NCP500SQL33T1 [ONSEMI]

150 mA CMOS Low Noise Low-Dropout Voltage Regulator; 150毫安CMOS低噪声低压降稳压器
NCP500SQL33T1
型号: NCP500SQL33T1
厂家: ONSEMI    ONSEMI
描述:

150 mA CMOS Low Noise Low-Dropout Voltage Regulator
150毫安CMOS低噪声低压降稳压器

稳压器
文件: 总20页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP500  
150 mA CMOS Low Noise  
Low−Dropout Voltage  
Regulator  
The NCP500 series of fixed output low dropout linear regulators are  
designed for portable battery powered applications which require low  
noise operation, fast enable response time, and low dropout. The  
device achieves its low noise performance without the need of an  
external noise bypass capacitor. Each device contains a voltage  
reference unit, an error amplifier, a PMOS power transistor, and  
resistors for setting output voltage, and current limit and temperature  
limit protection circuits.  
http://onsemi.com  
TSOP−5  
SN SUFFIX  
CASE 483  
5
1
The NCP500 has been designed to be used with low cost ceramic  
capacitors and requires a minimum output capacitor of 1.0 mF.  
QFN 2x2  
SQL SUFFIX  
CASE 488  
Features  
1
Ultra−Low Dropout Voltage of 170 mV at 150 mA  
Fast Enable Turn−On Time of 20 msec  
Wide Operating Voltage Range of 1.8 V to 6.0 V  
Excellent Line and Load Regulation  
High Accuracy Output Voltage of 2.5%  
Enable Can Be Driven Directly by 1.0 V Logic  
6
PIN CONNECTIONS AND  
MARKING DIAGRAMS  
TSOP−5  
Typical RMS Noise Voltage 50 mV with No Bypass Capacitor  
(BW = 10 Hz to 100 kHz)  
1
2
V
5
4
V
in  
out  
Very Small QFN 2x2 Package  
Pb−Free Package May be Available.* The G−Suffix Denotes a  
Pb−Free Lead Finish  
GND  
Enable  
3
N/C  
Typical Applications  
(Top View)  
Noise Sensitive Circuits − VCO’s, RF Stages, etc.  
SMPS Post−Regulation  
QFN 2x2  
Hand−Held Instrumentation  
Camcorders and Cameras  
6
5
4
Enable  
GND  
N/C  
1
2
3
xxM  
GND  
V
in  
V
out  
(Top View)  
V
in  
V
out  
1 (3)  
5 (4)  
xxx, xx = Version  
Y
W
M
= Year  
= Work Week  
= Date Code  
Driver w/  
Current  
Limit  
Thermal  
Shutdown  
Enable  
3 (1)  
ORDERING INFORMATION  
ON  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
OFF  
2 (2, 5)  
GND  
*For additional information on our Pb−Free strategy  
and soldering details, please download the ON  
Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
NOTE: Pin numbers in parenthesis indicate QFN package.  
Figure 1. Simplified Block Diagram  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
January, 2004 − Rev. 16  
NCP500/D  
NCP500  
PIN FUNCTION DESCRIPTION  
TSOP−5 QFN 2x2  
Pin No.  
Pin No.  
Pin Name  
Description  
1
2
3
3
2, 5  
1
V
Positive power supply input voltage.  
Power supply ground.  
in  
GND  
Enable  
This input is used to place the device into low−power standby. When this input is pulled to a logic  
low, the device is disabled. If this function is not used, Enable should be connected to V .  
in  
4
5
6
4
N/C  
No internal connection.  
V
out  
Regulated output voltage.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
in  
0 to 6.0  
V
−0.3 to V +0.3  
V
on/off  
in  
V
−0.3 to V +0.3  
V
out  
in  
Output Short Circuit Duration  
Infinite  
Thermal Resistance, Junction−to−Ambient  
TSOP−5  
QFN (Note 3)  
R
°C/W  
q
JA  
250  
225  
Operating Junction Temperature  
Storage Temperature  
T
+125  
°C  
°C  
J
T
stg  
−65 to +150  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015  
Machine Model Method 200 V  
Latch up capability (85°C) "100 mA.  
2. Device is internally limited to 160°C by thermal shutdown.  
3. For more information, refer to application note, AND8080/D.  
ELECTRICAL CHARACTERISTICS (V = 2.35 V, C = 1.0 mF, C = 1.0 mF, for typical value T = 25°C, for min and  
in  
in  
out  
A
max values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−1.8 V  
Output Voltage (TA = −40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 2.3 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
Vout  
1.755  
1.8  
1.0  
15  
1.845  
10  
V
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
2.0  
140  
270  
10  
200  
350  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
175  
175  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
http://onsemi.com  
2
 
NCP500  
ELECTRICAL CHARACTERISTICS (continued) (V = 2.35 V, C = 1.0 mF, C = 1.0 mF, for typical value T = 25°C, for min and  
in  
in  
out  
A
max values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−1.85 V  
Output Voltage (TA = −40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 2.3 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
Vout  
1.804  
1.85  
1.0  
15  
1.896  
10  
V
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
2.0  
10  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
175  
175  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
ELECTRICAL CHARACTERISTICS (continued) (V = 3.0 V, C = 1.0 mF, C = 1.0 mF, for typical value T = 25°C, for min and max  
in  
in  
out  
A
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−2.5 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.0 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
2.438  
2.5  
1.0  
15  
2.563  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
100  
190  
10  
170  
270  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
180  
180  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
http://onsemi.com  
3
NCP500  
ELECTRICAL CHARACTERISTICS (V = 3.1 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−2.6 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.0 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
2.535  
2.6  
1.0  
15  
2.665  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
10  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
180  
180  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
ELECTRICAL CHARACTERISTICS (V = 3.2 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−2.7 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.2 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
2.633  
2.7  
1.0  
15  
2.768  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
90  
180  
10  
160  
260  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
185  
185  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
http://onsemi.com  
4
NCP500  
ELECTRICAL CHARACTERISTICS (V = 3.3 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−2.8 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.3 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
2.730  
2.8  
1.0  
15  
2.870  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
90  
170  
10  
150  
250  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
185  
185  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
ELECTRICAL CHARACTERISTICS (V = 3.5 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−3.0 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.5 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
2.925  
3.0  
1.0  
15  
3.075  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
85  
165  
10  
130  
240  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
190  
190  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
http://onsemi.com  
5
NCP500  
ELECTRICAL CHARACTERISTICS (V = 3.8 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−3.3 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 3.8 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
3.218  
3.3  
1.0  
15  
3.383  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
80  
150  
10  
110  
230  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
195  
195  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
http://onsemi.com  
6
NCP500  
ELECTRICAL CHARACTERISTICS (V = 5.5 V, C = 1.0 mF, C  
= 1.0 mF, for typical value T = 25°C, for min and max  
A
in  
in  
out  
values T = −40°C to 85°C, T  
= 125°C, unless otherwise noted)  
A
jmax  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
−5.0 V  
Output Voltage  
Vout  
V
(TA =−40°C to 85°C, Iout = 1.0 mA to 150 mA)  
Line Regulation (Vin = 5.5 V to 6.0 V, Iout = 1.0 mA)  
Load Regulation (Iout = 1.0 mA to 150 mA)  
4.875  
5.0  
1.0  
15  
5.125  
10  
Regline  
Regload  
VinVout  
mV  
mV  
mV  
45  
Dropout Voltage (Measured at Vout 2.0%, TA = −40°C to 85°C)  
(Iout = 1.0 mA)  
(Iout = 75 mA)  
(Iout = 150 mA)  
2.0  
60  
120  
10  
100  
180  
Output Short Circuit Current  
Iout(max)  
RR  
200  
540  
62  
700  
mA  
dB  
Ripple Rejection  
(V = V  
+ 1.0 V + 0.5 V , f = 1.0 kHz, I = 60 mA)  
pp o  
in  
out (nom.)  
Quiescent Current  
(Enable Input = 0 V)  
(Enable Input = 0.9 V, Iout = 1.0 mA)  
(Enable Input = 0.9 V, Iout = 150 mA)  
IQ  
mA  
0.01  
210  
210  
1.0  
300  
300  
Enable Input Threshold Voltage  
Vth(EN)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Bias Current  
IIB(EN)  
3.0  
20  
100  
100  
nA  
Output Turn On Time (Enable Input = 0 V to V )  
ms  
in  
4. Maximum package power dissipation limits must be observed.  
T
*T  
A
qJA  
J(max)  
PD +  
R
5. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
http://onsemi.com  
7
NCP500  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
V
= 3.3 V  
V
= 3.3 V  
out(nom.)  
out(nom.)  
