0 to 2.5 A  
out  
Efficiency  
= 12 V, I = 2.5 A  
out  
Short Circuit Current  
= 12 V, R = 0.1 W  
3.1 A  
L
http://onsemi.com  
12  
NCP3163  
Figure 24. Buck Layout  
APPLICATION SPECIFIC CHARACTERISTICS  
85  
3.3 V Eff  
5.0 V Eff  
80  
75  
70  
65  
60  
55  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
I
(A)  
out  
Figure 25. Efficiency vs. Output Current for the  
Buck Demo Board at Vin = 12 V, TA = 255C  
http://onsemi.com  
13  
NCP3163  
Current  
Limit  
L
0.25 V  
8
7
9
+
R
SC  
10  
11  
12  
V
in  
+
C
in  
V
CC  
6
Oscillator  
Q
1
R
T
C
T
Q
2
R
Q
5
S
60  
Thermal  
Latch  
4
3
13  
14  
V
CC  
D
45 k  
+
+
Feedback  
Comparator  
2
1
15  
16  
2.0 mA  
7.0 V  
1.25 V  
15 k  
+
+
1.125 V  
LVI  
V
CC  
V
out  
+
R
C
O
R
(Bottom View)  
1
2
Figure 26. Typical Boost Application Schematic  
Value of Components for Vout = 24 V  
Name  
Value  
33 mH  
Name  
Value  
42.2 kW  
2.32 kW  
L
R
R
C
R
1
D
C
C
R
2 A, 40 V Schottky Rectifier  
330 mF, 35 V  
270 pF 10%  
15 kW  
2
330 mF, 25 V  
80 mW, 1 W  
in  
t
out  
sc  
t
Test Results for Vout = 24 V  
Test  
Condition  
= 10 V to 20 V, I = 700 mA  
Results  
90 mV  
80 mV  
300 mVpp  
83%  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
in  
in  
in  
in  
out  
V
V
V
V
= 12 V, I = 0 to 700 mA  
out  
= 12 V, I = 0 to 700 mA  
out  
Efficiency  
= 12 V, I = 700 mA  
out  
Short Circuit Current  
= 12 V, R = 0.1 W  
3.1 A  
L
http://onsemi.com  
14  
NCP3163  
Figure 27. Boost Demo Board Layout  
86  
84  
82  
80  
78  
76  
74  
0.1  
0.2  
0.3  
0.4  
(A)  
0.5  
0.6  
0.7  
I
out  
Figure 28. Efficiency vs. Output Current for the  
Boost Demo Board at Vin = 12 V, TA = 255C  
http://onsemi.com  
15  
NCP3163  
Current  
Limit  
0.25 V  
8
7
6
5
9
+
R
SC  
10  
11  
12  
V
in  
+
C
in  
V
CC  
Oscillator  
Q
1
C
R
T
T
Q
2
R
Q
S
60  
Thermal  
Latch  
4
3
13  
14  
V
CC  
L
45 k  
+
+
Feedback  
Comparator  
2
1
15  
16  
R
C
B
2.0 mA  
7.0 V  
1.25 V 15 k  
+
+
B
LVI  
1.125 V  
D
V
CC  
V
out  
R
C
1
(Bottom View)  
R
O
2
+
Figure 29. Typical Voltage Inverting Application Schematic  
Value of Components for Vout = −15 V  
Name  
Value  
47 mH  
Name  
Value  
L
R
R
R
C
R
1.07 kW  
11.8 kW  
1
D
C
C
C
2 A, 40 V Schottky Rectifier  
270 mF, 16 V  
2
80 mW, 1 W  
4.7 nF  
in  
sc  
b
2 X 270 mF, 16 V  
150 pF 10%  
out  
t
200 mW  
b
Test Results for Vout = −15 V  
Test  
Condition  
= 7.0 V to 16 V, I = 500 mA  
Results  
35 mV  
20 mV  
100 mVpp  
68%  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
in  
in  
in  
in  
out  
V
V
V
V
= 12 V, I = 0 to 500 mA  
out  
= 12 V, I = 0 to 500 mA  
out  
Efficiency  
= 12 V, I = 500 mA  
out  
Short Circuit Current  
= 12 V, R = 0.1 W  
3.1 A  
L
http://onsemi.com  
16  
NCP3163  
Figure 30. Voltage Inverting Demo Board Layout  
70  
66  
62  
58  
54  
50  
0.1 0.15  
0.2 0.25  
0.3 0.35  
(A)  
0.4  
0.45 0.5  
I
out  
Figure 31. Efficiency vs. Output Current for the  
Voltage Inverting Demo Board at Vin = 12 V, TA = 255C  
http://onsemi.com  
17  
NCP3163  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP3163PWG  
SOIC−16 W Exposed Pad  
(Pb−Free)  
47 Units / Rail  
1000 / Tape & Reel  
47 Units / Rail  
NCP3163PWR2G  
NCP3163BPWG  
NCP3163BPWR2G  
NCP3163MNR2G  
NCP3163BMNR2G  
SOIC−16 W Exposed Pad  
(Pb−Free)  
SOIC−16 W Exposed Pad  
(Pb−Free)  
SOIC−16 W Exposed Pad  
(Pb−Free)  
1000 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
DFN18  
(Pb−Free)  
DFN18  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
18  
NCP3163  
PACKAGE DIMENSIONS  
SOIC 16 LEAD WIDE BODY, EXPOSED PAD  
PW SUFFIX  
CASE 751AG−01  
ISSUE O  
−U−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
M
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
16  
1
9
P
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL BE  
0.13 (0.005) TOTAL IN EXCESS OF THE D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
6. 751R−01 OBSOLETE, NEW STANDARD 751R−02.  
B
M
M
W
0.25 (0.010)  
R x 45  
_
8
−W−  
MILLIMETERS  
INCHES  
MIN  
G
14 PL  
PIN 1 I.D.  
DIM MIN  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
DETAIL E  
A
B
C
D
F
10.15  
7.40  
2.35  
0.35  
0.50  
0.400  
0.292  
0.093  
0.014  
0.020  
TOP SIDE  
C
G
H
J
1.27 BSC  
0.050 BSC  
F
3.31  
0.25  
0.00  
4.58  
0
3.51  
0.32  
0.10  
4.78  
7
0.130  
0.010  
0.000  
0.180  
0
0.138  
0.012  
0.004  
0.188  
7
−T−  
0.10 (0.004)  
T
SEATING  
K
D16 PL  
0.25 (0.010)  
H
K
L
PLANE  
M
P
R
_
_
_
_
M
S
S
T
U
W
J
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
DETAIL E  
1
8
9
SOLDERING FOOTPRINT*  
EXPOSED PAD  
L
0.350  
Exposed  
Pad  
0.175  
0.050  
16  
BACK SIDE  
C
L
0.188  
0.200  
0.376  
C
L
0.074  
0.024  
0.145  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
19  
NCP3163  
PACKAGE DIMENSIONS  
18−LEAD DFN, 5 x 6 mm  
MN SUFFIX  
CASE 505−01  
ISSUE B  
NOTES:  
A
E
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
B
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1 LOCATION  
2X  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
0.15  
C
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
2X  
0.15  
C
0.18  
0.30  
TOP VIEW  
D
6.00 BSC  
D2  
E
3.98  
5.00 BSC  
4.28  
E2  
e
K
2.98  
0.50 BSC  
0.20  
0.45  
3.28  
(A3)  
0.10  
0.08  
C
C
−−−  
0.65  
A
18X  
L
A1  
C
SIDE VIEW  
SEATING  
PLANE  
D2  
e
18X L  
1
9
E2  
18X K  
18  
10  
18X b  
0.10 C A  
0.05  
B
C
NOTE 3  
BOTTOM VIEW  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP3163/D  

相关型号:

NCP3163PWG

3.4 A, Step−Up/Down/Inverting 50−300 kHz Switching Regulator
ONSEMI

NCP3163PWR2G

3.4 A, Step−Up/Down/Inverting 50−300 kHz Switching Regulator
ONSEMI

NCP3163_07

3.4 A, Step−Up/Down/Inverting 50−300 kHz Switching Regulator
ONSEMI

NCP3170

Synchronous PWM Switching Converter
ONSEMI

NCP3170ADR2G

Synchronous PWM Switching Converter
ONSEMI

NCP3170BDR2G

Synchronous PWM Switching Converter
ONSEMI

NCP3171ADR2G

SWITCHING REGULATOR
ONSEMI

NCP3171BDR2G

SWITCHING REGULATOR
ONSEMI

NCP3218

7-Bit Programmable, 3-Phase, Mobile CPU Synchronous Buck Controller
ONSEMI

NCP3218A

7-Bit, Programmable, 3-Phase, Mobile CPU Synchronous Buck Controller
ONSEMI

NCP3218AMNR2G

7-Bit, Programmable, 3-Phase, Mobile CPU Synchronous Buck Controller
ONSEMI

NCP3218GMNR2G

SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, QCC48, 6 X 6 MM, 0.40 MM PITCH, HALOGEN FREE AND ROHS COMPLIANT, QFN-48
ONSEMI