NCP380LSNAJAGEVB [ONSEMI]

Fixed/Adjustable Current‐ Limiting Power‐Distribution Switches;
NCP380LSNAJAGEVB
型号: NCP380LSNAJAGEVB
厂家: ONSEMI    ONSEMI
描述:

Fixed/Adjustable Current‐ Limiting Power‐Distribution Switches

文件: 总23页 (文件大小:627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP380, NCV380  
Fixed/Adjustable Current‐  
Limiting Power‐Distribution  
Switches  
The NCP380 is a high side power-distribution switch designed for  
applications where heavy capacitive loads and short-circuits are likely  
to be encountered. The device includes an integrated 55 mW (DFN  
package), P-channel MOSFET. The device limits the output current to  
a desired level by switching into a constant-current regulation mode  
when the output load exceeds the current-limit threshold or a short is  
present. The current-limit threshold is either user adjustable between  
100 mA and 2.1 A via an external resistor or internally fixed. The  
power-switch rise and fall times are controlled to minimize current  
ringing during switching.  
An internal reverse-voltage detection comparator disables the  
power-switch if the output voltage is higher than the input voltage to  
protect devices on the input side of the switch.  
The FLAG logic output asserts low during over current,  
reverse-voltage or over temperature conditions. The switch is  
controlled by a logic enable input active high or low.  
http://onsemi.com  
UDFN6  
CASE 517AB  
TSOP5  
CASE 483  
TSOP6  
CASE 318G  
MARKING DIAGRAMS  
1
2
3
6
5
4
XX M  
UDFN6  
Features  
5
1
2.5 V – 5.5 V Operating Range  
70 mW High-side MOSFET  
Current Limit:  
XXXAYWG  
G
User adjustable from 100 mA to 2.1 A  
Fixed 500 mA, 1 A, 1.5 A, 2 A and 2.1 A  
TSOP5  
Under Voltage Lock-out (UVLO)  
Built-in Soft-start  
Thermal Protection  
XXXAYWG  
G
1
Soft Turn-off  
TSOP6  
Reverse Voltage Protection  
Junction Temperature Range: 40C to 125C  
Enable Active High or Low (EN or EN)  
XXX = Specific Device Code  
A
M
Y
W
G
=Assembly Location  
= Date Code  
= Year  
= Work Week  
= PbFree Package  
Compliance to IEC6100042 (Level 4)  
8.0 kV (Contact)  
15 kV (Air)  
UL Listed File No. E343275  
(Note: Microdot may be in either location)  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 20 of this data sheet.  
These are Pb-Free Devices  
Typical Applications  
Laptops  
USB Ports/Hubs  
TVs  
Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
April, 2013 Rev. 12  
NCP380/D  
NCP380, NCV380  
USB  
DATA  
D+  
D−  
VBUS  
GND  
USB  
Port  
USB INPUT  
5 V  
IN  
OUT  
1 mF  
120 mF  
R
fault  
NCP380  
100 kW  
FLAG  
EN  
FLAG  
EN  
ILIM*  
R
lim  
GND  
*For Adjustable Version Only.  
Figure 1. Typical Application Circuit  
OUT  
ILIM*  
1
6 IN  
OUT  
GND  
1
2
3
5
4
IN  
IN  
1
2
3
6
5
4
OUT  
PAD1  
2
3
5 GND  
4 EN  
GND  
EN  
ILIM*  
FLAG  
FLAG  
EN  
FLAG  
TSOP5  
UDFN6  
TSOP6  
(Top view)  
*For adjustable version only, otherwise not connected.  
Figure 2. Pin Connections  
Table 1. PIN FUNCTION DESCRIPTION  
Pin Name  
EN  
Type  
Description  
Enable input, logic low/high (i.e. EN or EN) turns on power switch  
Ground connection;  
INPUT  
GND  
IN  
POWER  
POWER  
Power-switch input voltage; connect a 1 mF or greater ceramic capacitor from IN to GND as close as pos-  
sible to the IC.  
FLAG  
OUT  
OUTPUT  
OUTPUT  
Active-low open-drain output, asserted during overcurrent, overtemperature or reverse-voltage conditions.  
Connect a 10 kW or greater resistor pull-up, otherwise leave unconnected.  
Power-switch output; connect a 1 mF ceramic capacitor from OUT to GND as close as possible to the IC  
is recommended. A 1 mF or greater ceramic capacitor from OUT to GND must be connected if the USB  
requirement (i.e.120 mF capacitor minimum) is not met.  
ILIM*  
INPUT  
External resistor used to set current-limit threshold; recommended 5 kW < R  
< 250 kW.  
ILIM  
PAD1**  
THERMAL  
Exposed Thermal Pad: Must be soldered to PCB Ground plane  
*(For adjustable version only, otherwise not connected.  
**For DFN version only.  
http://onsemi.com  
2
NCP380, NCV380  
Table 2. MAXIMUM RATINGS  
Rating  
Symbol  
Value  
7.0 to +7.0  
0.3 to +7.0  
1
Unit  
V
From IN to OUT Pins: Input/Output (Note 1)  
IN, OUT, EN, ILIM, FLAG, Pins: Input/Output (Note 1)  
FLAG Sink Current  
V
V
IN , OUT  
V
V
V
V
V
V
EN, ILIM, FLAG, IN, OUT  
I
mA  
mA  
kV  
SINK  
I
Source Current  
I
1
LIM  
LIM  
ESD Withstand Voltage (IEC 6100042)  
(Output Only, when Bypassed with 1.0 mF Capacitor Minimum)  
ESD IEC  
15 Air, 8 Contact  
Human Body Model (HBM) ESD Rating (Note 2)  
Machine Model (MM) ESD Rating (Notes 2 and 3)  
ESD HBM  
ESD MM  
LU  
2,000  
200  
V
V
Latch-up Protection (Note 4)  
Pins IN, OUT, EN, ILIM, FLAG  
mA  
100  
Maximum Junction Temperature Range (Note 6)  
Storage Temperature Range  
T
40 to +TSD  
40 to +150  
Level 1  
C  
C  
J
T
STG  
Moisture Sensitivity (Note 5)  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. According to JEDEC standard JESD22A108.  
2. This device series contains ESD protection and passes the following tests:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22A114 for all pins.  
Machine Model (MM) 200 V per JEDEC standard: JESD22A115 for all pins.  
3. Except EN pin, 150 V.  
4. Latch up Current Maximum Rating: 100 mA per JEDEC standard: JESD78 class II.  
5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: JSTD020.  
6. A thermal shutdown protection avoids irreversible damage on the device due to power dissipation.  
Table 3. OPERATING CONDITIONS  
Symbol  
Parameter  
Operational Power Supply  
Enable Voltage  
Conditions  
Min  
2.5  
0
Typ  
Max  
5.5  
5.5  
+85  
+125  
250  
1.0  
Unit  
V
IN  
V
V
EN  
T
A
Ambient Temperature Range  
Junction Temperature Range  
Resistor from ILIM to GND Pin  
FLAG Sink Current  
40  
40  
5.0  
25  
25  
C  
C  
T
J
R
kW  
ILIM  
I
mA  
mF  
SINK  
C
Decoupling Input Capacitor  
Decoupling Output Capacitor  
Thermal Resistance Junction-to-Air  
1.0  
120  
IN  
C
USB Port per Hub  
mF  
OUT  
R
UDFN6 Package (Notes 7 and 8)  
TSOP5 Package (Notes 7 and 8)  
TSOP6 Package (Notes 7 and 8)  
UDFN6 Package  
120  
305  
280  
C/W  
C/W  
C/W  
A
q
JA  
I
Maximum DC Current  
2.1  
1.0  
OUT  
TSOP5, TSOP6 Package  
A
P
D
Power Dissipation Rating (Note 9)  
T
v 25C  
UDFN6 Package  
TSOP5 Package  
TSOP6 Package  
UDFN6 Package  
TSOP5 Package  
TSOP6 Package  
830  
325  
350  
325  
130  
145  
mW  
mW  
mW  
mW  
mW  
mW  
A
T = 85C  
A
7. A thermal shutdown protection avoids irreversible damage on the device due to power dissipation.  
8. The R  
is dependent of the PCB heat dissipation. Board used to drive this data was a 2” 2” NCP380EVB board. It is a 2 layers board  
q
JA  
with 2-once copper traces on top and bottom of the board. Exposed pad is connected to ground plane for UDFN6 version only.  
9. The maximum power dissipation (P ) is given by the following formula:  
T
JMAX * TA  
D
PD  
+
RqJA  
http://onsemi.com  
3
 
NCP380, NCV380  
Table 4. ELECTRICAL CHARACTERISTICS  
(Min & Max Limits apply for T between 40C to +85C and T up to +125C for V between 2.5 V to 5.5 V (Unless otherwise noted).  
A
J
IN  
Typical values are referenced to T = +25C and V = 5 V.)  
A
IN  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mW  
mW  
ms  
POWER SWITCH  
R
Static Drain-source On-state  
V
= 5 V  
–40C < T < 125C  
55  
75  
110  
95  
DS(on)  
IN  
J
Resistance  
DFN Package  
2.5 V < V < 5.5 V  
–40C < T < 125C  
J
IN  
TSOP Package  
V
IN  
= 5 V  
–40C < T < 125C  
70  
J
2.5 V < V < 5.5 V  
–40C < T < 125C  
135  
1.5  
1.0  
0.5  
0.5  
IN  
J
T
R
Output Rise Time  
Output Fall Time  
V
IN  
= 5 V  
C = 1 mF,  
LOAD  
LOAD  
0.3  
0.2  
0.1  
0.1  
1.0  
0.65  
R
= 100 W (Note 10)  
V
IN  
= 2.5 V  
T
F
V
IN  
= 5 V  
V
IN  
= 2.5 V  
ENABLE INPUT EN OR EN  
V
High-level Input Voltage  
Low-level Input Voltage  
Input Current  
1.2  
V
IH  
V
0.4  
0.5  
4.0  
3.0  
V
IL  
I
V
= 0 V, V = 5 V  
0.5  
2.0  
1.0  
mA  
ms  
ms  
EN  
EN  
EN  
T
ON  
Turn On Time  
C
= 1 mF, R = 100 W (Note 11)  
LOAD  
3.0  
LOAD  
T
OFF  
Turn Off Time  
CURRENT LIMIT  
Current-limit Threshold  
I
V
IN  
= 5 V  
1.02  
1.20  
1.38  
A
A
R
= 20 kW (Note 11)  
OCP  
ILIM  
(Maximum DC Output Current  
Delivered to Load)  
R
= 40 kW  
0.595  
0.700  
0.805  
ILIM  
I
OUT  
(Notes 11 and 13)  
Fixed 0.5 A (Note 12)  
Fixed 1.0 A (Note 12)  
Fixed 1.5 A (Note 12)  
Fixed 2.0 A (Note 12)  
Fixed 2.1 A (Note 12)  
0.5  
1.0  
1.5  
2.0  
2.1  
0.58  
1.15  
1.75  
2.25  
2.25  
2.0  
0.65  
1.3  
1.9  
2.5  
2.5  
T
Response Time to Short Circuit  
Regulation Time  
V
IN  
= 5 V  
ms  
ms  
ms  
DET  
REG  
OCP  
T
T
1.8  
14  
3.0  
4.0  
26  
Overcurrent Protection Time  
20  
REVERSE-VOLTAGE PROTECTION  
V
Reverse-voltage Comparator  
Trip Point (V – V  
100  
6.0  
mV  
ms  
REV  
)
IN  
OUT  
T
REV  
Time from Reverse-voltage  
Condition to MOSFET Switch Off  
& FLAG Low  
V
IN  
= 5 V  
4.0  
9.0  
T
RREV  
Re-arming Time  
7.0  
10  
15  
ms  
UNDERVOLTAGE LOCKOUT  
V
V
IN Pin Low-level Input Voltage  
IN Pin Hysteresis  
V
Rising  
2.0  
25  
2.3  
2.4  
60  
15  
V
UVLO  
HYST  
IN  
T = 25C  
mV  
ms  
J
T
Re-arming Time  
7.0  
10  
RUVLO  
SUPPLY CURRENT  
I
Low-level Output Supply Current  
V
IN  
= 5 V, No Load on OUT, Device OFF  
1.0  
2.1  
mA  
mA  
INOFF  
V
= 0 V or V = 5 V  
EN  
EN  
I
High-level Output Supply  
Current  
V
IN  
= 5 V, Device Enable  
INON  
2 A and 2.1 A Versions  
1 A and 1.5 A Current Versions  
0.5 A Current Version  
90  
80  
70  
I
Reverse Leakage Current  
V
OUT  
= 5 V, V = 0 V  
T = 25C  
J
1.0  
mA  
REV  
IN  
http://onsemi.com  
4
 
NCP380, NCV380  
Table 4. ELECTRICAL CHARACTERISTICS (continued)  
(Min & Max Limits apply for T between 40C to +85C and T up to +125C for V between 2.5 V to 5.5 V (Unless otherwise noted).  
A
J
IN  
Typical values are referenced to T = +25C and V = 5 V.)  
A
IN  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FLAG PIN  
V
FLAG Output Low Voltage  
Off-state Leakage  
FLAG Deglitch  
I
= 1 mA  
400  
1.0  
9.0  
mV  
mA  
OL  
FLAG  
I
V
= 5 V  
LEAK  
FLAG  
T
FLG  
FLAG De-assertion Time due to Overcurrent or  
Reverse Voltage Condition  
4.0  
6.0  
6.0  
8.0  
ms  
T
FOCP  
FLAG Deglitch  
FLAG Assertion due to Overcurrent  
12  
ms  
THERMAL SHUTDOWN  
T
Thermal Shutdown Threshold  
Thermal Regulation Threshold  
140  
125  
115  
C  
C  
C  
SD  
T
SDOCP  
T
RSD  
Thermal Shutdown Rearming  
Threshold  
10.Parameters are guaranteed for C  
and R  
tolerance 1%.  
connected to the OUT pin with respect to the ground, See Figure 3.  
LOAD  
LOAD  
11. Adjustable current version, R  
12.Fixed current version.  
ILIM  
13.Not production test, guaranteed by characterization.  
VIN  
IN  
OUT  
1 mF  
C
R
LOAD  
LOAD  
NCP380  
GND  
Figure 3. Test Configuration  
50%  
V
V
EN  
T
R
T
F
EN  
T
OFF  
90%  
10%  
V
OUT  
10%  
T
ON  
90%  
V
OUT  
10%  
Figure 4. Voltage Waveform  
http://onsemi.com  
5
 
NCP380, NCV380  
BLOCK DIAGRAM  
Blocking Control  
IN  
OUT  
Current  
Limiter  
Gate Driver  
ILIM*  
Vref  
TSD  
UVLO  
Osc  
GND  
EN  
Flag  
/FLAG  
EN Block  
Control Logic and Timer  
*For adjustable version only, otherwise not connected.  
Figure 5. Block Diagram  
http://onsemi.com  
6
NCP380, NCV380  
T
on  
+ T  
R
Figure 6. Ton Delay and Trise Time  
T
off  
+ T  
fall  
Figure 7. Toff Delay and Tfall  
http://onsemi.com  
7
NCP380, NCV380  
Figure 8. Turn On a Short  
T
reg  
TSD  
Warning  
TOCP  
Figure 9. 2 W Short on Output. Complete Regulation Sequence  
http://onsemi.com  
8
NCP380, NCV380  
T
FOCP  
TSD Warning  
V
IN  
V
OUT  
I
IN  
/FLAG  
Figure 10. OCP Regulation and TSD Warning Event  
TOCP  
T
reg  
Figure 11. Timer Regulation Sequence During 2 W Overload  
http://onsemi.com  
9
NCP380, NCV380  
Figure 12. Direct Short on OUT Pin  
Figure 13. From Timer Regulation to Load Removal Sequence  
http://onsemi.com  
10  
NCP380, NCV380  
T
FOCP  
V
OUT  
I
OUT  
/FLAG  
Figure 14. From No Load to Direct Short Circuit  
V
REV  
V
OUT  
V
IN  
T
FREV  
/FLAG  
Figure 15. Reverse Voltage Detection  
http://onsemi.com  
11  
NCP380, NCV380  
T RREV  
Figure 16. Reverse Voltage Removal  
2.4  
2.38  
2.36  
2.34  
2.32  
2.3  
2.28  
2.26  
2.24  
UVLO vs. Temperature  
UVLO hysteresis vs.  
Temperature  
2.22  
2.2  
50  
0
50  
100  
150  
Temperature (C)  
Figure 17. Undervoltage Threshold (Falling) and Hysteresis  
http://onsemi.com  
12  
NCP380, NCV380  
LowLevel Output Supply Current vs Vin  
40C  
25C  
85C  
125C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
Vin(V)  
Figure 18. Standby Current vs Vin  
HighLevel Output Supply Current vs Vin  
40C  
25C  
85C  
125C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
Vin(V)  
Figure 19. Quiescent Current vs Vin  
http://onsemi.com  
13  
NCP380, NCV380  
TSOP Package  
100  
95  
R
vs. Temperature  
DS(on)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
50 40 30 20 10  
0
10 20  
30 40  
50 60 70  
80 90 100 110 120 130 140  
Temperature (C)  
Figure 20. RDS(on) vs Temperature, TSOP Package  
mDFN Package  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
R
vs. Temperature  
DS(on)  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
Temperature (C)  
Figure 21. RDS(on) vs Temperature, mDFN Package  
http://onsemi.com  
14  
NCP380, NCV380  
FUNCTIONAL DESCRIPTION  
V
OUT  
Overview  
Thermal  
Regulation  
Threshold  
Timer  
Regulation  
Mode  
The NCP380 is a high side P channel MOSFET power  
distribution switch designed to protect the input supply  
voltage in case of heavy capacitive loads, short circuit or  
over current. In addition, the high side MOSFET is turned  
off during under voltage, thermal shutdown or reverse  
voltage condition. Adjustable version allows the user to  
program the current limit threshold using an external  
resistor. Thanks to the soft start circuitry, NCP380 is able to  
limit large current and voltage surges.  
I
OUT  
I
OCP  
T
OCP  
T
REG  
Overcurrent Protection  
Figure 24. Short circuit  
NCP380 switches into a constant current regulation mode  
Then, the device enters in timer regulation mode, described  
in 2 phases:  
when the output current is above the I  
threshold.  
OCP  
Depending on the load, the output voltage is decreased  
accordingly.  
In case of hot plug with heavy capacitive load, the  
output voltage is brought down to the capacitor voltage.  
Off-phase: Power MOSFET is off during T  
to allow  
OCP  
the die temperature to drop.  
On-phase: regulation current mode during T  
The  
REG.  
The NCP380 will limit the current to the I  
threshold  
current is regulated to the I  
level.  
OCP  
OCP  
value until the charge of the capacitor is completed.  
The timer regulation mode allows the device to handle  
high thermal dissipation (in case of short circuit for  
example) within temperature operating condition.  
NCP380 stays in on-phase/off-phase loop until the over  
current condition is removed or enable pin is toggled.  
V
OUT  
Drop due to  
Capacitor Charge  
I
OUT  
Remark: Other regulation modes can be available for  
different  
applications.  
Please  
contact  
our  
I
OCP  
ON Semiconductor representative for availability.  
FLAG Indicator  
Figure 22. Heavy capacitive load  
The FLAG pin is an open-drain MOSFET asserted low  
during over current, reverse-voltage or over temperature  
conditions. When an over current or a reverse voltage fault  
is detected on the power path, FLAG pin is asserted low at  
the end of the associate deglitch time (see electrical  
characteristics). Thanks to this feature, the FLAG pin is not  
tied low during the charge of a heavy capacitive load or a  
In case of overload, the current is limited to the I  
OCP  
value and the voltage value is reduced according to the  
load by the following relation:  
V
OUT + RLOAD   IOCP  
(eq. 1)  
V
OUT  
voltage transient on output. Deglitch time is T  
for over  
FOCP  
current fault and T  
remains low until the fault is removed. Then, the FLAG pin  
for reverse voltage. The FLAG pin  
REV  
I
R  
LOAD  
OCP  
goes high at the end of T  
.
FGL  
I
OUT  
Undervoltage Lock-out  
Thanks to a built-in under voltage lockout (UVLO)  
circuitry, the output remains disconnected from input until  
I
OCP  
V
V
voltage is below V  
. When V voltage is above  
Figure 23. Overload  
IN  
UVLO IN  
, the system try to reconnect the output after a  
UVLO  
In case of short circuit or huge load, the current is  
limited to the I value within T time until the  
rearming time. T  
witch provides noise immunity to transient.  
. This circuit has a V  
hysteresis  
RUVLO  
HYST  
OCP  
DET  
short condition is removed. If the output remains  
shorted or tied to a very low voltage, the junction  
Thermal Sense  
Thermal shutdown turns off the power MOSFET if the die  
temperature exceeds T . A Hysteresis prevents the part  
temperature of the chip exceeds T  
value and the  
SDOCP  
SD  
device enters in thermal shutdown (MOSFET is  
turned-off).  
from turning on until the die temperature cools at T  
RSD.  
http://onsemi.com  
15  
NCP380, NCV380  
Reverse Voltage Protection  
Blocking Control  
When the output voltage exceeds the input voltage by  
voltage during T , the reverse voltage circuitry  
The blocking control circuitry switches the bulk of the  
power MOS. When the part is off, the body diode limits the  
V
REV  
REV  
disconnects the output in order to protect the power supply.  
The same time T is needed to turn on again the power  
leakage current I  
from OUT to IN. In this mode, anode  
REV  
of the body diode is connected to IN pin and cathode is  
connected to OUT pin. In operating condition, anode of the  
body diode is connected to OUT pin and cathode is  
connected to IN pin preventing the discharge of the power  
supply.  
REV  
MOS plus a rearming time T  
.
RREV  
Enable Input  
Enable pin must be driven by a logic signal (CMOS or  
TTL compatible) or connected to the GND or VIN. A logic  
low on EN or high on EN turns-on the device. A logic high  
on EN or low on EN turns off device and reduces the current  
consumption down to I  
.
INOFF  
APPLICATION INFORMATION  
Power Dissipation  
Adjustable Current-Limit Programming  
(for adjustable version only)  
The junction temperature of the device depends on  
different contributing factors such as board layout, ambient  
temperature, device environment, etc... Yet, the main  
contributor in terms of junction temperature is the power  
dissipation of the power MOSFET. Assuming this, the  
power dissipation and the junction temperature in normal  
mode can be calculated with the following equations:  
The NCP380xMUAJAA and NCP380xSNAJAA,  
respectively mDFN and TSOP6 packages, are proposed to  
have current limit flexibility for end Customer. Indeed, Ilim  
pin is available to connect pull down resistor to ground,  
which participate to the current threshold adjustment. It’s  
strongly recommended to use 0.1 or 1% resistor tolerance to  
keep the over current accuracy.  
For this resistance selection, Customer should define first  
of all, the USB current to sustain, without the device enters  
in the protection sequence. Main rule is to select this pull  
down resistor in order to make sure min current limit is  
above the USB current to provide continuously to the  
upstream accessory.  
ǒ
Ǔ2  
R
D + RDS(on)   IOUT  
(eq. 2)  
Where:  
P
D
= Power dissipation (W)  
R
I
= Power MOSFET on resistance (W)  
= Output current (A)  
DS(on)  
OUT  
TJ + PD   RqJA ) TA  
(eq. 3)  
Following, the main table selection contains the USB  
current port for the accessory, the standard resistor selection  
and typical/max over current threshold.  
Where:  
T
= Junction temperature (C)  
J
R
T
A
= Package thermal resistance (C/W)  
= Ambient temperature (C)  
qJA  
Power dissipation in regulation mode can be calculated by  
taking into account the drop V V  
link to the load by  
IN  
OUT  
the following relation:  
ǒ
Ǔ
(eq. 4)  
P
D + VIN * RLOAD   IOCP   IOCP  
Where:  
P
V
= Power dissipation (W)  
= Input Voltage (V)  
D
IN  
R
I
= Load Resistance (W)  
= Output regulated current (A)  
LOAD  
OCP  
http://onsemi.com  
16  
NCP380, NCV380  
Table 5. RESISTOR SELECTION FOR ADJUSTABLE CURRENT LIMIT VERSION  
Min Current  
Limit Value  
(A)  
Selected Resistor Value  
(kW)  
Maximum  
Current Value  
(A)  
Theoric Resistor Value  
Typical OCP Target Value  
(A)  
(kW)  
1% or 0.1%  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
44.2  
37.5  
32.2  
27.7  
24.0  
21.0  
18.5  
16.6  
14.6  
13.0  
11.4  
10.4  
9.2  
44.2  
37.4  
31.6  
27.4  
23.7  
21  
0.59  
0.71  
0.825  
0.94  
1.06  
1.18  
1.3  
0.67  
0.81  
0.95  
1.08  
1.22  
1.35  
1.49  
1.62  
1.76  
1.9  
18.2  
16.5  
14.3  
13  
1.41  
1.53  
1.65  
1.78  
1.88  
2.01  
2.12  
2.23  
2.36  
2.48  
11.3  
10.2  
9.09  
8.25  
7.32  
6.49  
5.49  
2.05  
2.17  
2.31  
2.438  
2.56  
2.7  
8.3  
7.4  
6.5  
5.6  
2.85  
The “Min current limit Value” column, represents the DC  
current to provide to the accessory without over current  
activation.  
Second column is the theoretical resistor value obtained  
with following formula to achieve typical current target:  
Rlim + 5.2959   ILIM5 ) 45.256   ILIM4 * 155.25   ILIM3 ) 274.39   ILIM2 * 267.6   ILIM ) 134.21  
(eq. 5)  
Rlim Versus OCP Average  
48  
46  
44  
R
vs. OCP Average  
LIM  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
Current Limit (A)  
Figure 25. RLIM Curve vs. Current Limit  
http://onsemi.com  
17  
NCP380, NCV380  
When the resistor is choosing to fit with the Customer  
application, the limits of the over current threshold can be  
calculated with the following formula:  
IOCP min + 1.6915129 * 0.0330328   Rlim ) 0.0011207(Rlim * 22.375)2 * 0.0000451   (Rlim * 22.375)3 )  
) 0.0000009   (Rlim * 22.375)4  
(eq. 6)  
(eq. 7)  
(eq. 8)  
IOCP max + 2.2885175 * 0.0446914   Rlim ) 0.0015163(Rlim * 22.375)2 * 0.000061   (Rlim * 22.375)3 )  
) 0.0000012   (Rlim * 22.375)4  
IOCPtyp + 1.9900152 * 0.0388621   Rlim ) 0.0013185(Rlim * 22.375)2 * 0.0000531   (Rlim * 22.375)3 )  
) 0.0000011   (Rlim * 22.375)4  
The minimum, typical and maximum current curves are  
described in the following graph:  
3.0  
2.8  
IOCP min vs. R  
LIM  
2.6  
2.4  
IOCP vs. R  
LIM  
IOCP max vs. R  
LIM  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47  
R
(kW)  
LIM  
Figure 26. Current Threshold vs. Rlim Resistor  
PCB Recommendations  
That is recommended to respect 6 kW47 kW resistor  
range for two reasons.  
The NCP380 integrates a PMOS FET rated up to 2 A, and  
the PCB design rules must be respected to properly evacuate  
the heat out of the silicon. The UDFN6 PAD1 must be  
connected to ground plane to increase the heat transfer if  
necessary. This pad must be connected to ground plane. By  
For the low resistor values, the current limit is pushed up  
to high current level. Due to internal power dissipation  
capability, a maximum of 2.4 A typical can be set for the  
mDFN package if thermal consideration are respected. For  
the TSOP6 version 1.2 A is the maximum recommended  
value because the part could enter in thermal shutdown  
mode before constant current regulation mode.  
increasing PCB area, the R  
decreased, allowing higher power dissipation.  
of the package can be  
qJA  
In the other side, if we want to keep 15% of accuracy, high  
resistor values can be used up to 50 kW. With higher value,  
the current threshold is lower than 500 mA, so in this case  
degraded accuracy can be observed.  
http://onsemi.com  
18  
NCP380, NCV380  
Figure 27. USB Host Typical Application  
http://onsemi.com  
19  
NCP380, NCV380  
Table 6. ORDERING INFORMATION  
Active  
Over  
Enable  
Level  
Current  
Limit  
UL  
Listed  
CB  
Scheme  
Device  
Marking  
Evaluation Board  
Package  
Shipping  
NCP380LSNAJAAT1G  
AAC  
Adj.  
NCP380LSNAJAGEVB  
Y
Y
TSOP6  
(PbFree)  
NCP380LSN05AAT1G  
NCP380LSN10AAT1G  
NCP380LMUAJAATBG  
NCV380LMUAJAATBG*  
NCP380LMU05AATBG  
NCP380LMU10AATBG  
NCP380LMU15AATBG  
NCV380LMU15AATBG*  
NCP380LMU20AATBG  
NCP380HSNAJAAT1G  
AC5  
AC6  
AAC  
AN  
0.5 A  
1.0 A  
Adj.  
NCP380LSN05AGEVB  
NCP380LSN10AGEVB  
NCP380LMUAJAGEVB  
NCP380LMUAJAGEVB  
NCP380LMU05AGEVB  
NCP380LMU10AGEVB  
NCP380LMU15AGEVB  
NCP380LMU15AGEVB  
NCP380LMU20AGEVB  
NCP380HSNAJAGEVB  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TSOP5  
(PbFree)  
Adj.  
Low  
AE  
0.5 A  
1.0 A  
1.5 A  
1.5 A  
2.0 A  
Adj.  
UDFN6  
(PbFree)  
AF  
AG  
AQ  
AL  
3,000  
Tape / Reel  
AAD  
TSOP6  
(PbFree)  
NCP380HSN05AAT1G  
NCP380HSN10AAT1G  
NCP380HMUAJAATBG  
NCV380HMUAJAATBG*  
NCP380HMU05AATBG  
NCP380HMU10AATBG  
NCP380HMU15AATBG  
NCP380HMU20AATBG  
NCP380HMU21AATBG  
AC7  
ADA  
AC  
AP  
0.5 A  
1.0 A  
Adj.  
NCP380HSN05AGEVB  
NCP380HSN10AGEVB  
NCP380HMUAJAGEVB  
NCP380HMUAJAGEVB  
NCP380HMU05AGEVB  
NCP380HMU10AGEVB  
NCP380HMU15AGEVB  
NCP380HMU20AGEVB  
NCP380HMU21AGEVB  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TSOP5  
(PbFree)  
Adj.  
High  
AH  
AJ  
0.5 A  
1.0 A  
1.5 A  
2.0 A  
2.1 A  
UDFN6  
(PbFree)  
AK  
AM  
AU  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements.  
http://onsemi.com  
20  
NCP380, NCV380  
PACKAGE DIMENSIONS  
UDFN6 2x2, 0.65P  
CASE 517AB  
ISSUE C  
NOTES:  
D
A
B
E
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE  
TERMINALS.  
NOTE 5  
PIN ONE  
REFERENCE  
5. TIE BARS MAY BE VISIBLE IN THIS VIEW AND ARE CONNECTED  
TO THE THERMAL PAD.  
MILLIMETERS  
DIM  
A
MIN  
0.45  
0.00  
MAX  
0.55  
0.05  
0.10  
C
A1  
A3  
b
0.127 REF  
END VIEW  
0.10  
C
0.25  
1.50  
0.35  
TOP VIEW  
D
2.00 BSC  
D2  
E
1.70  
A3  
A3  
2.00 BSC  
EXPOSED Cu  
MOLD CMPD  
DETAIL B  
E2  
e
0.80  
1.00  
0.10  
0.08  
C
0.65 BSC  
L
0.25  
---  
0.35  
0.15  
A
L1  
A1  
C
6X  
A1  
SEATING  
PLANE  
DETAIL B  
NOTE 4  
C
SIDE VIEW  
D2  
ALTERNATE  
CONSTRUCTIONS  
DETAIL A  
L
L
L
1
3
L1  
RECOMMENDED  
SOLDERING FOOTPRINT*  
DETAIL A  
E2  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
PACKAGE  
1.70  
6X  
0.47  
OUTLINE  
6
4
6X  
b
e
M
0.10  
0.05  
C A B  
C
M
BOTTOM VIEW  
2.30  
0.95  
0.65  
1
6X  
PITCH  
0.40  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
21  
NCP380, NCV380  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
C
0.90  
1.10  
C
D
G
H
J
K
L
M
S
0.25  
0.95 BSC  
0.50  
SEATING  
PLANE  
0.05  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
T
10  
3.00  
_
_
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
22  
NCP380, NCV380  
PACKAGE DIMENSIONS  
TSOP6  
CASE 318G02  
ISSUE V  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
H
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM  
LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D  
AND E1 ARE DETERMINED AT DATUM H.  
6
1
5
2
4
L2  
GAUGE  
PLANE  
E1  
E
5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.  
3
L
MILLIMETERS  
SEATING  
M
C
NOTE 5  
DIM  
A
A1  
b
c
D
E
E1  
e
MIN  
0.90  
0.01  
0.25  
0.10  
2.90  
2.50  
1.30  
0.85  
0.20  
NOM  
1.00  
MAX  
1.10  
0.10  
0.50  
0.26  
3.10  
3.00  
1.70  
1.05  
0.60  
PLANE  
b
DETAIL Z  
e
0.06  
0.38  
0.18  
3.00  
c
2.75  
A
0.05  
1.50  
0.95  
L
0.40  
A1  
L2  
M
0.25 BSC  
DETAIL Z  
0  
10  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6X  
0.60  
6X  
0.95  
3.20  
0.95  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP380/D  

相关型号:

NCP382

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD05AA-R2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD05AAR2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD10AA-R2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD10AAR2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD15A-AR2G

Power Supply Support Circuit, Fixed, 2 Channel, PDSO8
ONSEMI

NCP382HD15AA-R2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HD15AAR2G

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HMN05-AATXG

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HMN05A-ATXG

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HMN05AATXG

Fixed Current-Limiting Power-Distribution Switches
ONSEMI

NCP382HMN10-AATXG

Fixed Current-Limiting Power-Distribution Switches
ONSEMI