50 mA Load  
150 mA Load  
120 mA Load  
10 mA Load  
100 mA Load  
1.0 mA Load  
75  
−50  
−25  
0
25  
50  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 2. Dropout Voltage vs. Temperature  
Figure 3. Dropout Voltage vs. Temperature  
220  
200  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.8 V  
V
= 2.8 V  
out(nom.)  
out(nom.)  
180  
160  
150 mA Load  
50 mA Load  
140  
120  
100  
80  
120 mA Load  
100 mA Load  
10 mA Load  
25  
1.0 mA Load  
75  
−50  
−25  
50  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
0
Temperature (°C)  
Temperature (°C)  
Figure 4. Dropout Voltage vs. Temperature  
Figure 5. Dropout Voltage vs. Temperature  
350  
330  
310  
290  
270  
250  
230  
210  
120  
100  
V
= 1.8 V  
out(nom.)  
V
= 1.8 V  
out(nom.)  
50 mA Load  
150 mA Load  
80  
60  
40  
20  
120 mA Load  
100 mA Load  
10 mA Load  
1.0 mA Load  
50  
190  
170  
150  
0
−50  
−25  
0
25  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 6. Dropout Voltage vs. Temperature  
Figure 7. Dropout Voltage vs. Temperature  
http://onsemi.com  
8
NCP500  
2.804  
2.802  
2.8  
3.308  
3.306  
3.304  
3.302  
3.300  
3.298  
3.296  
3.294  
3.292  
V
V
= V  
+ 0.5 V  
= 2.8 V  
in  
out(nom.)  
V
= V  
+0.5 V  
= 3.3 V  
in  
out(nom.)  
out(nom.)  
= 1.0 mA  
V
out(nom.)  
I
O
I
O
= 1.0 mA  
2.798  
2.796  
2.794  
2.792  
2.790  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 8. Output Voltage vs. Temperature  
Figure 9. Output Voltage vs. Temperature  
1.804  
210  
V
I
= V  
= 0 mA  
= + 0.5 V  
in  
out(nom.)  
1.8035  
200  
190  
180  
O
V
= 3.3 V  
= 1.8 V  
out(nom.)  
1.803  
1.8025  
1.802  
1.8015  
1.801  
V
out(nom.)  
170  
160  
150  
V
= V  
+ 0.5 V  
100  
in  
out(nom.)  
V
= 1.8 V  
out(nom.)  
I
O
= 1.0 mA  
1.8005  
−50  
−25  
0
25  
50  
75  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 10. Output Voltage vs. Temperature  
Figure 11. Quiescent Current vs. Temperature  
225  
200  
225  
200  
175  
150  
125  
100  
75  
175  
150  
125  
100  
75  
V
= 3.3 V  
5.0  
out(nom.)  
50  
50  
V
= 1.8 V  
5.0  
out(nom.)  
I
= 0 mA  
out  
I
= 0 mA  
out  
25  
25  
T = 25°C  
A
T = 25°C  
A
0
0
0
1.0  
2.0  
3.0  
4.0  
6.0  
0
1.0  
2.0  
3.0  
4.0  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Figure 12. Quiescent Current vs. Input Voltage  
Figure 13. Quiescent Current vs. Input Voltage  
http://onsemi.com  
9
NCP500  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
50  
50  
V
= 1.8 V  
5.0  
out(nom.)  
= 50 mA  
V
= 3.3 V  
5.0  
out(nom.)  
= 50 mA  
I
out  
I
out  
25  
25  
T = 25°C  
A
T = 25°C  
A
0
0
0
0
1.0  
2.0  
3.0  
4.0  
6.0  
1.0  
2.0  
3.0  
4.0  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Figure 14. Ground Pin Current vs. Input Voltage  
Figure 15. Ground Pin Current vs. Input Voltage  
600  
500  
400  
300  
200  
100  
0
100  
80  
60  
40  
20  
0
10 mA  
60 mA  
10 mA  
V
out  
= 1.8 V  
V
in  
= 2.8 V + 0.5 V  
DC p−p  
V
= 3.3 V  
5.0  
out(nom.)  
C
= 1 mF  
out  
0
1.0  
2.0  
3.0  
4.0  
6.0  
0.1  
1.0  
10  
100  
Input Voltage (V)  
f, Frequency (kHz)  
Figure 16. Current Limit vs. Input Voltage  
Figure 17. Ripple Rejection vs. Frequency  
1000  
800  
5.0  
V
= 1.8 V  
= 2.8 V  
= 1 mA  
out  
4.0  
3.0  
V
in  
I
out  
C
= 1 mF  
out  
200  
150  
600  
400  
200  
V
V
= 3.8 V to 4.8 V  
= 3.3 V  
in  
out  
C
= 1.0 mF  
out  
= 1.0 mA  
I
out  
100  
50  
0
0
0.01  
−50  
0.1  
1.0  
10  
100  
1000  
0
20  
40  
60  
80  
100  
120  
140 160  
f, Frequency (kHz)  
Time (ms)  
Figure 18. Output Noise Density  
Figure 19. Line Transient Response  
http://onsemi.com  
10  
NCP500  
5.0  
225  
V
in  
= 3.8 V  
150  
75  
0
4.0  
3.0  
V
C
C
= 3.3 V  
= 1.0 mF  
= 1 mF  
out  
out  
in  
200  
150  
100  
50  
200  
100  
0
V
= 3.8 V to 4.8 V  
= 3.3 V  
in  
V
out  
C
= 1.0 mF  
out  
I
= 10 mA  
out  
−100  
−200  
−300  
0
−50  
0
20  
40  
60  
80  
100  
120 140 160  
0
10  
20  
30  
40  
50  
60  
Time (ms)  
Time (ms)  
Figure 20. Line Transient Response  
Figure 21. Load Transient Response  
225  
150  
75  
0
3.0  
2.0  
1.0  
0
V
V
C
= 3.8 V  
V
V
A
= 3.8 V  
= 3.3 V  
in  
in  
out  
T = 25°C  
L
in  
= 3.3 V  
out  
= 10 mF  
out  
R = 3.3 kW  
C
C
= 1 mF  
in  
= 1 mF  
50  
25  
4.0  
3.0  
2.0  
0
−25  
−50  
C
= 10 mF  
out  
1.0  
0
C
= 1.0 mF  
out  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
20  
40  
60  
80  
100  
120  
Time (ms)  
Time (ms)  
Figure 22. Load Transient Response  
Figure 23. Turn−off Response  
http://onsemi.com  
11  
NCP500  
2
1.8  
1.6  
1.4  
1.2  
3
2.5  
2
1.5  
1
1
0.8  
0.6  
C
C
= 1 mF  
in  
C
C
= 1 mF  
in  
= 1 mF  
out  
= 1 mF  
out  
0.4  
0.2  
0
T = 25°C  
A
T = 25°C  
0.5  
0
A
V
Enable  
= V  
in  
V
Enable  
= V  
in  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
in,  
Input Voltage (V)  
V
in,  
Input Voltage (V)  
Figure 24. Output Voltage vs. Input Voltage  
Figure 25. Output Voltage vs. Input Voltage  
3.5  
3
2.5  
2
1.5  
1
C
C
= 1 mF  
in  
= 1 mF  
out  
T = 25°C  
A
0.5  
0
V
Enable  
= V  
in  
0
1
2
3
4
5
6
7
V
in,  
Input Voltage (V)  
Figure 26. Output Voltage vs. Input Voltage  
http://onsemi.com  
12  
NCP500  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output load  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 2% below its  
nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 160°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Output Noise Voltage  
This is the integrated value of the output noise over a  
specified frequency range. Input voltage and output load  
current are kept constant during the measurement. Results  
Ǹ
are expressed in mVRMS or nV Hz.  
Maximum Package Power Dissipation  
The power dissipation level at which the junction  
temperature reaches its maximum operating value, i.e.  
125°C.  
Quiescent Current  
The current which flows through the ground pin when the  
regulator operates without a load on its output: internal IC  
operation, bias, etc. When the LDO becomes loaded, this  
term is called the Ground current. It is actually the difference  
between the input current (measured through the LDO input  
pin) and the output current.  
http://onsemi.com  
13  
NCP500  
APPLICATIONS INFORMATION  
The NCP500 series regulators are protected with internal  
If T is not recommended to exceed 125°C, then the  
J
thermal shutdown and internal current limit. A typical  
application circuit is shown in Figure 27.  
NCP500 can dissipate up to 400 mW @ 25°C.  
The power dissipated by the NCP500 can be calculated  
from the following equation:  
Input Decoupling (C1)  
[
]
(I ) ) V * V  
in gnd out in  
[
]
P
+ V * I  
* I  
tot  
out out  
A 1.0 mF capacitor either ceramic or tantalum is  
recommended and should be connected close to the NCP500  
package. Higher values and lower ESR will improve the  
overall line transient response.  
or  
)
*
I
P
V
tot  
I
out out  
) I  
V
+
inMAX  
gnd  
out  
Output Decoupling (C2)  
If a 150 mA output current is needed the ground current  
is extracted from the data sheet curves: 200 mA @ 150 mA.  
For a NCP500SN18T1 (1.8 V), the maximum input voltage  
will then be 4.4 V, good for a 1 Cell Li−ion battery.  
The NCP500 is a stable component and does not require  
a minimum Equivalent Series Resistance (ESR) or a  
minimum output current. The minimum decoupling value is  
1.0 mF and can be augmented to fulfill stringent load  
transient requirements. The regulator accepts ceramic chip  
capacitors as well as tantalum devices. Larger values  
improve noise rejection and load regulation transient  
response. Figure 29 shows the stability region for a range of  
operating conditions and ESR values.  
Hints  
Please be sure the V and GND lines are sufficiently wide.  
in  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads as short  
as possible.  
Noise Decoupling  
The NCP500 is a low noise regulator without the need of  
an external bypass capacitor. It typically reaches a noise level  
of 50 mVRMS overall noise between 10 Hz and 100 kHz. The  
classical bypass capacitor impacts the start up phase of  
standard LDOs. However, thanks to its low noise  
architecture, the NCP500 operates without a bypass element  
and thus offers a typical 20 ms start up phase.  
Package Placement  
QFN packages can be placed using standard pick and  
place equipment with an accuracy of "0.05 mm.  
Component pick and place systems are composed of a vision  
system that recognizes and positions the component and a  
mechanical system which physically performs the pick and  
place operation. Two commonly used types of vision  
systems are: (1) a vision system that locates a package  
silhouette and (2) a vision system that locates individual  
bumps on the interconnect pattern. The latter type renders  
more accurate place but tends to be more expensive and time  
consuming. Both methods are acceptable since the parts  
align due to a self−centering feature of the QFN solder joint  
during solder re−flow.  
Enable Operation  
The enable pin will turn on or off the regulator. These  
limits of threshold are covered in the electrical specification  
section of this data sheet. The turn−on/turn−off transient  
voltage being supplied to the enable pin should exceed a  
slew rate of 10 mV/ms to ensure correct operation. If the  
enable is not to be used then the pin should be connected  
to V .  
in  
Solder Paste  
Thermal  
Type 3 or Type 4 solder paste is acceptable.  
As power across the NCP500 increases, it might become  
Re−flow and Cleaning  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
effect the rate of junction temperature rise for the part. This  
is stating that when the NCP500 has good thermal  
conductivity through the PCB, the junction temperature will  
be relatively low with high power dissipation applications.  
The maximum dissipation the package can handle is  
given by:  
The QFN may be assembled using standard IR/IR  
convection SMT re−flow processes without any special  
considerations. As with other packages, the thermal profile  
for specific board locations must be determined. Nitrogen  
purge is recommended during solder for no−clean fluxes.  
The QFN is qualified for up to three re−flow cycles at 235°C  
peak (J−STD−020). The actual temperature of the QFN is a  
function of:  
Component density  
Component location on the board  
Size of surrounding components  
T
*T  
A
qJA  
J(max)  
R
PD +  
http://onsemi.com  
14  
NCP500  
ON  
OFF  
6
5
4
1
2
3
Battery or  
Unregulated  
Voltage  
V
out  
1
2
3
5
4
+
C1  
+
Battery or  
Unregulated  
Voltage  
V
out  
C2  
+
C1  
+
C2  
ON  
OFF  
Figure 27. Typical Application Circuit  
Figure 28. Typical Application Circuit  
10  
C
= 1 mF to 10 mF  
out  
UNSTABLE  
STABLE  
T = 40°C to 125°C  
A
V
in  
= up to 6.0 V  
1
0.1  
0.01  
0
25  
50  
75  
100  
125  
150  
I
O,  
Output Current (mA)  
Figure 29. Stability  
Input  
R
Input  
R1  
R2  
Q1  
Q1  
Q2  
R3  
Output  
Output  
1
2
3
5
1
2
3
5
4
1.0 mF  
1.0 mF  
1.0 mF  
1.0 mF  
4
Figure 30. Current Boost Regulator  
Figure 31. Current Boost Regulator with Short  
Circuit Limit  
The NCP500 series can be current boosted with a PNP transis-  
Short circuit current limit is essentially set by the V of Q2 and  
BE  
− ib * R2) / R1) + I  
BEQ2 O(max) Regulator  
tor. Resistor R in conjunction with V of the PNP determines  
R1. I = ((V  
BE  
SC  
when the pass transistor begins conducting; this circuit is not  
short circuit proof. Input/Output differential voltage minimum is  
increased by V of the pass resistor.  
BE  
http://onsemi.com  
15  
NCP500  
4
Input  
Output  
3
2
1
2
3
5
T = 25°C  
A
1.0 mF  
1.0 mF  
V
in  
= 3.4 V  
1
V
out  
= 2.8 V  
Enable  
0
4
5
3
2.5  
2
No Delay  
Output  
1
2
3
R = 1.0 MW  
C = 1.0 mF  
1.0 mF  
1.0 mF  
1.5  
1
R = 1.0 MW  
C = 0.1 mF  
0.5  
0
4
R
C
0
10 20 30 40 50 60 70 80 90 100 110  
Time (ms)  
Figure 32. Delayed Turn−on  
Figure 33. Delayed Turn−on  
If a delayed turn−on is needed during power up of several volt-  
ages then the above schematic can be used. Resistor R, and  
capacitor C, will delay the turn−on of the bottom regulator. A  
few values were chosen and the resulting delay can be seen in  
Figure 33.  
The graph shows the delay between the enable signal and  
output turn−on for various resistor and capacitor values.  
Input  
Q1  
Output  
5
1
2
3
1.0 mF  
R
1.0 mF  
4
5.6 V  
Figure 34. Input Voltages Greater than 6.0 V  
A regulated output can be achieved with input voltages that ex-  
ceed the 6.0 V maximum rating of the NCP500 series with the  
addition of a simple pre−regulator circuit. Care must be taken  
to prevent Q1 from overheating when the regulated output  
(V ) is shorted to G  
out  
nd.  
http://onsemi.com  
16  
 
NCP500  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCP500SN18T1  
Marking  
Package  
Shipping  
1.8  
1.85  
2.5  
2.5  
2.6  
2.7  
2.8  
2.8  
3.0  
3.3  
3.3  
5.0  
LCS  
LFL  
TSOP−5  
3000 Units/  
7Tape & Reel  
NCP500SN185T1  
NCP500SN25T1  
NCP500SN25T1G  
NCP500SN26T1  
NCP500SN27T1  
NCP500SN28T1  
NCP500SN28T1G  
NCP500SN30T1  
NCP500SN33T1  
NCP500SN33T1G  
NCP500SN50T1  
LCT  
LCT  
LFM  
LCU  
LCV  
LCV  
LCW  
LCX  
LCX  
LCY  
NCP500SQL18T1  
NCP500SQL25T1  
NCP500SQL27T1  
NCP500SQL28T1  
NCP500SQL30T1  
NCP500SQL33T1  
NCP500SQL50T1  
1.8  
2.5  
2.7  
2.8  
3.0  
3.3  
5.0  
LD  
LE  
LF  
LG  
LH  
LJ  
QFN 2x2  
3000 Units/  
7Tape & Reel  
LK  
For availability of other output voltages, please contact your local ON Semiconductor Sales Representative.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
17  
NCP500  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
PLASTIC PACKAGE  
CASE 483−02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
D
5
4
3
B
C
S
1
2
L
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
A
J
0.013 0.100 0.0005 0.0040  
0.05 (0.002)  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
H
M
K
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
THIN SOT23−5/TSOP−5/SC59−5  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
18  
NCP500  
PACKAGE DIMENSIONS  
QFN 2x2.2  
SQL SUFFIX  
PLASTIC PACKAGE  
CASE 488−03  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. 488−01 OBSOLETE. NEW STANDARD IS 488−02.  
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
2.23  
2.03  
0.93  
0.28  
MIN  
MAX  
0.088  
0.080  
0.037  
0.011  
A
B
C
D
G
H
J
2.18  
1.98  
0.88  
0.23  
0.086  
0.078  
0.035  
0.009  
TOP VIEW  
A
0.650 BSC  
0.026 BSC  
PIN 1  
0.35  
0.40  
0.10  
1.33  
0.38  
0.014  
0.016  
0.004  
0.052  
0.015  
0.05  
1.28  
0.33  
0.002  
0.050  
0.013  
C
J
L
S
S
H
G
B
L
D
U
BOTTOM VIEW  
SIDE VIEW  
http://onsemi.com  
19  
NCP500  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP500/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY