NCP4680DMX10TCG [ONSEMI]

150 mA, Low Noise Low Dropout Regulator; 150毫安,低噪声低压降稳压器
NCP4680DMX10TCG
型号: NCP4680DMX10TCG
厂家: ONSEMI    ONSEMI
描述:

150 mA, Low Noise Low Dropout Regulator
150毫安,低噪声低压降稳压器

稳压器
文件: 总20页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP4680  
150 mA, Low Noise Low  
Dropout Regulator  
The NCP4680 is a CMOS linear voltage regulator with 150 mA  
output current capability. The device is available in a tiny 0.8x0.8 mm  
XDFN, and has high output voltage accuracy, low supply current and  
high ripple rejection. The NCP4680 is easy to use and includes output  
current foldback protection. A Chip Enable function is included to  
save power by lowering supply current. The line and load transient  
responses are very good, making this regulator ideal for use as a power  
supply for communication equipment.  
http://onsemi.com  
MARKING  
DIAGRAMS  
XXX  
XMM  
Features  
SC70  
Operating Input Voltage Range: 1.40 V to 5.25 V  
Output Voltage Range: 0.8 V to 3.6 V (available in 0.1 V steps)  
Output Voltage Accuracy: 1.0%  
Supply Current: 50 mA typical  
CASE 419A  
Dropout Voltage: 0.25 V (I  
= 150 mA, V  
= 2.5 V)  
OUT  
OUT  
XX  
M
High PSRR: 75 dB (f = 1 kHz, V  
Line Regulation: 0.02%/V Typ.  
= 2.5 V)  
OUT  
SOT235  
CASE 1212  
Stable with Ceramic Capacitors: 0.1 mF or more  
Current Fold Back Protection  
XM  
1
Available in XDFN4 0.8 x 0.8 mm, SC70, SOT23 Packages  
These are PbFree Devices  
M
1
XDFN4  
CASE 711AB  
Typical Applications  
Batterypowered Equipment  
Networking and Communication Equipment  
Cameras, DVRs, STB and Camcorders  
Home Appliances  
XX, XXX= Specific Device Code  
M, MM = Date Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
NCP4680x  
VIN  
VOUT  
(Note: Microdot may be in either location)  
VIN  
CE  
VOUT  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
C2  
100n  
C1  
100n  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
June, 2011 Rev. 1  
NCP4680/D  
NCP4680  
VIN  
VIN  
VOUT  
VOUT  
Vref  
Vref  
Current Limit  
Current Limit  
CE  
CE  
GND  
GND  
NCP4680Hxxxx  
NCP4680Dxxxx  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN4*  
Pin No.  
SC70  
Pin No.  
SOT23  
Pin Name  
Description  
1
2
3
4
4
3
1
5
2
5
2
3
1
4
V
Output pin  
OUT  
GND  
CE  
Ground  
Chip enable pin (Active “H”)  
Input pin  
V
IN  
NC  
No connection  
*Tab is GND level. (They are connected to the reverse side of this IC.  
The tab is better to be connected to the GND, but leaving it open is also acceptable.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Input Voltage (Note 1)  
V
6.0  
V
V
IN  
Output Voltage  
V
OUT  
0.3 to VIN + 0.3  
Chip Enable Input  
V
6.0  
180  
V
CE  
Output Current  
I
mA  
mW  
OUT  
Power Dissipation XDFN0808  
Power Dissipation SC70  
Power Dissipation SOT23  
Junction Temperature  
286  
380  
P
D
420  
TJ  
40 to 150  
55 to 125  
2000  
°C  
°C  
V
Storage Temperature  
TSTG  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
http://onsemi.com  
2
 
NCP4680  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN 0.8 x 0.8 mm  
R
350  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SOT23  
R
238  
263  
°C/W  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SC70  
R
q
JA  
Thermal Resistance, JunctiontoAir  
ELECTRICAL CHARACTERISTICS  
40°C T 85°C; V = V  
+ 1 V or 2.5 V, whichever is greater; I  
= 1 mA, C = C  
= 0.1 mF, unless otherwise noted.  
A
IN  
OUT(NOM)  
OUT  
IN  
OUT  
Typical values are at T = +25°C.  
A
Parameter  
Operating Input Voltage  
Output Voltage  
Test Conditions  
Symbol  
Min  
1.40  
Typ  
Max  
5.25  
x1.01  
18  
Unit  
V
V
IN  
T = +25 °C  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
1.8 V  
< 1.8 V  
1.8 V  
< 1.8 V  
1.8 V  
< 1.8 V  
V
OUT  
x0.99  
18  
V
A
mV  
V
40°C T 85°C  
x0.985  
50  
x1.015  
50  
A
mV  
ppm/°C  
Output Voltage Temp. Coefficient  
40°C T 85°C  
DV /DT  
OUT A  
30  
100  
0.02  
5
A
Line Regulation  
Load Regulation  
Dropout Voltage  
V
+ 0.5 V V 5.25 V, V 1.4 V  
Line  
0.10  
30  
%/V  
mV  
V
OUT(NOM)  
IN  
IN  
Reg  
IOUT = 1 mA to 150 mA  
Load  
Reg  
I
= 150 mA  
V
OUT  
V
OUT  
= 0.8 V  
= 0.9 V  
V
DO  
0.70  
0.62  
0.56  
0.47  
0.39  
0.33  
0.28  
0.25  
0.23  
1.00  
0.91  
0.82  
0.67  
0.54  
0.48  
0.40  
0.35  
0.32  
OUT  
1.0 V V  
1.2 V V  
1.4 V V  
1.8 V V  
2.1 V V  
2.5 V V  
3.0 V V  
< 1.2 V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
< 1.4 V  
< 1.8 V  
< 2.1 V  
< 2.5 V  
< 3.0 V  
< 3.6 V  
Output Current  
I
I
150  
1.0  
mA  
mA  
mA  
mA  
V
OUT  
Short Current Limit  
Quiescent Current  
Standby Current  
V
= 0 V  
I
40  
50  
OUT  
SC  
I
Q
70  
V
CE  
= 0 V, T = 25°C  
0.1  
1.0  
A
STB  
CE Pin Threshold Voltage  
CE Input Voltage “H”  
CE Input Voltage “L”  
V
CEH  
V
0.4  
CEL  
CE Pull Down Current  
I
0.3  
75  
mA  
CEPD  
Power Supply Rejection Ratio  
V
IN  
= V  
+ 1 V, DV = 0.2 V  
,
PSRR  
dB  
OUT  
OUT  
IN  
pkpk  
I
= 30 mA, f = 1 kHz  
Output Noise Voltage  
f = 10 Hz to 100 kHz,  
= 30 mA  
V
1.8 V  
V
N
20 x  
OUT  
mV  
rms  
OUT  
OUT  
I
V
OUT  
V
< 1.8 V  
40 x  
V
OUT  
Low Output Nchannel Tr. On Res-  
V
= 4 V, V = 0 V  
R
60  
W
W
IN  
CE  
LOW  
istance  
Minimum Startup Equivalent Res-  
istance  
V
OUT  
1.8 V (Note 3)  
R
13 *  
SUMIN  
V
OUT  
V
OUT  
> 1.8 V  
6.7 *  
OUT  
V
3. See Current Limit paragraph in application part for explanation.  
http://onsemi.com  
3
 
NCP4680  
TYPICAL CHARACTERISTICS  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.0  
1.8  
2.8 V  
4.8 V  
V
IN  
= 1.4 V  
1.5 V  
1.6 V  
V
= 2.2 V  
IN  
1.6  
1.4  
2.8 V  
3.8 V  
1.8 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5.25 V  
4.8 V  
3.8 V  
0
0
0
50  
100  
150  
200  
(mA)  
250  
300  
350  
350  
150  
0
50  
100 150 200 250 300 350 400  
(mA)  
I
I
OUT  
OUT  
Figure 3. Output Voltage vs. Output Current  
Figure 4. Output Voltage vs. Output Current  
0.8 V Version (TJ = 255C)  
1.8 V Version (TJ = 255C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.25 V  
4.5 V  
5.25 V  
V
IN  
= 3.5 V  
V
= 3 V  
IN  
4.5 V  
3.2 V  
3.6 V  
3.5 V  
50  
100  
150  
200  
(mA)  
250  
300  
0
50  
100  
150  
OUT  
200  
(mA)  
250  
300  
350  
I
I
OUT  
Figure 5. Output Voltage vs. Output Current  
Figure 6. Output Voltage vs. Output Current  
2.8 V Version (TJ = 255C)  
3.3 V Version (TJ = 255C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T = 85°C  
J
T = 85°C  
J
25°C  
40°C  
25°C  
40°C  
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
150  
I
I
OUT  
OUT  
Figure 7. Dropout Voltage vs. Output Current  
0.8 V Version  
Figure 8. Dropout Voltage vs. Output Current  
1.8 V Version  
http://onsemi.com  
4
NCP4680  
TYPICAL CHARACTERISTICS  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T = 85°C  
J
T = 85°C  
J
25°C  
40°C  
25°C  
40°C  
0
25  
50  
75  
(mA)  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
I
I
(mA)  
OUT  
OUT  
Figure 9. Dropout Voltage vs. Output Current  
2.8 V Version  
Figure 10. Dropout Voltage vs. Output Current  
3.3 V Version  
0.85  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
V
IN  
= 1.8 V  
V
IN  
= 2.8 V  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Output Voltage vs. Temperature,  
0.8 V Version  
Figure 12. Output Voltage vs. Temperature,  
1.8 V Version  
2.85  
3.35  
V
IN  
= 3.8 V  
V
IN  
= 4.3 V  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Output Voltage vs. Temperature,  
2.8 V Version  
Figure 14. Output Voltage vs. Temperature,  
3.3 V Version  
http://onsemi.com  
5
NCP4680  
TYPICAL CHARACTERISTICS  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0
1
2
3
4
5
0
1
2
3
4
5
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 15. Supply Current vs. Input Voltage,  
0.8 V Version  
Figure 16. Supply Current vs. Input Voltage,  
1.8 V Version  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 17. Supply Current vs. Input Voltage,  
2.8 V Version  
Figure 18. Supply Current vs. Input Voltage,  
3.3 V Version  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Supply Current vs. Temperature,  
0.8 V Version  
Figure 20. Supply Current vs. Temperature,  
1.8 V Version  
http://onsemi.com  
6
NCP4680  
TYPICAL CHARACTERISTICS  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Supply Current vs. Temperature,  
2.8 V Version  
Figure 22. Supply Current vs. Temperature,  
3.3 V Version  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1 mA  
1 mA  
30 mA  
30 mA  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
0
1
2
3
4
5
0
1
2
3
4
5
V
IN  
, INPUT VOLTAGE (V)  
V
IN  
, INPUT VOLTAGE (V)  
Figure 23. Output Voltage vs. Input Voltage,  
0.8 V Version  
Figure 24. Output Voltage vs. Input Voltage,  
1.8 V Version  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30 mA  
1 mA  
1 mA  
30 mA  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
0
1
2
3
4
5
0
1
2
3
4
5
V
IN  
, INPUT VOLTAGE (V)  
V
IN  
, INPUT VOLTAGE (V)  
Figure 25. Output Voltage vs. Input Voltage,  
2.8 V Version  
Figure 26. Output Voltage vs. Input Voltage,  
3.3 V Version  
http://onsemi.com  
7
NCP4680  
TYPICAL CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
I = 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
30 mA  
150 mA  
150 mA  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
1000  
1000  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
1000  
1000  
Figure 27. PSRR, 0.8 V Version, VIN = 1.8 V  
Figure 28. PSRR, 1.8 V Version, VIN = 2.8 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
30 mA  
150 mA  
150 mA  
0.1  
1
10  
FREQUENCY (kHz)  
Figure 29. PSRR, 2.8 V Version, VIN = 3.8 V  
100  
0.1  
1
10  
FREQUENCY (kHz)  
Figure 30. PSRR, 3.3 V Version, VIN = 4.3 V  
100  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0.1  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 31. Output Voltage Noise, 0.8 V Version,  
IN = 1.8 V  
Figure 32. Output Voltage Noise, 1.8 V Version,  
IN = 2.8 V  
V
V
http://onsemi.com  
8
NCP4680  
TYPICAL CHARACTERISTICS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 33. Output Voltage Noise, 2.8 V Version,  
Figure 34. Output Voltage Noise, 3.3 V Version,  
IN = 4.3 V  
V
IN = 3.8 V  
V
3.3  
2.8  
2.3  
1.8  
1.3  
0.801  
0.800  
0.799  
0.798  
0.797  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 35. Line Transients, 0.8 V Version,  
tR = tF = 5 ms, IOUT = 30 mA  
4.3  
3.8  
3.3  
2.8  
2.3  
1.801  
1.800  
1.799  
1.798  
1.797  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 36. Line Transients, 1.8 V Version,  
tR = tF = 5 ms, IOUT = 30 mA  
http://onsemi.com  
9
NCP4680  
TYPICAL CHARACTERISTICS  
5.3  
4.8  
4.3  
3.8  
3.3  
2.801  
2.800  
2.799  
2.798  
2.797  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 37. Line Transients, 2.8 V Version,  
tR = tF = 5 ms, IOUT = 30 mA  
5.8  
5.3  
4.8  
4.3  
3.8  
3.302  
3.301  
3.300  
3.299  
3.298  
3.297  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 38. Line Transients, 3.3 V Version,  
tR = tF = 5 ms, IOUT = 30 mA  
150  
100  
50  
0
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 39. Load Transients, 0.8 V Version,  
OUT = 50 100 mA, tR = tF = 0.5 ms, VIN = 1.8 V  
I
http://onsemi.com  
10  
NCP4680  
TYPICAL CHARACTERISTICS  
150  
100  
50  
0
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 40. Load Transients, 1.8 V Version,  
OUT = 50 100 mA, tR = tF = 0.5 ms, VIN = 2.8 V  
I
150  
100  
50  
0
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 41. Load Transients, 2.8 V Version,  
IOUT = 50 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V  
150  
100  
50  
0
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 42. Load Transients, 3.3 V Version,  
IOUT = 50 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V  
http://onsemi.com  
11  
NCP4680  
TYPICAL CHARACTERISTICS  
225  
150  
75  
0
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 43. Load Transients, 0.8 V Version,  
I
I
I
OUT = 1 150 mA, tR = tF = 0.5 ms, VIN = 1.8 V  
225  
150  
75  
0
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 44. Load Transients, 1.8 V Version,  
OUT = 1 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V  
225  
150  
75  
0
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 45. Load Transients, 2.8 V Version,  
OUT = 1 150 mA, tR = tF = 0.5 ms, VIN = 3.8 V  
http://onsemi.com  
12  
NCP4680  
TYPICAL CHARACTERISTICS  
225  
150  
75  
0
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 46. Load Transients, 3.3 V Version,  
IOUT = 1 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V  
2.0  
Chip Enable  
1.5  
1.0  
0.5  
0
0.8  
0.6  
0.4  
0.2  
0
I
= 1 mA  
OUT  
I
= 100 mA  
OUT  
0.2  
0
5
10 15 20 25 30 35 40 45 50  
t (ms)  
Figure 47. Startup, 0.8 V Version, VIN = 1.8 V  
4
3
2
1
0
Chip Enable  
2.0  
1.5  
1.0  
0.5  
0
I
= 1 mA  
OUT  
I
= 150 mA  
OUT  
0.5  
0
5
10 15 20 25 30 35 40 45 50  
t (ms)  
Figure 48. Startup, 1.8 V Version, VIN = 2.8 V  
http://onsemi.com  
13  
NCP4680  
TYPICAL CHARACTERISTICS  
4.5  
3.0  
1.5  
0
Chip Enable  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 1 mA  
OUT  
I
= 150 mA  
OUT  
0.5  
0
5
10 15 20 25 30 35 40 45 50  
t (ms)  
Figure 49. Startup, 2.8 V Version, VIN = 3.8 V  
6.0  
4.5  
3.0  
1.5  
0
Chip Enable  
4
3
I
= 1 mA  
OUT  
2
1
I
= 150 mA  
OUT  
0
1  
0
5
10 15 20 25 30 35 40 45 50  
t (ms)  
Figure 50. Startup, 3.3 V Version, VIN = 4.3 V  
2.0  
1.5  
1.0  
0.5  
0
Chip Enable  
0.8  
0.6  
0.4  
0.2  
0
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
I
= 100 mA  
OUT  
0.2  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 51. Shutdown, 0.8 V Version D,  
V
IN = 1.8 V  
http://onsemi.com  
14  
NCP4680  
TYPICAL CHARACTERISTICS  
4
3
2
1
0
Chip Enable  
2.0  
1.5  
1.0  
0.5  
0
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
I
= 150 mA  
OUT  
0.5  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 52. Shutdown, 1.8 V Version D,  
V
IN = 2.8 V  
4.5  
3.0  
1.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Chip Enable  
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
I
= 150 mA  
OUT  
0.5  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 53. Shutdown, 2.8 V Version D,  
V
IN = 3.8 V  
6.0  
4.5  
3.0  
1.5  
0
Chip Enable  
4
3
I
= 1 mA  
OUT  
2
I
= 30 mA  
OUT  
1
I
= 150 mA  
OUT  
0
1  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
Figure 54. Shutdown, 3.3 V Version D,  
VIN = 4.3 V  
http://onsemi.com  
15  
NCP4680  
APPLICATION INFORMATION  
A typical application circuit for NCP4680 series is shown  
in Figure 55.  
startup into at least double the minimum equivalent load.  
The minimum equivalent resistance can be computed by  
formula 1:  
NCP4680x  
VOUT  
VOUT(NOM)  
VIN  
VOUT  
(eq. 1)  
REQMIN  
+
VIN  
CE  
IOUTMAX  
This leads us to the result that the minimum equivalent  
start up resistance for V < 1.8 V is:  
C2  
100n  
C1  
GND  
OUT(NOM)  
100n  
RSUMIN + 2 @ REQMIN  
(eq. 2)  
Enable Operation  
The enable pin CE may be used for turning the regulator  
on and off. The IC is switched on when a high level voltage  
is applied to the CE pin. The enable pin has an internal pull  
down current source. If the enable function is not needed  
connect CE pin to VIN.  
Figure 55. Typical Application Schematic  
Input Decoupling Capacitor (C1)  
A 0.1 mF ceramic input decoupling capacitor should be  
connected as close as possible to the input and ground pin of  
the NCP4680. Higher values and lower ESR improves line  
transient response.  
Output Discharger  
The D version includes a transistor between VOUT and  
GND that is used for faster discharging of the output  
capacitor. This function is activated when the IC goes into  
disable mode.  
Output Decoupling Capacitor (C2)  
A 0.1 mF ceramic output decoupling capacitor is enough  
to achieve stable operation of the IC. If a tantalum capacitor  
is used, and its ESR is high, loop oscillation may result. The  
capacitors should be connected as close as possible to the  
output and ground pins. Larger values and lower ESR  
improves dynamic parameters.  
Thermal  
As power across the IC increase, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and also the ambient  
temperature affect the rate of temperature increase for the  
part. When the device has good thermal conductivity  
through the PCB the junction temperature will be relatively  
low in high power dissipation applications.  
Current Limit  
The NCP4680 includes foldback type current limit  
protection. Its typical characteristic for 0.8 V version is  
shown in Figure 3. The advantage of this protection is that  
power loss at the regulator is minimized at over current or  
short circuit conditions. When the over current or short  
circuit event disappears, the regulator reverts from fold back  
to regulation. This kind of current limit may cause issues at  
startup for voltage versions below 1.8 V and some load  
types: for these lower voltage options it is recommended to  
PCB layout  
Make the VIN and GND line as large as practical. If their  
impedance is high, noise pickup or unstable operation may  
result. Connect capacitors C1 and C2 as close as possible to  
the IC, and make wiring as short as possible.  
http://onsemi.com  
16  
 
NCP4680  
ORDERING INFORMATION  
Nominal Output  
Voltage  
Device  
Description  
Marking  
Package  
Shipping  
NCP4680DMX10TCG  
1.0 V  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
A (fixed)*  
XDFN4  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
10000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
(PbFree)  
NCP4680DMX12TCG  
NCP4680DMX15TCG  
NCP4680DMX18TCG  
NCP4680DMX23TCG  
NCP4680DMX28TCG  
NCP4680DMX30TCG  
NCP4680DMX33TCG  
NCP4680DSQ08T1G  
NCP4680DSQ09T1G  
NCP4680DSQ12T1G  
NCP4680DSQ15T1G  
NCP4680DSQ18T1G  
NCP4680DSQ25T1G  
NCP4680DSQ28T1G  
NCP4680DSQ30T1G  
NCP4680DSQ33T1G  
1.2 V  
1.5 V  
1.8 V  
2.3 V  
2.8 V  
3.0 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
A (fixed)*  
A (fixed)*  
A (fixed)*  
A (fixed)*  
A (fixed)*  
A (fixed)*  
A (fixed)*  
AF08  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
XDFN4  
(PbFree)  
SC70  
(PbFree)  
AF09  
SC70  
(PbFree)  
AF12  
SC70  
(PbFree)  
AF15  
SC70  
(PbFree)  
AF18  
SC70  
(PbFree)  
AF25  
SC70  
(PbFree)  
AF28  
SC70  
(PbFree)  
AF30  
SC70  
(PbFree)  
AF33  
SC70  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Marking codes for XDFN0808 packages are unified.  
**To order other package and voltage variants, please contact your ON Semiconductor sales representative.  
http://onsemi.com  
17  
NCP4680  
PACKAGE DIMENSIONS  
SC88A (SC705/SOT353)  
CASE 419A02  
ISSUE K  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
G
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
http://onsemi.com  
18  
NCP4680  
PACKAGE DIMENSIONS  
SOT23 5LEAD  
CASE 121201  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DATUM C IS THE SEATING PLANE.  
A
A2  
B
A
D
S
A1  
0.05  
MILLIMETERS  
5
1
4
DIM MIN  
MAX  
1.45  
0.10  
1.30  
0.50  
0.25  
3.10  
3.10  
1.80  
E
L
A
A1  
A2  
b
---  
0.00  
1.00  
0.30  
0.10  
2.70  
2.50  
1.50  
2
3
E1  
5X b  
L1  
C
c
M
S
S
A
D
0.10  
C B  
e
C
E
E1  
e
0.95 BSC  
L
0.20  
0.45  
---  
0.75  
L1  
RECOMMENDED  
SOLDERING FOOTPRINT*  
5X  
0.85  
3.30  
5X  
0.56  
0.95  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
19  
NCP4680  
PACKAGE DIMENSIONS  
XDFN4 0.8x0.8, 0.48P  
CASE 711AB01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINALS.  
4X  
L3  
A
B
D
L2  
0.06  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
REF  
MILLIMETERS  
2X  
0.05  
C
DETAIL A  
0.37  
DIM MIN  
−−−  
A1 0.00  
MAX  
0.40  
0.05  
A
0.05  
C
2X  
A3  
b
D
0.10 REF  
TOP VIEW  
0.17  
0.27  
0.07  
0.80 BSC  
0.30  
0.80 BSC  
0.48 BSC  
(A3)  
D2 0.20  
4X  
0.17  
0.05  
0.05  
C
E
e
L
A
0.23  
0.33  
0.27  
0.11  
L2 0.17  
L3 0.01  
C
SEATING  
PLANE  
NOTE 4  
A1  
DETAIL B  
C
SIDE VIEW  
RECOMMENDED  
MOUNTING FOOTPRINT*  
e
e/2  
4X  
0.27  
D2  
455  
3X  
0.44  
DETAIL A  
1
2
0.32  
PACKAGE  
OUTLINE  
3
4
1.00  
3X L  
4X b  
DETAIL B  
M
0.05  
C A B  
0.48  
NOTE 3  
PITCH  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP4680/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY