NCP4671DMX15TCG [ONSEMI]

400 mA, Dual Rail Ultra Low Dropout Linear Regulator; 400毫安,双滑轨超低压降线性稳压器
NCP4671DMX15TCG
型号: NCP4671DMX15TCG
厂家: ONSEMI    ONSEMI
描述:

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
400毫安,双滑轨超低压降线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总23页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP4671  
400 mA, Dual Rail Ultra Low  
Dropout Linear Regulator  
The NCP4671 is a CMOS Dual Supply Rail Linear Regulator  
designed to provide very low output voltages. The Dual Rail  
architecture which separates the power for the LDO control circuitry  
(provided via the Vbias pin) from the main power path (Vin) offers  
ultralow dropout performance, allowing the device to operate from  
input voltages down to 0.9 V and to generate a fixed high accuracy  
output voltage as low as 0.6 V.  
http://onsemi.com  
MARKING  
DIAGRAMS  
The NCP4671 offers excellent transient response with very low  
quiescent currents. The family is available in a variety of packages:  
SC70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4mm XDFN.  
XXX  
XMM  
SC70  
CASE 419A  
(In Development)  
1
Features  
Bias Supply Voltage Range : 2.4 V to 5.25 V (V  
< 0.8 V)  
0.8 V)  
OUT  
Set V  
+ 1.6 V to 5.25 V (V  
OUT  
OUT  
Power Input Voltage Range : 0.9 V to V  
(V  
< 0.8 V)  
0.8 V)  
BIAS  
OUT  
XX  
MM  
Set V  
+ 0.1 V to V  
(V  
OUT  
BIAS  
OUT  
XDFN6  
CASE 711AA  
Output Voltage Range: 0.6 to 1.5 V (available at 0.1 steps)  
Very Low Dropout: 180 mV Typ. at 400 mA  
Quiescent Current: 28 mA  
1
Standby Current: 0.1 mA  
XXXMM  
15 mV Output Voltage Accuracy (T = 25°C)  
A
1
High PSRR: 80 dB at 1 kHz (Ripple at VIN)  
SOT235  
CASE 1212  
50 dB at 1 kHz (Ripple at VBIAS)  
Current Fold Back Protection Typ. 120 mA  
Available in XDFN, SC70, SOT23 Package  
These are PbFree Devices  
XX, XXX= Specific Device Code  
M, MM = Date Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
Typical Applications  
Battery Powered Equipments  
Portable Communication Equipments  
Cameras, VCRs and Camcorders  
= PbFree Package  
(*Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 20 of this data sheet.  
NCP4671x  
VIN  
VIN  
VBIAS  
VOUT  
VOUT  
DC/DC  
C1  
1m  
C2  
1m  
C3  
2m 2  
converter  
GND  
CE  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
February, 2012 Rev. 2  
NCP4671/D  
NCP4671  
NCP4671Hxxxxxxxx  
NCP4671Dxxxxxxxx  
VBIAS  
VBIAS  
VIN  
VIN  
VOUT  
VOUT  
Vref  
Vref  
UVLO  
Current  
Limit  
UVLO  
Current  
Limit  
CE  
GND  
CE  
GND  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN  
Pin No.  
SC70  
Pin No.  
SOT23  
Pin Name  
VBIAS  
GND  
CE  
Description  
1
2
3
4
5
6
1
2
5
4
3
4
2
3
1
5
Input Pin 1  
Ground Pin  
Chip Enable Pin (“H” Active)  
Input Pin 2  
VIN  
NC  
Not connected  
Output Pin  
VOUT  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Bias Supply Input Voltage (Note 1)  
V
6.0  
V
V
BIAS  
Power Supply Input Voltage (for Driver) (Note 1)  
Output Voltage  
VIN  
VOUT  
VCE  
0.3 to VBIAS + 0.3  
0.3 to VIN + 0.3  
V
Chip Enable Input  
6.0  
500  
V
Output Current  
I
mA  
mW  
OUT  
Power Dissipation XDFN  
P
400  
D
Power Dissipation SC70  
380  
Power Dissipation SOT23  
Maximum Junction Temperature  
Storage Temperature  
420  
TJ(MAX)  
TSTG  
150  
°C  
°C  
V
55 to 125  
2000  
200  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
http://onsemi.com  
2
NCP4671  
THERMAL CHARACTERISTICS  
Rating  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SOT23  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN  
R
250  
°C/W  
q
JA  
R
238  
263  
°C/W  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SC70  
Thermal Resistance, JunctiontoAir  
R
q
JA  
ELECTRICAL CHARACTERISTICS  
40°C T 85°C, V  
= V = 3.6 V, V = V  
+ 0.5 V, I  
= 1 mA, C  
= C = 1.0 mF, C  
= 2.2 mF, unless otherwise  
A
BIAS  
CE  
IN  
OUT(NOM)  
OUT  
BIAS  
IN  
OUT  
noted. Typical values are at T = +25°C.  
A
Parameter  
Test Conditions  
Symbol  
Min  
2.4  
Typ  
Max  
5.25  
5.25  
Unit  
Operating Supply Input Voltage  
(Note 3)  
V
< 0.8 V  
VBIAS  
V
OUT  
OUT  
V
0.8 V  
V
V
+
+
OUT  
1.6  
Operating Power Input Voltage  
(Note 3)  
V
OUT  
< 0.8 V  
VIN  
0.9  
VBIAS  
VBIAS  
V
V
OUT  
0.8 V  
OUT  
0.1  
Output Voltage  
TA = +25 °C  
VOUT  
15  
20  
+15  
+20  
mV  
TA = 40°C to +85°C  
Output Voltage Temp. Coefficient  
Line Regulation  
T = 40°C to +85°C  
50  
0.02  
0.02  
30  
ppm/°C  
A
V
BIAS  
= 2.4V to 5.0V  
Line  
0.10  
0.10  
50  
%/V  
Reg  
V
= VOUT + 0.3 V to 2.4 V  
IN  
Load Regulation  
IOUT = 1 mA to 400 mA  
Load  
mV  
Reg  
Dropout Voltage  
Please refer to following detailed table.  
Output Current  
IOUT  
400  
0.8  
mA  
mA  
mA  
mA  
V
Short Current Limit  
Quiescent Current  
Standby Current  
V
= 0 V  
I
120  
28  
OUT  
IOUT = 0 mA  
= 0 V, T = 25°C  
SC  
IQ  
40  
3
V
CE  
ISTB  
VCEH  
VCEL  
IPD  
0.1  
A
CE Pin Threshold Voltage  
CE Input Voltage “H”  
CE Input Voltage “L”  
0.3  
CE Pull Down Current  
1
mA  
VIN Under Voltage Lock Out  
I
= 1 mA  
V
V
+
V
OUT  
0.1  
+
V
OUT  
IN_UVLO  
OUT  
0.05  
Power Supply Rejection Ratio  
I
= 30 mA, f = 1 kHz, V Ripple 0.2 V  
PP  
PSRR  
80  
50  
dB  
OUT  
IN  
I
= 30 mA, f = 1 kHz, V  
Ripple  
OUT  
BIAS  
0.2 V  
PP  
Output Noise Voltage  
V
= 0.6 V, I  
= 30 mA, f = 10 Hz to  
VN  
70  
50  
mV  
rms  
OUT  
OUT  
100 kHz  
Low Output Nch Tr. On Resistance  
D Version only, V = 3.6 V, V = “L“  
R
LOW  
W
BIAS  
CE  
3. If Input Voltage range is between 5.25 V and 5.50 V, the total operational time must be within 500 hrs.  
http://onsemi.com  
3
NCP4671  
DROPOUT VOLTAGE (V [V])  
DO  
V
DO  
[V] @ I  
= 300 mA  
V
DO  
[V] @ I  
= 400 mA  
OUT  
OUT  
T = 405C  
T = 405C  
A
A
to +855C  
3.6 V  
to +855C  
3.6 V  
T = 255C  
T = 255C  
V
[V] @ I  
= 200 mA (T = 255C)  
A
A
DO  
OUT  
A
2.5 V  
0.094  
0.094  
0.098  
0.098  
3.0 V  
0.093  
0.093  
0.093  
0.094  
0.094  
0.098  
0.098  
0.098  
*
3.3 V  
3.6 V  
4.2 V  
0.092  
0.092  
0.092  
0.092  
0.092  
0.095  
0.095  
0.095  
0.095  
5.0 V  
0.091  
0.092  
0.092  
0.092  
0.092  
0.094  
0.095  
0.095  
0.095  
3.6 V  
0.115  
0.120  
0.120  
0.120  
0.120  
0.130  
0.130  
0.130  
0.130  
3.6 V  
0.180  
0.180  
0.180  
0.180  
0.180  
0.180  
0.180  
0.180  
0.180  
V
OUT  
/ V  
BIAS  
0.6 V  
0.7 V  
0.8 V  
0.9 V  
1.0 V  
1.2 V  
1.3 V  
1.4 V  
1.5 V  
0.093  
0.093  
0.093  
0.093  
0.093  
0.096  
0.096  
0.096  
0.096  
0.092  
0.180  
0.190  
0.190  
0.190  
0.190  
0.200  
0.200  
0.200  
0.200  
0.320  
0.320  
0.300  
0.300  
0.280  
0.280  
0.260  
0.260  
0.260  
0.092  
0.092  
0.092  
0.092  
0.095  
0.095  
*
0.095  
0.095  
*VBIAS voltage must be equal or more than V  
+ 1.6 V  
OUT(NOM)  
http://onsemi.com  
4
NCP4671  
TYPICAL CHARACTERISTICS  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
V
= 2.40 V  
2.40 V  
V
= 3.60 V  
3.60 V  
BIAS  
BIAS  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
IN  
= 0.79 V  
V
IN  
= 0.79 V  
1.10 V  
1.10 V  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 3. Output Voltage vs. Output Current  
Figure 4. Output Voltage vs. Output Current  
0.6 V Version (TA = 255C)  
0.6 V Version (TA = 255C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
= 5.25 V  
V
= 2.60 V  
BIAS  
BIAS  
V
IN  
= 1.22 V  
V
= 0.79 V  
IN  
1.50 V  
2.60 V  
1.10 V  
5.25 V  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 5. Output Voltage vs. Output Current  
Figure 6. Output Voltage vs. Output Current  
0.6 V Version (TA = 255C)  
1.0 V Version (TA = 255C)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
BIAS  
= 3.60 V  
V
BIAS  
= 5.25 V  
V
IN  
= 1.22 V  
V
IN  
= 1.22 V  
1.50 V  
1.50 V  
3.60 V  
5.25 V  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800 900  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 7. Output Voltage vs. Output Current  
Figure 8. Output Voltage vs. Output Current  
1.0 V Version (TA = 255C)  
1.0 V Version (TA = 255C)  
http://onsemi.com  
5
NCP4671  
TYPICAL CHARACTERISTICS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
IN  
= 1.72 V  
V
IN  
= 1.76 V  
2.00 V  
2.00 V  
3.60 V  
3.10 V  
0.4  
0.2  
V
= 3.10 V  
V
BIAS  
= 3.60 V  
BIAS  
0.0  
0
100 200 300 400 500 600 700 800 900 1000  
, OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800 900 1000  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 9. Output Voltage vs. Output Current  
Figure 10. Output Voltage vs. Output Current  
1.5 V Version (TA = 255C)  
1.5 V Version (TA = 255C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
IN  
= 1.76 V  
2.00 V  
I
= 1 mA  
OUT  
30 mA  
50 mA  
5.25 V  
V
BIAS  
= 5.25 V  
V
4
= 2.4 V  
5
BIAS  
0
100 200 300 400 500 600 700 800 900 1000  
, OUTPUT CURRENT (mA)  
0
1
2
3
I
V
IN  
, INPUT VOLTAGE (V)  
OUT  
Figure 11. Output Voltage vs. Output Current  
Figure 12. Output Voltage vs. Input Voltage  
1.5 V Version (TA = 255C)  
0.6 V Version (TA = 255C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
50 mA  
30 mA  
50 mA  
V
BIAS  
= 3.6 V  
5
V
BIAS  
= 5.25 V  
5
0
1
2
3
4
0
1
2
V , INPUT VOLTAGE (V)  
IN  
3
4
V
IN  
, INPUT VOLTAGE (V)  
Figure 13. Output Voltage vs. Input Voltage  
Figure 14. Output Voltage vs. Input Voltage  
0.6 V Version (TA = 255C)  
0.6 V Version (TA = 255C)  
http://onsemi.com  
6
NCP4671  
TYPICAL CHARACTERISTICS  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
50 mA  
30 mA  
50 mA  
V
BIAS  
= 2.6 V  
5
V
BIAS  
= 3.2 V  
5
0
0
1
2
3
4
0
1
2
3
4
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 15. Output Voltage vs. Input Voltage  
Figure 16. Output Voltage vs. Input Voltage  
1.0 V Version (TA = 255C)  
1.0 V Version (TA = 255C)  
1.2  
1
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
50 mA  
0.8  
0.6  
0.4  
0.2  
0
30 mA  
50 mA  
V
BIAS  
= 5.25 V  
5
V
BIAS  
= 3.1 V  
5
0
1
2
3
4
0
1
2
3
4
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 17. Output Voltage vs. Input Voltage  
Figure 18. Output Voltage vs. Input Voltage  
1.0 V Version (TA = 255C)  
1.5 V Version (TA = 255C)  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
I
= 1 mA  
OUT  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
I
= 1 mA  
OUT  
30 mA  
30 mA  
50 mA  
50 mA  
V
= 3.6 V  
5
V
BIAS  
= 5.25 V  
5
BIAS  
0
1
2
3
4
0
1
2
3
4
V
, INPUT VOLTAGE (V)  
IN  
V
, INPUT VOLTAGE (V)  
IN  
Figure 19. Output Voltage vs. Input Voltage  
Figure 20. Output Voltage vs. Input Voltage  
1.5 V Version (TA = 255C)  
1.5 V Version (TA = 255C)  
http://onsemi.com  
7
NCP4671  
TYPICAL CHARACTERISTICS  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
0.8  
0.6  
0.4  
0.2  
0
30 mA  
50 mA  
50 mA  
0
1
2
3
4
5
0
1
2
3
4
5
V
BIAS  
, BIAS VOLTAGE (V)  
V
BIAS  
, BIAS VOLTAGE (V)  
Figure 21. Output Voltage vs. Bias Voltage 0.6 V  
Figure 22. Output Voltage vs. Bias Voltage 1.0 V  
Version (TA = 255C)  
Version (TA = 255C)  
1.6  
1.4  
1.2  
1
0.61  
0.605  
0.6  
I
= 1 mA  
OUT  
30 mA  
0.8  
0.6  
0.4  
0.2  
0
0.595  
0.59  
50 mA  
0.585  
0.58  
0
1
2
3
4
5
50  
25  
0
25  
50  
75  
100  
V
BIAS  
, BIAS VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. Output Voltage vs. Bias Voltage 1.5 V  
Figure 24. Output Voltage vs. Temperature 0.6 V  
Version  
Version (TA = 255C)  
1.505  
1.5  
1.015  
1.01  
1.005  
1
1.495  
1.49  
1.485  
1.48  
0.995  
0.99  
0.985  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 26. Output Voltage vs. Temperature 1.5 V  
Version  
Figure 25. Output Voltage vs. Temperature 1.0 V  
Version  
http://onsemi.com  
8
NCP4671  
TYPICAL CHARACTERISTICS  
14  
12  
10  
8
10  
8
5.25 V  
3.6 V  
5.25 V  
6
3.6 V  
6
4
4
2
2
V
V
= 2.4 V  
V
BIAS  
= 2.4 V  
BIAS  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
IN  
Figure 27. Quiescent Current vs. Input Voltage  
0.6 V Version  
Figure 28. Quiescent Current vs. Input Voltage  
1.0 V Version  
10  
9
8
7
6
5
4
3
2
1
0
40  
36  
32  
28  
24  
20  
V
V
= 3.6 V  
= 1.1 V  
BIAS  
IN  
5.25 V  
3.6 V  
V
= 2.4 V  
BIAS  
0
1
2
3
4
5
50  
25  
0
25  
50  
75  
100  
V
IN  
, INPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. Quiescent Current vs. Input Voltage  
1.5 V Version  
Figure 30. Supply Current vs. Temperature 0.6 V  
Version  
40  
36  
32  
28  
24  
20  
40  
36  
32  
28  
24  
20  
V
V
= 3.6 V  
= 1.5 V  
V
V
= 3.6 V  
= 2.0 V  
BIAS  
BIAS  
IN  
IN  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. Supply Current vs. Temperature 1.0 V  
Version  
Figure 32. Supply Current vs. Temperature 1.5 V  
Version  
http://onsemi.com  
9
NCP4671  
TYPICAL CHARACTERISTICS  
200  
160  
120  
80  
200  
160  
T = 85°C  
J
T = 85°C  
J
120  
80  
40  
0
25°C  
40°C  
25°C  
40°C  
40  
0
50  
100  
150  
200  
250  
300  
350  
400  
50  
100  
150  
200  
250  
300  
350  
400  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 33. Dropout Voltage vs. Output Current  
0.6 V Version  
Figure 34. Dropout Voltage vs. Output Current  
1.0 V Version  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
I
= 1 mA  
OUT  
T = 85°C  
J
30 mA  
50 mA  
25°C  
40°C  
V
IN  
= 1.1 V + 200 mV modulation,  
PP  
V
BIAS  
= 3.6 V, C  
= 1 mF  
BIAS  
0
100  
1k  
10k  
100k  
1M  
10M  
50  
100  
150  
200  
250  
300  
350  
400  
I , OUTPUT CURRENT (mA)  
OUT  
FREQUENCY (Hz)  
Figure 35. Dropout Voltage vs. Output Current  
1.5 V Version  
Figure 36. PSRR vs. Frequency 0.6 V Version  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1 mA  
I
= 1 mA  
OUT  
OUT  
30 mA  
= 1.5 V + 200 mV modulation,  
30 mA  
= 2.0 V + 200 mV modulation,  
V
IN  
V
IN  
PP  
PP  
V
= 3.6 V, C  
= 1 mF  
V
= 3.6 V, C  
= 1 mF  
BIAS  
BIAS  
BIAS  
BIAS  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. PSRR vs. Frequency 1.0 V Version  
Figure 38. PSRR vs. Frequency 1.5 V Version  
http://onsemi.com  
10  
NCP4671  
TYPICAL CHARACTERISTICS  
100  
80  
60  
40  
20  
0
30 mA  
I
= 1 mA  
OUT  
150 mA  
1M  
V
= 1.1 V, C = 2.2 mF,  
IN  
IN  
V
BIAS  
= 3.6 V + 200 mV modulation  
PP  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
Figure 39. PSRR vs. Frequency 0.6 V Version  
100  
80  
60  
40  
20  
0
30 mA  
I
= 1 mA  
OUT  
150 mA  
1M  
V
= 1.5 V, C = 2.2 mF,  
IN  
IN  
V
= 3.6 V + 200 mV modulation  
BIAS  
PP  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
Figure 40. PSRR vs. Frequency 1.0 V Version  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30 mA  
I
= 1 mA  
OUT  
150 mA  
V
= 2.0 V, C = 2.2 mF,  
IN  
IN  
V
= 3.6 V + 200 mV modulation  
BIAS  
PP  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 41. PSRR vs. Frequency 1.5 V Version  
http://onsemi.com  
11  
NCP4671  
TYPICAL CHARACTERISTICS  
4.2  
3.6  
3.0  
2.4  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
V
= 1.1 V, C = 2.2 mF,  
IN  
= Step 2.4 V to 3.6 V  
IN  
V
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 42. Line Transients Response, 0.6 V  
Version  
4.2  
3.6  
3.0  
2.4  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
V
= 1.5 V, C = 2.2 mF,  
IN  
= Step 2.4 V to 3.6 V  
IN  
V
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 43. Line Transients Response, 1.0 V  
Version  
4.2  
3.6  
3.0  
2.4  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
V
= 2.0 V, C = 2.2 mF,  
IN  
= Step 2.4 V to 3.6 V  
IN  
V
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 44. Line Transients Response, 1.5 V  
Version  
http://onsemi.com  
12  
NCP4671  
TYPICAL CHARACTERISTICS  
2.6  
2.1  
1.6  
1.1  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
V
= Step 1.1 V to 2.1 V,  
IN  
V
BIAS  
= 3.6 V, C  
= 1 mF  
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 45. Line Transients Response, 0.6 V  
Version  
3.0  
2.5  
2.0  
1.5  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
V
= Step 1.5 V to 2.5 V,  
IN  
V
BIAS  
= 3.6 V, C  
= 1 mF  
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 46. Line Transients Response, 1.0 V  
Version  
3.5  
3.0  
2.5  
2.0  
1.504  
1.502  
1.500  
1.498  
1.496  
1.494  
V
= Step 2.0 V to 3.0 V,  
IN  
V
BIAS  
= 3.6 V, C  
= 1 mF  
BIAS  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 47. Line Transients Response, 1.5 V  
Version  
http://onsemi.com  
13  
NCP4671  
TYPICAL CHARACTERISTICS  
600  
400  
200  
0
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
V
C
= 1.1 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 48. Load Transients Response, 0.6 V  
Version, IOUT Step 1 mA to 400 mA  
600  
400  
200  
0
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
V
C
= 1.5 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 49. Load Transients Response, 1.0 V  
Version, IOUT Step 1 mA to 400 mA  
600  
400  
200  
0
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
V
C
= 2.0 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 50. Load Transients Response, 1.5 V  
Version, IOUT Step 1 mA to 400 mA  
http://onsemi.com  
14  
NCP4671  
TYPICAL CHARACTERISTICS  
150  
100  
50  
0
0.610  
0.605  
0.600  
0.595  
0.590  
0.585  
V
C
= 1.1 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 51. Load Transients Response, 0.6 V  
Version, IOUT Step 50 mA to 100 mA  
150  
100  
50  
0
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
V
C
= 1.5 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 52. Load Transients Response, 1.0 V  
Version, IOUT Step 50 mA to 100 mA  
150  
100  
50  
0
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
V
C
= 2.0 V, V  
= 2.2 mF, C  
= 3.6 V,  
IN  
IN  
BIAS  
= 1 mF  
BIAS  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 53. Load Transients Response, 1.5 V  
Version, IOUT Step 50 mA to 100 mA  
http://onsemi.com  
15  
NCP4671  
TYPICAL CHARACTERISTICS  
1.65  
1.10  
0.55  
0.00  
V
IN  
I
= 30 mA  
OUT  
I
= 1 mA  
OUT  
0.6  
0.4  
0.2  
0.0  
I
= 250 mA  
OUT  
V
BIAS  
= V = 3.6 V,  
CE  
C
= 2.2 mF  
OUT  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 54. Turn On Behavior, 0.6 V Version  
2.25  
1.50  
0.75  
0.00  
V
IN  
I
= 400 mA  
OUT  
I
= 1 mA  
OUT  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 30 mA  
OUT  
V
BIAS  
= V = 3.6 V,  
CE  
C
= 2.2 mF  
OUT  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 55. Turn On Behavior, 1.0 V Version  
3
V
IN  
2
1
0
I
= 30 mA  
OUT  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 1 mA  
OUT  
I
= 400 mA  
OUT  
V
BIAS  
= V = 3.6 V,  
CE  
C
= 2.2 mF  
OUT  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 56. Turn On Behavior, 1.5 V Version  
http://onsemi.com  
16  
NCP4671  
TYPICAL CHARACTERISTICS  
5.4  
3.6  
1.8  
0
Chip Enable  
I
= 30 mA  
OUT  
I
= 1 mA  
OUT  
0.6  
0.4  
0.2  
0.0  
I
= 250 mA  
OUT  
V
IN  
= 1.1 V, V  
= 3.6 V,  
BIAS  
C
= C  
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 57. Turn On Behavior with CE, 0.6 V  
Version  
5.4  
Chip Enable  
3.6  
1.8  
0
I
= 30 mA  
OUT  
I
= 1 mA  
OUT  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 400 mA  
OUT  
V
IN  
= 1.5 V, V  
= 3.6 V,  
BIAS  
C
= C  
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 58. Turn On Behavior with CE, 1.0 V  
Version  
5.4  
3.6  
1.8  
0
Chip Enable  
I
= 30 mA  
OUT  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 1 mA  
OUT  
I
= 400 mA  
OUT  
V
IN  
= 2.5 V, V  
= 3.6 V,  
BIAS  
C
= C  
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
0
4
8
12 16 20 24 28 32 36 40  
t (ms)  
Figure 59. Turn On Behavior with CE, 1.5 V  
Version  
http://onsemi.com  
17  
NCP4671  
TYPICAL CHARACTERISTICS  
5.4  
3.6  
1.8  
0
V
= C  
= 1.1 V, V  
= 3.6 V,  
IN  
BIAS  
C
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
Chip Enable  
I
= 1 mA  
OUT  
0.6  
0.4  
0.2  
0.0  
I
= 30 mA  
OUT  
I
= 250 mA  
OUT  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 60. Turn Off Behavior with CE, 0.6 V  
Version  
5.4  
3.6  
1.8  
0
V
= C  
= 1.1 V, V  
= 3.6 V,  
IN  
BIAS  
C
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
Chip Enable  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
I
= 400 mA  
OUT  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 61. Turn Off Behavior with CE, 1.0 V  
Version  
5.4  
3.6  
1.8  
0
V
= C  
= 2.0 V, V  
= 3.6 V,  
IN  
BIAS  
C
= 2.2 mF, C  
= 1 mF  
IN  
OUT  
BIAS  
Chip Enable  
I
= 1 mA  
2.0  
1.5  
1.0  
0.5  
0.0  
OUT  
I
= 30 mA  
OUT  
I
= 400 mA  
OUT  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 62. Turn Off Behavior with CE, 1.5 V  
Version  
http://onsemi.com  
18  
NCP4671  
APPLICATION INFORMATION  
A typical application circuit for the NCP4671 series is  
and ground pin of the NCP4671. Higher values and lower  
ESR of capacitor C1 improves line transient response.  
shown in Figure 63. The NCP4671 has two independent  
inputs, VBIAS pin is used for powering control part of the  
LDO and its value is equal or higher than value of second  
input pin VIN where voltage that has to be regulated is  
connected.  
Output Decoupling Capacitor (C3)  
A 2.2 mF or larger ceramic output decoupling capacitor is  
sufficient to achieve stable operation of the IC. If a tantalum  
capacitor is used, and its ESR is high, loop oscillation may  
result. The capacitors should be connected as close as  
possible to the output and ground pins. Larger values and  
lower ESR improves dynamic parameters.  
NCP4671x  
VIN  
VIN  
VOUT  
VOUT  
VBIAS  
VBIAS  
Enable Operation  
C 1  
C 2  
1 m  
C 3  
The enable pin CE may be used for turning the regulator  
on and off. The regulator is switched on when CE pin voltage  
is above logic high level. The enable pin has an internal pull  
down current source. If the enable function is not needed  
connect CE pin to VBIAS.  
1 m  
2 m 2  
GND  
CE  
Figure 63. Typical Application Schematic  
Output Discharger  
The D version includes a transistor between VOUT and  
GND that is used for faster discharging of the output  
capacitor. This function is activated when the IC goes into  
disable mode.  
Dual rail architecture is appropriate when the regulator is  
connected for example behind a buck DC/DC converter.  
Bias voltage can be taken from input of the buck DC/DC  
converter and as input voltage is used output of the buck  
DC/DC converter as it is shown in Figure 64. Condition that  
bias voltage must be higher than input voltage can be in this  
schematic easy fulfilled.  
Thermal  
As power across the IC increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and also the ambient  
temperature affect the rate of temperature rise for the part.  
That is to say, when the device has good thermal  
conductivity through the PCB, the junction temperature will  
be relatively low with high power dissipation applications.  
NCP4671x  
VIN  
VIN  
VOUT  
VOUT  
VBIAS  
DC/DC  
C1  
1m  
C2  
1m  
C3  
2m2  
converter  
GND  
CE  
PCB layout  
Make VIN, VBIAS and GND line sufficient. If their  
impedance is high, noise pickup or unstable operation may  
result. Connect capacitors C1, C2 and C3 as close as possible  
to the IC, and make wiring as short as possible.  
Figure 64. Typical Application Schematic with DC/DC  
Converter  
Input Decoupling Capacitors (C1 and C2)  
A 1 mF ceramic input decoupling capacitors should be  
connected as close as possible to the VIN and VBIAS input  
http://onsemi.com  
19  
 
NCP4671  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
Marking  
Enable  
Package  
Shipping  
NCP4671DSN06T1G  
0.6 V  
0.9 V  
1.0 V  
1.2 V  
1.3 V  
1.5 V  
0.6 V  
0.9 V  
1.2 V  
1.3 V  
1.5 V  
R1A  
R1D  
R1E  
R1F  
R1G  
R1J  
BA  
AutoDischarge  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
NCP4671DSN09T1G  
NCP4671DSN10T1G  
NCP4671DSN12T1G  
NCP4671DSN13T1G  
NCP4671DSN15T1G  
NCP4671DMX06TCG  
NCP4671DMX09TCG  
NCP4671DMX12TCG  
NCP4671DMX13TCG  
NCP4671DMX15TCG  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
AutoDischarge  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
SOT235  
(PbFree)  
3000 / Tape  
& Reel  
XDFN6  
(PbFree)  
5000 / Tape  
& Reel  
BD  
XDFN6  
(PbFree)  
5000 / Tape  
& Reel  
BF  
XDFN6  
(PbFree)  
5000 / Tape  
& Reel  
BG  
XDFN6  
(PbFree)  
5000 / Tape  
& Reel  
BJ  
XDFN6  
(PbFree)  
5000 / Tape  
& Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
20  
NCP4671  
PACKAGE DIMENSIONS  
SC88A (SC705/SOT353)  
CASE 419A02  
ISSUE K  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
G
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
http://onsemi.com  
21  
NCP4671  
PACKAGE DIMENSIONS  
XDFN6 1.2x1.2, 0.4P  
CASE 711AA01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.25mm FROM TERMINAL TIPS.  
4. COPLANARITY APPLIES TO ALL OF THE  
TERMINALS.  
A
B
D
PIN ONE  
REFERENCE  
E
MILLIMETERS  
DIM  
A
MIN  
---  
MAX  
0.40  
0.05  
0.23  
0.30  
2X  
0.05  
C
A1  
b
0.00  
0.13  
0.20  
1.20 BSC  
1.20 BSC  
0.40 BSC  
2X  
0.05  
C
C
D
E
e
TOP VIEW  
L
0.37  
0.48  
A
0.05  
0.05  
C
C
RECOMMENDED  
MOUNTING FOOTPRINT*  
A1  
SIDE VIEW  
SEATING  
PLANE  
NOTE 4  
C
6X  
0.66  
6X  
0.22  
PACKAGE  
OUTLINE  
e
1
3
1.50  
C
6X  
L
0.40  
PITCH  
DIMENSIONS: MILLIMETERS  
6
4
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
6X b  
M
0.05  
C A B  
BOTTOM VIEW  
NOTE 3  
http://onsemi.com  
22  
NCP4671  
PACKAGE DIMENSIONS  
SOT23 5LEAD  
CASE 121201  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DATUM C IS THE SEATING PLANE.  
A
A2  
B
A
D
S
A1  
0.05  
MILLIMETERS  
5
1
4
DIM MIN  
MAX  
1.45  
0.10  
1.30  
0.50  
0.25  
3.10  
3.10  
1.80  
E
L
A
A1  
A2  
b
---  
0.00  
1.00  
0.30  
0.10  
2.70  
2.50  
1.50  
2
3
E1  
5X b  
L1  
C
c
M
S
S
A
D
0.10  
C B  
e
C
E
E1  
e
0.95 BSC  
L
0.20  
0.45  
---  
0.75  
RECOMMENDED  
SOLDERING FOOTPRINT*  
L1  
5X  
0.85  
3.30  
5X  
0.56  
0.95  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP4671/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY