NCP5008_06 [ONSEMI]

Backlight LED Boost Driver; 背光LED升压驱动器
NCP5008_06
型号: NCP5008_06
厂家: ONSEMI    ONSEMI
描述:

Backlight LED Boost Driver
背光LED升压驱动器

驱动器
文件: 总17页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5008, NCP5009  
Backlight LED Boost Driver  
The NCP5008/NCP5009 is a high efficiency boost converter  
operating in current loop control mode to drive Light Emitting  
Diode. The current mode regulation allows a uniform brightness of  
the LEDs.  
http://onsemi.com  
Features  
2.7 to 6.0 V Input Voltage Range  
MARKING  
DIAGRAM  
Output Voltage from V to 15 V  
bat  
3.0 mA Quiescent Supply Current  
Automatically LEDs Current Matching  
No External Sense Resistor  
Micro 10  
DM SUFFIX  
CASE 846B  
5Tx  
AYW G  
G
Includes Dimming Function  
1
1
Programmable or Automatic Current Output Mode  
LOCAL or REMOTE Control Facility  
Photo Transistor Sense Feedback Input  
Inductor Based Converter brings High Efficiency  
Low Noise DC/DC Converter  
All Pins are Fully ESD Protected  
Pb−Free Package is Available  
5Tx = Device Number  
x = 8 or 9  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
PIN CONNECTIONS  
Typical Applications  
LED Display Back Light Control  
High Efficiency Step Up Converter  
I
1
2
3
4
5
10  
9
V
bat  
ref  
NC  
CS  
L1  
V
bat  
8
L2 Iout  
GND  
VBIAS  
CLOCK  
7
C1  
6
LOCAL  
U1  
R1  
30 k  
1
2
10  
9
10 mF/6.3 V  
NCP5008  
I
V
bat  
ref  
GND  
PHOTO  
L1  
GND  
Q1  
I
1
2
3
4
5
10  
9
V
ref  
bat  
Photo  
CS  
L1  
L1  
8
L2 Iout  
GND  
V
bat  
22 mH  
NPN−PHOTO  
VBIAS  
CLOCK  
7
GND  
6
LOCAL  
Vcc  
D5 MBR0520  
GND  
4
3
5
8
7
6
NCP5009  
VBIAS  
CS  
L2  
GND  
CLK  
LOCAL  
ORDERING INFORMATION  
NCP5009  
D2  
Device  
Package  
Shipping  
D1  
LED  
D3  
D4  
LED  
NCP5008DMR2  
Micro 10  
4000 / Tape & Reel  
4000 / Tape & Reel  
LED  
LED  
Micro 10  
NCP5008DMR2G  
GND  
C2  
(Pb−Free)  
4000 / Tape & Reel  
NCP5009DMR2  
Micro 10  
2.2 mF/16 V  
GND  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
Figure 1. Typical Battery Powered LED Boost Driver  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
April, 2006 − Rev. 7  
NCP5008/D  
 
NCP5008, NCP5009  
BACK LIGHT WHITE LED CURRENT DRIVE CONTROLLER  
V
bat  
V
bat  
V
bat  
10  
BandGap  
POR  
POR  
VBIAS  
CLK  
4
5
Iout Reference  
Isense  
L1  
9
V
bat  
+
A=10  
CS  
3
GND  
V
bat  
V
bat  
Q2  
V
bat  
POR  
Iout  
L2  
8
7
Q1  
LOCAL  
6
CONTROLLER  
I
1
2
ref  
GND  
PHOTO  
GND  
(See Note)  
V
bat  
V
bat  
+
V
bat  
_OK  
BANDGAP  
REFERENCE  
BandGap  
GND  
NOTE: This functionality is NOT implemented on the NCP5008 type.  
Figure 2. Block Diagram  
http://onsemi.com  
2
NCP5008, NCP5009  
PIN FUNCTION DESCRIPTION  
Pin  
Symbol  
Type  
Description  
1
I
ref  
INPUT  
This pin provides the output current range adjustment by means of a resistor connected to  
ground. The current output tolerance depends upon the accuracy of this resistor. Using a "1%  
metal film resistor, or better, yields the best output current accuracy.  
2
3
PHOTO  
SIGNAL  
INPUT  
This pin provides an access to the output current control loop for the NCP5009 version. The cur-  
rent sunk to ground from this pin is subtracted from the output current mirror. Primary use is the  
ambient light automatic adjustment by means of an external photo transistor connected across  
this pin and ground. The output current decreases as the ambient light increases. The internal  
circuit provides a 1/1 current ratio with the I defined by the resistor connected from pin 1 to  
ref  
ground. This current shall be limited to 65 mA.  
This functionality is NOT implemented on the NCP5008 type.  
CS  
Negative going Chip Select logic input. This pin is used to select the NCP5008/ NCP5009 and  
validate the clock/data when CS = Low. The internal shift register is automatically clear to zero  
upon the falling edge, thanks to a 20 ns built−in one shoot. The built−in pull−up resistor disables  
the device when the CS pin is left open.  
4
5
VBIAS  
POWER  
INPUT  
This pin should be connected to V  
.
bat  
CLOCK  
The clock signal connected to this pin is used to serially shift right the internal preset high logic  
level. The clock is valid between the falling edge and until the rising edge of the CS. There is nei-  
ther a feedback nor an overflow control. If the clock count exceeds 8 bits, the internal register is  
clear, the output current is forced to zero and the device comes back to the shutdown mode.  
6
LOCAL  
INPUT  
This pin is used to select the mode of operation.  
When LOCAL = High or Open, the chip is controlled by two digital lines:CS and CLOCK. The  
output current is programmed by the logic control of these pins, allowing a current adjustment  
within the range defined by the I resistor.  
ref  
When LOCAL = Low, the chip is turned ON /OFF by means of the CS line, the CLOCK pins  
being deactivated. The output current is constant, as defined by the I resistor value.  
ref  
In order to minimize the standby current a dynamic pull−up resistor is activated when POR is  
High, this pull−up resistor being disconnected when LOCAL = Low.  
7
8
GND  
L2  
POWER  
POWER  
This pin is the system ground for the NCP5008/NCP5009 and carries both the Power and the  
Digital signals. High quality ground must be provided to avoid spikes and/or uncontrolled opera-  
tion. Care must be observed to avoid high−density current flow in a limited PCB copper track.  
This pin is the power side of the external inductor and must be connected either to the external  
Schottky diode (see Figure 22) or directly to one external LED (see Figure 23). It provides the  
output current to the load. Since the boost converter operates in a current loop mode, the output  
voltage can range up to +15 V but shall not extend this limit. The user must make sure this voltage  
will not be exceeded during the normal operation of this part.  
An external low cost ceramic capacitor (2.2 mF/16 V, ESR < 100 mW) is recommended to smooth  
the current flowing into the diode(s), thus limiting the noise created by the fast transients present  
in this circuitry.  
Care must be observed to avoid EMI though the PCB copper tracks connected to this pin.  
9
L1  
POWER  
POWER  
The return side of the external inductor shall be connected to this pin. Typical application will use a  
22 mH, size 1210, to handle the 2.8 to 364 mA max range. On the other hand, when the desired  
output current is above 20 mA, the inductor shall have an ESR < 1.0 W. The output current toler-  
ance can be improved by using a larger inductor value.  
10  
V
bat  
The external voltage supply is connected to this pin. A high quality reservoir capacitor must be  
connected across pin 10 and Ground to achieve the specified output voltage parameters. A  
10 mF/6.3 V, low ESR capacitor must be connected as close as possible across pin 10 and  
ground pin 7. The X5R ceramic types are recommended.  
http://onsemi.com  
3
NCP5008, NCP5009  
Table 1. Shift Register Bits Assignment and Functions  
SetReg shift register (Note: The register content is latched upon CS positive going).  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bn Value After POR  
Iout Peak (mA)  
0
0
0
0
0
0
0
I
ref  
*k*7.5  
I
ref  
*k*6.5  
I
ref  
*k*5.5  
I
ref  
*k*4.5  
I
ref  
*k*3.5  
I
ref  
*k*2.5  
I *k*1.5  
ref  
LOCAL  
L
CLOCK  
CS  
H
L
B1−B7  
Output Current  
X
X
X
X
X
0
L
I
ref  
* k  
H or Open  
H or Open  
H or Open  
H
L
No Change  
No Change  
I
I
I
* k * (Bn + 0.5)  
* k * (Bn + 0.5)  
* k * (Bn + 0.5)  
ref  
ref  
ref  
L
Q
Bn  
data  
The register is clear to 0 during the first 20 ns following the CS falling edge.  
Note:  
Coefficient Value (internal ratio): k = 746  
Maximum output peak current @ B7 = 1 and Iphoto = 0 mA :Iout peak = I * (7 + 0.5) * 746 = I * 5595  
ref  
ref  
V
R1  
ref  
1.24 V  
R1  
I
+
+
ref  
MAXIMUM RATINGS  
Rating  
Symbol  
V , V  
bat BIAS  
Value  
7.0  
Unit  
V
Power Supply  
Output Power Supply Voltage Compliance  
V
L2  
16  
V
Digital Input Voltage  
Digital Input Current  
CLK, CS  
−0.3 tV tV + 3.0 V  
V
mA  
bat  
1.0  
Human Body Model: R = 1500 W, C = 100 pF  
Machine Model  
ESD  
ESD  
"2.0  
"200  
kV  
V
Micro 10 Package  
Power Dissipation @ T = +85°C  
P
200  
200  
mW  
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
R
Thja  
T
A
−25 to +85  
−25 to +125  
+150  
°C  
°C  
°C  
°C  
T
J
T
Jmax  
T
stg  
−65 to +150  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
4
NCP5008, NCP5009  
POWER SUPPLY SECTION (−25°C to +85°C ambient temperature, unless otherwise noted.)  
Rating  
Pin  
10  
10  
8
Symbol  
Min  
2.7  
Typ  
Max  
6.0  
2.7  
15.0  
400  
75  
Unit  
V
Power Supply  
V
bat  
Power Supply Threshold Startup Voltage  
Output Load Voltage Compliance  
Pulsed Current Regulation Range  
Continuous DC Current in the Load  
V
batThr  
2.3  
V
V
out  
V
8
I
I
I
0
mA  
mA  
%
out  
out  
out  
8
Output Pulsed Current Tolerance @ V = 3.6 V, L1 = 22 mH/0.71 W,  
8
"5.0  
bat  
R
ref  
"1%, I  
= 20 mA (Note 1)  
LED  
Output Leakage @ LOCAL = 0, CS = H, Vout = 15 V, V = 6.0 V  
8
I
3.0  
500  
nA  
mA  
mA  
bat  
out  
Standby Current @ Iout = 0 mA, CS = H, CLK = H, V = V  
= 3.6 V  
= 6.0 V  
BIAS  
10  
10  
10  
I
bat  
BIAS  
stdb  
stdb  
Standby Current @ Iout = 0 mA, CS = H, CLK = H, V = V  
I
10  
bat  
Operating Current @ V = V  
= 3.6 V, I = 30 mA, CLK = H, CS = L,  
I
ope  
600  
bat  
BIAS  
ref  
LOCAL = Open  
mA  
Boost Internal Oscillator Clock @ L1 = 22 mH, V = V  
= 3.6 V,  
F
osc  
300  
kHz  
bat  
BIAS  
Iout = 20 mA (Vout = 14 V)  
1. The tolerance refers to the 20 mA to 70 mA current range.  
DIGITAL SECTION (−25°C to +85°C ambient temperature, unless otherwise noted.)  
Rating  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
Input Capacitance  
(Note 2)  
(Note 2)  
3, 5  
V
V
C
0.7*V  
10  
V
bat  
V
V
pF  
IH  
IL  
in  
bat  
0.3*V  
bat  
High Level Input Voltage  
Low Level Input Voltage  
Input Capacitance  
(Note 2)  
(Note 2)  
6
V
V
C
0.6*V  
0.4*V  
10  
V
V
pF  
IH  
IL  
in  
bat  
bat  
LOCAL Pullup Resistor  
LOCAL Leakage Current  
CS Pullup Resistor  
6
9
3
3
5
5
R
20  
80  
kW  
nA  
kW  
ns  
loc  
I
100  
80  
Loc  
R
20  
cs  
Minimum CS Low Time  
Clock Frequency  
Tcs  
250  
setup  
CLK  
F
5.0  
MHz  
ns  
CLOCK tr and tf  
tr  
, tf  
CLK CLK  
10  
10  
Internal Register Clear  
Internal Power on Reset Width  
t
30  
ns  
clear  
t
100  
ms  
POR  
2. Digital inputs undershoot < − 0.30 V, Digital inputs overshoot < 0.30 V.  
ANALOG SECTION (−25°C to +85°C ambient temperature, unless otherwise noted.)  
Rating  
Pin  
Symbol  
Min  
1.20  
Typ  
1.24  
5595  
1119  
1.8  
Max  
1.28  
Unit  
V
Output Voltage Range Reference @ 2.5 mA < I < 65 mA (Note 3)  
1
V
ref  
ref  
Maximum Output Current Range Ratio  
8
8
I
I
out  
out  
Minimum Output Current Range Ratio  
Output Current Sense Resistor  
10, 9  
2
R
s
5.0  
1.28  
W
Output Voltage Range Reference @ 2.5 mA < Ipho < 65 mA  
Output Current Stabilization tdelay following a DC/DC startup  
V
pho  
1.20  
1.24  
100  
2.2  
V
8
I
ms  
W
outdly  
Internal NMOS Resistor @ V = 3.6 V  
8
QR  
3.0  
bat  
DSON  
comp  
Internal Comparator Delay Time  
Td  
60  
ns  
3. The overall tolerance depends upon the accuracy of the external resistor. Using a 1%/low PPM metal film resistor is recommended to achieve  
"5% output current tolerance.  
http://onsemi.com  
5
 
NCP5008, NCP5009  
TYPICAL OPERATING CHARACTERISTICS  
Condition: Typical Application: L = 22 mH, Cin = 10 mF, Cout = 2.2 mF, R1 = 30 kW  
80  
75  
70  
65  
60  
55  
50  
80  
75  
V
= 4.2 V  
= 3.6 V  
bat  
V
= 4.2 V  
= 3.6 V  
bat  
V
bat  
70  
65  
60  
55  
50  
V
bat  
V
= 3.0 V  
bat  
V
= 3.0 V  
25  
bat  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
30  
35  
I
I
LED  
LED  
Figure 3. Efficiency vs. Load Current @ 4 LEDS  
Figure 4. Efficiency vs. Load Current @ 3 LEDS  
(Vload = 4*Vf 14.2 V)  
(Vload = 3*Vf 10.5 V)  
100  
90  
80  
70  
60  
50  
85  
80  
75  
70  
65  
60  
V
= 4.2 V  
bat  
V
=7.5 V  
= 40 mA  
V
= 3.6 V  
= 3.0 V  
out  
bat  
I
led  
V
bat  
V
= 15 V  
= 20 mA  
out  
I
led  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
6.5  
I
V
LED  
bat  
Figure 5. Efficiency vs. Load Current @ 2 LEDS  
Figure 6. Efficiency vs. Vbat @  
(Vload = 2*Vf 7.1 V)  
Vout = 15 V/Iled = 20mA and  
Vout = 7.5 V/Iled = 40 mA  
100  
95  
90  
85  
80  
75  
400  
Bn  
V
= 6.0 V  
bat  
350  
300  
250  
200  
150  
100  
50  
7
6
5.0 V  
5
4
4.2 V  
3
2
1
3.6 V  
3.0 V  
50  
0
0
20  
40  
(mA)  
60  
80  
0
10  
20  
30  
40  
(mA)  
60  
70  
I
I
ref  
LED  
Figure 7. Efficiency vs. Load Current @ 4 LEDS  
(Vload = 2 strings of 2 LEDs in series = 7.1V)  
Figure 8. Inductor peak Current vs.  
Iref @ Bn = {1, 2, 3, 4, 5, 6, 7}  
http://onsemi.com  
6
NCP5008, NCP5009  
TYPICAL OPERATING CHARACTERISTICS  
Condition: Typical Application: L = 22 mH, Cin = 10 mF, Cout = 2.2 mF, R1 = 30 kW  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
V
= 10 V  
= 15 V  
load  
16  
14  
12  
10  
8
V
load  
6
4
2
0
0
0
0
10  
20  
30  
40  
(mA)  
50  
60  
70  
50  
100  
150  
200  
250  
(mA)  
peak  
300  
350 400  
I
ref  
THEORETICAL I  
Figure 9. Load Current (Iled) vs. Iref  
@ Vbat = 3.6 V, Vload = 15 V and 10 V  
Figure 10. Inductor Peak Current Error vs.  
Theoretical Inductor Peak Current  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
200  
180  
160  
140  
120  
100  
80  
Theoretical  
Measured  
60  
40  
20  
0
0
10  
20  
(mA)  
30  
40  
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6  
6.0  
I
V
bat  
(V)  
photo  
Figure 11. Inductor Peak Current vs. Iphoto @ Iref = 34 mA  
Figure 12. Stand by Current vs. Vbat @ T = 20°C  
80  
75  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2 V  
= 3.6 V  
bat  
V
= 4.2 V  
bat  
70  
65  
60  
55  
50  
V
bat  
V
= 3.6 V  
bat  
V
= 3.0 V  
bat  
V
= 3.0 V  
30  
bat  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
35  
I
(mA)  
I
(mA)  
LED  
LED  
Figure 14. Efficiency vs. Load Current @ 3 LEDS  
Figure 13. Efficiency vs. Load Current @ 4 LEDS  
(Vload = 3*Vf 10.5 V)  
(Vload = 4*Vf 14.2 V)  
http://onsemi.com  
7
NCP5008, NCP5009  
TYPICAL OPERATING CHARACTERISTICS  
Condition: Typical Application: L = 22 mH, Cin = 10 mF, Cout = 2.2 mF, R1 = 30 kW  
90  
85  
80  
75  
70  
65  
60  
100  
V
= 6.0 V  
bat  
V
= 4.2 V  
= 3.6 V  
bat  
V
95  
90  
85  
80  
75  
70  
5.0 V  
bat  
4.2 V  
V
bat  
= 3.0 V  
3.6 V  
3.0 V  
40  
0
5
10  
15  
20  
25  
30  
35  
0
10  
20  
30  
50  
60  
70  
I
(mA)  
I
(mA)  
LED  
LED  
Figure 15. Efficiency vs Load Current @ 2 LEDS  
Figure 16. Efficiency vs Load Current @ 4 LEDS  
(Vload = 2 strings of 2 LEDs in series = 7.1 V)  
(Vload = 2*Vf 7.1 V)  
Operating Description  
Output  
t
CLKmin  
V
bat  
ON  
90%  
50%  
10%  
tf  
tr  
OFF  
Input  
0.30* V  
0.70* V  
V
bat  
bat  
bat  
Figure 17. Digital Timing Definitions  
Figure 18. Typical Schmitt Trigger Characteristic  
Input Schmitt Triggers  
the current drawn pin 1. The clock signal is irrelevant and  
All the Logic Input pins have built−in Schmitt trigger  
circuits to prevent the NCP5008/NCP5009 against  
uncontrolled operation. The typical dynamic characteristics  
of the related pins are depicted in Figure 18.  
the output current is derived by equation I = I * k, the  
internal constant k being equal to 746.  
out ref  
ESD Protection  
The NCP5008/NCP5009 includes silicon devices to  
protect the pins against the ESD spikes voltages. To cope  
with the different ESD voltages developed in the  
applications, the built−in structures have been designed to  
handle $2.0 kV in Human Body Model (HBM) and  
$200 V in Machine Model (MM) and on each pin.  
The output signal is guaranteed to go High when the  
input voltage is above 0.70*V , and will go Low when the  
bat  
input voltage is below 0.30*V  
.
bat  
Local Mode  
When the system operate in a Local Mode (Pin 6,  
/LOCAL=Low), the output current depends solely upon  
http://onsemi.com  
8
 
NCP5008, NCP5009  
Remote Control Programming Sequence  
tCSsetup  
CS  
tclear  
CLEAR  
CLK  
Qdata  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
Last Latched Bit  
Output Current Programmed Register  
Internal Latch Data and Reset  
I
out ref  
Ioutdly  
Iout  
Figure 19. Programming Sequence  
Upon CS transition from High to Low, the internal  
sequence will take place:  
− Qdata is internally set to high level.  
− Upon positive going transition of the next CLK signal,  
the Qdata is shifted to the next Bn stage.  
− Clear the Qdata flip−flop upon the positive going of  
the SetReg[B1] transient.  
will be adjusted accordingly. If the number of CLK pulses  
is higher than 7, the Qdata is lost and the SetReg register  
bits B[1−7] are in the Low state, yielding a zero output  
current.  
The internal shift register can be clear by sending more  
than 7 pulses to the CLK pin when the pin CS is low. If the  
internal shift register is clear upon the CS transition from  
Low to High, the device will be placed or maintained in the  
shut down mode.  
The sequence keeps going until CS = High.  
When the CS line returns to a High state, the  
programming output current flip−flop is set according to  
the previous state of the shift register and SetReg B[1−7] is  
cleared afterward.  
When the register content is higher than zero, the DC/DC  
is activated and a 100 ms delay (typical) is necessary to  
stabilize the output current to the programmed value.  
Depending upon the CS width, for a given CLK period,  
the last SetReg bit will be latched and the output current  
http://onsemi.com  
9
NCP5008, NCP5009  
Set Up Output Current Range  
V
bat  
1
1
V
bat  
I
ref  
+
BandGap  
V
bat  
GND  
I
ref  
1
1:746  
V
bat  
R
30 k  
ref  
Iphoto  
1
Iout Reference  
= (I −Iphoto)*746*(Bn+0.5)  
ref  
GND  
1
I = (I −Iphoto)*(Bn+0.5)  
ref  
V
bat  
1
1
1
1:Bn  
2:1  
+
BandGap  
GND  
GND GND  
GND  
GND  
GND  
Photo  
Q1  
NPN−PHOTO  
GND  
Figure 20. Functional Diagram  
The current sunk to ground on PHOTO pin is subtracted  
Where k = 746, Bn represents the bit of the internal shift  
from the current sunk to ground on I pin. The result is  
register, range from 1 to 7, and Ivalley = (I − Iphoto)  
ref  
ref  
multiplied by the programmed value (Bn) and then  
multiplied by the constant factor ratio (k = 746) in the  
current mirror.  
The constant factor k is a ratio between the current on  
Iout sense and the Iout reference internally fixed.  
* 0.5 * k.  
We can write also Ipeak = (I − Iphoto) * (Bn + 0.5) * k.  
Please find below the formula to quickly calculate R1  
resistor (resistor on I pin):  
ref  
ref  
1.24  
R1  
I
+
ref  
The output current reference is:  
Ipeak = Ivalley + (I − Iphoto) * Bn * k.  
ref  
http://onsemi.com  
10  
NCP5008, NCP5009  
DC/DC Converter Operation  
is monitored by the internal sense resistor Rsense to Set and  
Reset the flip−flop U3 and U6 according to the comparators  
U2 and U4 output state.  
The DC/DC converter operates with a boost structure  
depicted in Figure 21, the load being supplied by the pulsed  
current coming from the external inductor L1. The current  
V
bat  
V
bat  
V
bat  
+
Rsense  
1R8  
U1  
L1  
V
bat  
GND  
L1  
22 mH  
+
U2  
I
I
peak_ref  
U3  
U6  
L2  
V
D5  
MBR0520  
bat  
GND  
+
valley_ref  
D4  
LED  
U4  
U5  
Q1  
U7  
D3  
LED  
GND  
GND  
C2  
2.2 mF/16 V  
POR  
D2  
LED  
D1  
LED  
GND  
GND  
Figure 21. Basic DC/DC Boost Structure  
http://onsemi.com  
11  
 
NCP5008, NCP5009  
Output Load Drive  
maximum rating will not exist across pin 8 and  
ground. Depending upon a specific application  
In order to make profit of the built−in Boost capabilities,  
one shall operate the NCP5008/NCP5009 in the continuous  
output current mode. Such a mode is achieved by using and  
external reservoir capacitor (preferably a low ESR ceramic  
type) across the LED as depicted in Figures 22, 23, 24, 25,  
and 26.  
(V voltage, PCB layout), using an external  
bat  
voltage clamp could be necessary.  
2. The peak current flowing into the LED diodes  
shall be within the maximum ratings specified for  
these devices.  
Using an extra photo sensor is not mandatory and the  
The Schottky diode D5, associated with capacitor C2,  
provides a rectification and filtering function.  
When a pulse−operating mode is acceptable:  
related pin 2 can be either left open or connected to V  
,
bat  
but must not be grounded on the NCP5009 version only.  
At this point, the designer must carefully analyze two  
parameters:  
The LEDs brightness can be controlled in LOCAL  
mode with a PWM on CS pin as depicted in Figure 24.  
Or the Schottky can be removed and replaced by at  
least one LED diode as depicted in Figure 23.  
1. The output voltage must be limited to 15 V  
maximum. It’s the designer responsibility to  
make sure that spike voltages beyond the  
TYPICAL APPLICATION CIRCUIT  
V
bat  
C1  
U1  
R1  
1
10 mF/6.3 V  
10  
9
I
ref  
V
bat  
GND  
30 k  
2
PHOTO  
L1  
GND  
Q1  
Vcc  
L1  
22 mH  
V
bat  
NPN−PHOTO  
GND  
D5  
MBR0520  
4
3
5
8
7
6
VBIAS  
CS  
L2  
GND  
CLK  
LOCAL  
GND  
NCP5009  
D1  
D2  
LED  
D3  
LED  
D4  
GND  
LED  
LED  
C2  
2.2 mF/16 V  
GND  
Figure 22. Basic DC Current Mode Operation in REMOTE Control  
http://onsemi.com  
12  
 
NCP5008, NCP5009  
V
bat  
C1  
U1  
R1  
10 mF/6.3 V  
1
2
10  
I
ref  
V
bat  
GND  
30 k  
9
PHOTO  
L1  
GND  
Q1  
Vcc  
L1  
22 mH  
V
bat  
NPN−PHOTO  
GND  
4
3
5
8
7
6
VBIAS  
CS  
L2  
GND  
CLK  
LOCAL  
GND  
D3  
NCP5009  
D4  
GND  
LED  
C2  
LED  
1.0 mF/16 V  
GND  
Figure 23. Typical Semi−Pulsed Mode of Operation in REMOTE Mode  
V
bat  
C1  
U1  
R1  
10 mF/6.3 V  
1
2
10  
9
I
ref  
V
bat  
GND  
30 k  
PHOTO  
L1  
GND  
Q1  
L1  
22 mH  
V
bat  
NPN−PHOTO  
GND  
D5  
MBR0520  
4
3
5
8
7
6
VBIAS  
CS  
L2  
PWM  
GND  
CLK  
LOCAL  
NCP5009  
GND  
D4  
D1  
D2  
LED  
D3  
LED  
LED  
LED  
C2  
2.2 mF/16 V  
GND  
Figure 24. PWM Current Control Mode Operation in LOCAL Mode  
http://onsemi.com  
13  
NCP5008, NCP5009  
V
bat  
C1  
U1  
R1  
10 mF/6.3 V  
1
2
10  
9
I
ref  
V
bat  
DAC  
GND  
30 k  
PHOTO  
L1  
L1  
22 mH  
Q1  
NPN−PHOTO  
V
bat  
GND  
OFF ON  
D5  
MBR0520  
4
3
5
8
7
6
VBIAS  
CS  
L2  
GND  
CLK  
LOCAL  
NCP5009  
GND  
D4  
D1  
D2  
LED  
D3  
LED  
LED  
LED  
C2  
2.2 mF/16 V  
GND  
Figure 25. DAC Current Control Mode Operation in LOCAL Mode  
V
bat  
C1  
U1  
R1  
10 mF/6.3 V  
1
2
10  
9
I
ref  
V
bat  
GND  
30 k  
PHOTO  
L1  
GND  
L1  
22 mH  
Q1  
NPN−PHOTO  
V
bat  
GND  
OFF ON  
D5  
MBR0520  
4
3
5
8
7
6
VBIAS  
CS  
L2  
GND  
CLK  
LOCAL  
NCP5009  
GND  
D4  
D1  
D2  
D3  
LED  
LED  
LED  
LED  
C2  
2.2 mF/16 V  
GND  
Figure 26. Basic DC Current Mode Operation in LOCAL Mode  
http://onsemi.com  
14  
NCP5008, NCP5009  
TYPICAL LEDS LOAD MAPPING  
75 mA  
Load+  
D1  
LED  
D3  
LED  
D5  
LED  
D7  
LED  
D9  
LED  
6.7 V  
D2  
LED  
D4  
LED  
D6  
LED  
D8  
LED  
D10  
LED  
Example 1  
GND  
50 mA  
Load+  
D1  
LED  
D4  
LED  
D7  
LED  
60 mA  
Load+  
D2  
LED  
D5  
LED  
D8  
LED  
D1  
LED  
D3  
LED  
D5  
LED  
10.4 V  
6.7 V  
D3  
LED  
D6  
LED  
D9  
LED  
D2  
LED  
D4  
LED  
D6  
LED  
Example 2  
Example 3  
GND  
GND  
Figure 27. Three different examples of load can be driven by the NCP5009 or NCP5008  
Condition: Vbat = 3.6 V, L = 22 mH  
MANUFACTURER REFERENCE  
Design Ref  
Value/Reference or Size  
Manufacturer  
ON Semiconductor  
MURATA  
Reference Number  
MBR0520  
D5  
L1  
MBR0520/SOD−123  
22 mH/1210  
LQH3C220K34  
C1  
10 mF/ 6.3 V/0805  
2.2 mF/16 V/1206  
SFH320/PLCC2  
White LED  
MURATA  
GRM40 X5R 106K 6.3  
GRM42−6 X7R 225K 16  
SFH320  
C2  
MURATA  
Q1  
Osram  
D1 to D4  
Osram  
LW5413−VBW−1  
http://onsemi.com  
15  
NCP5008, NCP5009  
LAYOUT EXAMPLE  
Figure 28. Typical Printed Circuit Layout  
(the Top Silk Screen and the Top Layer)  
The Figure 28 represents the typical printed circuit  
layout based on the basic application Figure 1. This  
application has been routed on a single copper layer to save  
cost. A dual side PCB has better noise protection and can  
be the right choice for an industrial system. In order to  
avoid voltage spikes, care must be observed to group the  
capacitors, the inductor, the Schottky diode and the  
integrated circuit in the same area. On the other hand, using  
large copper tracks to reduce the resistor connectivity is  
strongly recommended.  
Obviously, the connectors GND, CLK, CS, V and  
bat  
Load are for engineering purpose only and not for final  
application.  
http://onsemi.com  
16  
 
NCP5008, NCP5009  
PACKAGE DIMENSIONS  
Micro10  
CASE 846B−03  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
−A−  
4. DIMENSION “B” DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846B−01 OBSOLETE. NEW STANDARD  
846B−02  
−B−  
K
G
MILLIMETERS  
INCHES  
PIN 1 ID  
D 8 PL  
DIM MIN  
MAX  
3.10  
3.10  
1.10  
0.30  
MIN  
MAX  
0.122  
0.122  
0.043  
0.012  
M
S
S
A
0.08 (0.003)  
T B  
A
B
C
D
G
H
J
2.90  
2.90  
0.95  
0.20  
0.114  
0.114  
0.037  
0.008  
0.50 BSC  
0.020 BSC  
C
0.038 (0.0015)  
0.05  
0.10  
4.75  
0.40  
0.15  
0.21  
5.05  
0.70  
0.002  
0.004  
0.187  
0.016  
0.006  
0.008  
0.199  
0.028  
−T−  
SEATING  
PLANE  
L
H
K
L
J
SOLDERING FOOTPRINT*  
1.04  
0.041  
0.32  
0.0126  
10X  
10X  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.50  
mm  
inches  
ǒ
Ǔ
8X 0.0196  
SCALE 8:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP5008/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY