NCP5392T [ONSEMI]

2/3/4-Phase Controller with Light Load Power Saving Enhancement for CPU Applications; 2/3/ 4相控制器与轻载节能的增强CPU的应用
NCP5392T
型号: NCP5392T
厂家: ONSEMI    ONSEMI
描述:

2/3/4-Phase Controller with Light Load Power Saving Enhancement for CPU Applications
2/3/ 4相控制器与轻载节能的增强CPU的应用

控制器
文件: 总30页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5392T  
2/3/4-Phase Controller with  
Light Load Power Saving  
Enhancement for CPU  
Applications  
http://onsemi.com  
MARKING  
The NCP5392T provides up to a fourphase buck solution which  
combines differential voltage sensing, differential phase current  
sensing, and adaptive voltage positioning to provide accurately  
regulated power for Intel processors. It also receives power saving  
command (PSI) from CPU, and operates in a single phase emulation  
diode mode to obtain a high efficiency at light load. Dualedge  
pulsewidth modulation (PWM) combined with precise inductor  
current sensing provides the fastest initial response to dynamic load  
events both in power saving and normal modes. Dualedge  
multiphase modulation reduces the total bulk and ceramic output  
capacitance required therefore reducing the system cost to meet  
transient regulation specifications.  
A high performance operational error amplifier is provided to  
simplify compensation of the system. Dynamic Reference Injection  
further simplifies loop compensation by eliminating the need to  
compromise between closedloop transient response and Dynamic  
VID performance. An enhancement of normal mode and PSI mode  
operation has been achieved in NCP5392T both under heavy load  
and light load condition or the load changing.  
DIAGRAM  
1
1
40  
NCP5392T  
40 PIN QFN, 6x6  
MN SUFFIX  
AWLYYWWG  
CASE 488AR  
NCP5392T = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
*Pin 41 is the thermal pad on the bottom of the device.  
ORDERING INFORMATION  
Features  
Device  
Package  
Shipping  
Meets Intel’s VR11.1 Specifications  
Enhanced Power Saving Operation (PSI)  
Dualedge PWM for Fastest Initial Response to Transient Loading  
High Performance Operational Error Amplifier  
Internal Soft Start  
NCP5392TMNR2G* QFN40 2500/Tape & Reel  
(PbFree)  
*TemperatureRange: 0°C to 85°C  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
®
Dynamic Reference Injection (Patent #US07057381)  
DAC Range from 0.375 V to 1.6 V  
DAC Feed Forward Function (Patent Pending)  
0.5% DAC Voltage Accuracy from 1.0 V to 1.6 V  
True Differential Remote Voltage Sensing Amplifier  
PhasetoPhase Current Balancing  
“Lossless” Differential Inductor Current Sensing  
Accurate Current Monitoring (IMON)  
Differential Current Sense Amplifiers for each Phase  
Adaptive Voltage Positioning (AVP)  
Threshold Sensitive Enable Pin for VTT Sensing  
Power Good Output with Internal Delays  
Thermally Compensated Current Monitoring  
This is a PbFree Device  
Oscillator Frequency Range of 100 kHz – 1 MHz  
Latched Over Voltage Protection (OVP)  
Guaranteed Startup into PreCharged Loads  
Applications  
Desktop Processors  
©
Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
June, 2009 Rev. 0  
NCP5392T/D  
NCP5392T  
PIN CONNECTIONS  
1
2
3
4
5
6
30  
29  
28  
27  
EN  
G1  
VID0  
VID1  
VID2  
VID3  
VID4  
DRVON  
CS4  
CS4N  
CS3  
26  
25  
24  
23  
NCP5392T  
CS3N  
2/3/4PhaseBuck Controller  
7
8
(QFN40)  
VID5  
VID6  
VID7  
ROSC  
CS2  
CS2N  
CS1  
9
22  
21  
10  
CS1N  
Figure 1. NCP5392T QFN40 Pin Connections (Top View)  
http://onsemi.com  
2
NCP5392T  
VID0  
VID1  
VID2  
VID3  
VID4  
Flexible DAC  
VID5  
VID6  
VID7  
Overvoltage  
Protection  
DAC  
+
VSN  
VSP  
+
+
G1  
G2  
G3  
Diff Amp  
DIFFOUT  
Error Amp  
+
+
1.3 V  
VFB  
+
COMP  
+
VDRP  
Droop Amp  
VDFB  
2/3  
CSSUM  
+
+
CS1P  
CS1N  
+
+
Gain = 6  
Gain = 6  
CS2P  
CS2N  
+
+
CS3P  
CS3N  
+
+
Gain = 6  
Gain = 6  
+
CS4P  
CS4N  
+
G4  
+
+
Oscillator  
IMON  
ROSC  
ILIM  
DRVON  
PSI  
+
Control,  
Fault Logic  
and  
Monitor  
Circuits  
NTC  
VR_HOT  
ILimit  
EN  
12VMON  
VR_RDY  
VCC  
+
+
4.25 V  
UVLO  
GND (FLAG)  
Figure 2. NCP5392T Block Diagram  
http://onsemi.com  
3
NCP5392T  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
D1  
VTT  
C4  
C3  
BST  
DRH  
Q1  
C1  
PSI  
VCC  
OD  
IN  
RNTC1  
RT1  
34  
35  
37  
L1  
NCP5359  
2
38  
12  
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
NTC  
3
4
5
6
7
8
9
DRL  
Q2  
R2  
RS1  
IMON  
IMON  
PGND  
C2  
CS1  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
G1  
CS1P  
CS1N  
12V_FILTER  
12V_FILTER  
1
39  
40  
EN  
G2  
VR_RDY  
VR_HOT  
CS2P  
CS2N  
14  
13  
VSN  
NCP5392T  
BST  
G3  
CS3P  
CS3N  
G4  
VSP  
VCC  
OD  
IN  
RFB  
DRH  
NCP5359  
SW  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
DRL  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
PGND  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
19  
20  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
12V_FILTER  
12V_FILTER  
BST  
VCC  
OD  
IN  
DRH  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 3. Application Schematic for Four Phases  
http://onsemi.com  
4
NCP5392T  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
D1  
VTT  
C4  
C3  
BST  
DRH  
Q1  
Q2  
C1  
PSI  
VCC  
OD  
IN  
RNTC1  
RT1  
L1  
34  
35  
37  
NCP5359  
2
38  
12  
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
NTC  
3
4
5
6
7
8
9
DRL  
R2  
RS1  
CS1  
IMON  
IMON  
PGND  
C2  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
G1  
CS1P  
CS1N  
12V_FILTER  
12V_FILTER  
1
39  
40  
EN  
G2  
VR_RDY  
VR_HOT  
CS2P  
CS2N  
14  
13  
VSN  
NCP5392T  
BST  
G3  
CS3P  
CS3N  
G4  
VSP  
VCC  
OD  
IN  
RFB  
DRH  
NCP5359  
SW  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
19  
20  
DRL  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
PGND  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 4. Application Schematic for Three Phases  
http://onsemi.com  
5
NCP5392T  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
D1  
VTT  
C4  
C3  
BST  
DRH  
Q1  
Q2  
C1  
PSI  
VCC  
OD  
IN  
RNTC1  
RT1  
L1  
34  
35  
37  
NCP5359  
2
38  
12  
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
NTC  
3
4
5
6
7
8
9
DRL  
R2  
RS1  
CS1  
IMON  
IMON  
PGND  
C2  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
G1  
CS1P  
CS1N  
1
39  
40  
EN  
G2  
VR_RDY  
VR_HOT  
CS2P  
CS2N  
14  
13  
VSN  
NCP5392T  
G3  
CS3P  
CS3N  
G4  
VSP  
RFB  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
19  
20  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 5. Application Schematic for Two Phases  
http://onsemi.com  
6
NCP5392T  
PIN DESCRIPTIONS  
Pin No.  
Symbol  
EN  
Description  
1
2
Threshold sensitive input. High = startup, Low = shutdown.  
Voltage ID DAC input  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
ROSC  
3
Voltage ID DAC input  
4
Voltage ID DAC input  
5
Voltage ID DAC input  
6
Voltage ID DAC input  
7
Voltage ID DAC input  
8
Voltage ID DAC input  
9
Voltage ID DAC input  
10  
A resistance from this pin to ground programs the oscillator frequency according to f . This pin supplies a  
SW  
trimmed output voltage of 2 V.  
11  
ILIM  
Overcurrent shutdown threshold setting. Connect this pin to the ROSC pin via a resistor divider as shown in  
the Application Schematics. To disable the overcurrent feature, connect this pin directly to the ROSC pin. To  
guarantee correct operation, this pin should only be connected to the voltage generated by the ROSC pin; do  
not connect this pin to any externally generated voltages.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
IMON  
VSP  
0 mV to 900 mV analog signal proportional to the output load current. VSN referenced  
Noninverting input to the internal differential remote sense amplifier  
Inverting input to the internal differential remote sense amplifier  
Output of the differential remote sense amplifier  
Output of the error amplifier  
VSN  
DIFFOUT  
COMP  
VFB  
Compensation Amplifier Voltage feedback  
VDRP  
VDFB  
CSSUM  
CS1N  
CS1  
Voltage output signal proportional to current used for current limit and output voltage droop  
Droop Amplifier Voltage Feedback  
Inverted Sum of the Differential Current Sense inputs. Av=CSSUM/CSx = 4  
Inverting input to current sense amplifier #1  
Noninverting input to current sense amplifier #1  
Inverting input to current sense amplifier #2  
CS2N  
CS2  
Noninverting input to current sense amplifier #2  
Inverting input to current sense amplifier #3  
CS3N  
CS3  
Noninverting input to current sense amplifier #3  
Inverting input to current sense amplifier #4  
CS4N  
CS4  
Noninverting input to current sense amplifier #4  
Bidirectional Gate Drive Enable  
DRVON  
G1  
PWM output pulse to gate driver. 3level output: Low = LSFET Enabled, Mid = Diode Emulation Enabled,  
High = HSFET Enabled  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
G2  
G3  
PWM output pulse to gate driver. 3level output (see G1)  
PWM output pulse to gate driver. 3level output (see G1)  
PWM output pulse to gate driver. 3level output (see G1)  
Monitor a 12 V input through a resistor divider.  
G4  
12VMON  
VCC  
Power for the internal control circuits.  
DAC  
DAC Feed Forward Output  
PSI  
Power Saving Control. Low = single phase operation, High = normal operation.  
Threshold sensitive input for thermal monitoring  
NTC  
VR_RDY  
VR_HOT  
Open collector output. High indicates that the output is regulating  
Open collector output indicates the state of the thermal monitoring input. Low impedance output indicating a  
normal status when the voltage of NTC pin is above the specified threshold. This pin will transition to high  
impedance when the voltage of NTC pin decrease (temperature increase) below the specified threshold.  
This pin requires an external pullup resistor  
FLAG  
GND  
Power supply return (QFN Flag)  
http://onsemi.com  
7
NCP5392T  
PIN CONNECTIONS VS. PHASE COUNT  
Number of Phases  
G4  
G3  
G2  
G1  
CS4CS4N  
CS3CS3N  
CS2CS2N  
CS1CS1N  
4
Phase 4  
Out  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Phase 4 CS  
input  
Phase 3 CS  
input  
Phase 2 CS  
input  
Phase 1 CS  
input  
3
2
Tie to  
GND  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Tie to  
Phase 3 CS  
input  
Phase 2 CS  
input  
Phase 1 CS  
input  
VCCP  
Tie to  
GND  
Phase 2  
Out  
Tie to  
GND  
Phase 1  
Out  
Tie to  
VCCP  
Phase 2 CS  
input  
Tie to  
VCCP  
Phase 1 CS  
input  
MAXIMUM RATINGS  
ELECTRICAL INFORMATION  
Pin Symbol  
V
MAX  
V
MIN  
I
I
SINK  
SOURCE  
COMP  
5.5 V  
5.5 V  
0.3 V  
10 mA  
10 mA  
V
DRP  
0.3 V  
5 mA  
1 mA  
1 mA  
20 mA  
N/A  
5 mA  
1 mA  
1 mA  
20 mA  
20 mA  
10 mA  
N/A  
V+  
V–  
5.5 V  
GND – 300 mV  
GND – 300 mV  
0.3 V  
GND + 300 mV  
5.5 V  
DIFFOUT  
VR_RDY  
VCC  
5.5 V  
0.3 V  
7.0 V  
0.3 V  
N/A  
ROSC  
5.5 V  
0.3 V  
1 mA  
IMON Output  
All Other Pins  
1.1 V  
5.5 V  
0.3 V  
*All signals referenced to AGND unless otherwise noted.  
THERMAL INFORMATION  
Rating  
Symbol  
Value  
34  
Unit  
°C/W  
°C  
Thermal Characteristic, QFN Package (Note 1)  
Operating Junction Temperature Range (Note 2)  
Operating Ambient Temperature Range  
Maximum Storage Temperature Range  
Moisture Sensitivity Level, QFN Package  
R
JA  
T
J
0 to 125  
0 to +85  
55 to +150  
1
T
A
°C  
T
STG  
°C  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*The maximum package power dissipation must be observed.  
1. JESD 515 (1S2P DirectAttach Method) with 0 LFM.  
2. JESD 517 (1S2P DirectAttach Method) with 0 LFM.  
http://onsemi.com  
8
 
NCP5392T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 F)  
A
CC  
VCC  
Parameter  
ERROR AMPLIFIER  
Input Bias Current (Note 3)  
Test Conditions  
Min  
Typ  
Max  
Unit  
200  
0
200  
3
nA  
V
Noninverting Voltage Range (Note 3)  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
1.3  
V+ = V= 1.1 V  
C = 60 pF to GND,  
R = 10 Kto GND  
1.0  
1.0  
mV  
dB  
100  
L
L
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 60 pF to GND,  
L
10  
80  
5
MHz  
°
L
R = 10 Kto GND  
C = 60 pF to GND,  
L
R = 10 Kto GND  
L
V = 100 mV, G = 10 V/V,  
V/s  
in  
V
=
1
.
5
V
2
.
5
V
,
out  
C = 60 pF to GND,  
L
DC Load = 125 A to GND  
Maximum Output Voltage  
Minimum Output Voltage  
Output source current (Note 3)  
Output sink current (Note 3)  
I
I
= 2.0 mA  
3.5  
50  
V
SOURCE  
= 0.2 mA  
mV  
mA  
mA  
SINK  
V
= 3.5 V  
2
out  
V
= 1.0 V  
2
out  
DIFFERENTIAL SUMMING AMPLIFIER  
VSN Input Bias Current  
VSN Voltage = 0 V  
30  
A  
kꢂ  
VSP Input Resistance  
DRVON = Low  
DRVON = High  
1.5  
17  
VSP Input Bias Voltage  
DRVON = Low  
DRVON = High  
0.09  
0.66  
V
Input Voltage Range (Note 3)  
0.3  
3.0  
V
3 dB Bandwidth  
C = 80 pF to GND,  
L
10  
MHz  
L
R = 10 Kto GND  
Closed Loop DC Gain VS to Diffout  
Maximum Output Voltage  
VS+ to VS= 0.5 to 1.6 V  
0.98  
3.0  
1.0  
1.025  
V/V  
V
I
I
= 2 mA  
0.5  
SOURCE  
Minimum Output Voltage  
= 2 mA  
V
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
V
out  
= 3 V  
2.0  
2.0  
mA  
mA  
V
out  
= 0.5 V  
INTERNAL OFFSET VOLTAGE  
Offset Voltage to the (+) Pin of the  
Error Amp and the VDRP pin  
1.30  
V
VDROOP AMPLIFIER  
Input Bias Current (Note 3)  
Noninverting Voltage Range (Note 3)  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
200  
0
200  
3
nA  
V
1.3  
V+ = V= 1.1 V  
C = 20 pF to GND including  
4.0  
4.0  
mV  
dB  
100  
L
ESD, R = 1 kto GND  
L
Open Loop Unity Gain Bandwidth  
Slew Rate  
C = 20 pF to GND including  
10  
5
MHz  
L
ESD, R = 1 kto GND  
L
C = 20 pF to GND including  
V/s  
L
ESD, R = 1 kto GND  
L
Maximum Output Voltage  
Minimum Output Voltage  
Output source current (Note 3)  
Output sink current (Note 3)  
I
I
= 4.0 mA  
3
4
1
1
V
V
SOURCE  
= 1.0 mA  
SINK  
V
= 3.0 V  
mA  
mA  
out  
V
= 1.0 V  
out  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
9
NCP5392T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 F)  
A
CC  
VCC  
Parameter  
CSSUM AMPLIFIER  
Test Conditions  
Min  
Typ  
Max  
Unit  
Current Sense Input to CSSUM Gain  
60 mV < CS < 60 mV  
4.00  
3.88  
3.76  
V/V  
Current Sense Input to CSSUM 3 dB  
Bandwidth  
C = 10 pF to GND,  
L
4
MHz  
L
R = 10 kto GND  
Current Sense Input to CSSUM  
Output Slew Rate  
V
=
2
5
m
V
,
C
L
=
1
0
p
F
t
o
15  
3.0  
4
+15  
V/s  
mV  
V
in  
GND, Load = 1 k to 1.3 V  
Current Summing Amp Output Offset  
Voltage  
CSx – CSNx = 0, CSx = 1.1 V  
Maximum CSSUM Output Voltage  
CSx – CSxN = 0.15 V  
(All Phases) I  
= 1 mA  
SOURCE  
Minimum CSSUM Output Voltage  
CSx – CSxN = 0.066 V  
(All Phases) I = 1 mA  
0.3  
V
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
V
= 3.0 V  
= 0.3 V  
1
1
mA  
mA  
out  
V
out  
PSI (Power Saving Control, Active Low)  
Enable High Input Leakage Current  
Upper Threshold  
External 1 K Pullup to 3.3 V  
1.0  
770  
A  
mV  
mV  
mV  
V
V
V
650  
550  
100  
UPPER  
LOWER  
UPPER  
Lower Threshold  
450  
Hysteresis  
V  
LOWER  
DRVON  
Output High Voltage  
Sourcing Current for Output High  
Output Low Voltage  
Sinking Current for Output Low  
Delay Time  
Sourcing 500 A  
= 5 V  
3.0  
2.5  
4.0  
0.7  
V
mA  
V
V
CC  
Sinking 500 A  
2.5  
mA  
ns  
Propagation Delay from EN Low  
to DRVON  
10  
Rise Time  
C (PCB) = 20 pF, V = 10% to  
130  
10  
ns  
ns  
L
o
90%  
Fall Time  
C (PCB) = 20 pF, V = 10% to  
L
o
90%  
Internal Pulldown Resistance  
35  
70  
140  
2.0  
kꢂ  
V
CC  
Voltage when DRVON  
V
Output Valid  
CURRENT SENSE AMPLIFIERS  
Input Bias Current (Note 3)  
CSx = CSxN = 1.4 V  
CSx = CSxN = 1.1 V,  
0
nA  
V
Common Mode Input Voltage Range  
(Note 3)  
0.3  
2.0  
Differential Mode Input Voltage Range  
(Note 3)  
120  
120  
mV  
Input Offset Voltage  
1.0  
1.0  
6.3  
mV  
V/V  
Current Sense Input to PWM Gain  
(Note 3)  
0 V < CSx CSxN < 0.1 V,  
5.7  
6.0  
Current Sharing Offset CS1 to CSx  
All VID codes  
2.5  
2.5  
mV  
IMON  
V
DRP  
V
DRP  
to IMON Gain  
1.325 V< V  
< 1.8 V  
1.98  
2
4
2.02  
V/V  
DRP  
to IMON 3 dB Bandwidth  
C = 30 pF to GND,  
MHz  
L
R = 100 kto GND  
L
Output Referred Offset Voltage  
Minimum Output Voltage  
V
DRP  
V
DRP  
= 1.6 V, I  
= 0 mA  
SOURCE  
8
23  
38  
mV  
V
= 1.2 V, I  
= 100 A  
0.11  
SINK  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
10  
NCP5392T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 F)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
IMON  
Output source current (Note 3)  
Output sink current (Note 3)  
Maximum Clamp Voltage  
V
= 1 V  
300  
300  
A  
A  
V
out  
V
out  
= 0.3 V  
V
Voltage = 2 V,  
1.15  
DRP  
R
= 100 k  
LOAD  
OSCILLATOR  
Switching Frequency Range (Note 3)  
100  
200  
374  
800  
191  
354  
755  
1.95  
1000  
224  
kHz  
kHz  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
= 49.9 kꢂ  
= 24.9 kꢂ  
= 10 kꢂ  
Switching Frequency Accuracy 2or  
4Phase  
414  
978  
= 49.9 kꢂ  
= 24.9 kꢂ  
= 10 kꢂ  
234  
Switching Frequency Accuracy  
3Phase  
kHz  
V
434  
1000  
2.065  
R
OSC  
Output Voltage  
2.01  
MODULATORS (PWM Comparators)  
Minimum Pulse Width  
Propagation Delay  
F
= 800 KHz  
30  
10  
ns  
ns  
V
SW  
20 mV of Overdrive  
0% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain LO  
1.3  
100% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain HI  
2.3  
V
PWM Ramp Duty Cycle Matching  
PWM Phase Angle Error (Note 3)  
VR_RDY (POWER GOOD) OUTPUT  
VR_RDY Output Saturation Voltage  
VR_RDY Rise Time (Note 3)  
Between Any Two Phases  
Between Adjacent Phases  
90  
%
15  
15  
°
I
= 10 mA,  
0.4  
V
PGD  
External Pullup of 1 kto 1.25  
V, C = 45 pF, V = 10% to  
100  
150  
ns  
TOT  
o
90%  
VR_RDY Pulled up to 5 V via  
2 k, t 3 x t  
VR_RDY Output Voltage at Powerup  
(Note 3)  
1.0  
V
R(VCC)  
R(5V)  
100 s t  
20 ms  
CC  
R(V  
)
VR_RDY High – Output Leakage  
Current (Note 3)  
VR_RDY = 5.5 V via 1 K  
0.2  
A
VR_RDY Upper Threshold Voltage  
VCore Increasing, DAC = 1.3 V  
310  
270  
mV  
Below  
DAC  
VR_RDY Lower Threshold Voltage  
VCore Decreasing  
DAC = 1.3 V  
410  
370  
mV  
Below  
DAC  
VR_RDY Rising Delay  
VR_RDY Falling Delay  
VCore Increasing  
VCore Decreasing  
500  
5
s  
s  
PWM OUTPUTS  
Output High Voltage  
Mid Output Voltage  
Output Low Voltage  
Delay + Fall Time (Note 3)  
Sourcing 500 A  
Sinking 500 A  
3.0  
1.4  
1.5  
V
V
1.6  
0.7  
15  
V
C (PCB) = 50 pF,  
10  
ns  
L
V
o
=
V
t
o
G
N
D
CC  
Delay + Rise Time (Note 3)  
C (PCB) = 50 pF,  
10  
15  
ns  
L
V
o
=
G
N
D
t
o
V
CC  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
11  
NCP5392T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 F)  
A
CC  
VCC  
Parameter  
PWM OUTPUTS  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Impedance – HI or LO State  
Resistance to V (HI) or GND  
75  
CC  
(LO)  
2/3/4PhASE DETECTION  
Gate Pin Source Current  
Gate Pin Threshold Voltage  
Phase Detect Timer  
60  
210  
15  
80  
240  
20  
150  
265  
27  
A  
mV  
s  
DIGITAL SOFTSTART  
SoftStart Ramp Time  
VR11 Vboot time  
DAC = 0 to DAC = 1.1 V  
1.0  
1.5  
ms  
400  
500  
600  
s  
VID7/VR11 INPUT  
VID Upper Threshold  
VID Lower Threshold  
VID Hysteresis  
V
V
V
300  
650  
550  
100  
800  
mV  
mV  
mV  
nA  
UPPER  
LOWER  
UPPER  
V  
LOWER  
VR11 Input Bias Current (Note 3)  
200  
300  
Delay before Latching VID Change  
(VID DeSkewing) (Note 3)  
Measured from the edge of the  
200  
ns  
st  
1 VID change  
VID7 Valid Range  
3.33  
200  
V
ENABLE INPUT  
Enable High Input Leakage Current  
(Note 3)  
Pullup to 1.3 V  
nA  
VR11 Rising Threshold  
VR11 Falling Threshold  
VR11 Total Hysteresis  
Enable Delay Time  
450  
650  
550  
100  
770  
mV  
mV  
mV  
ms  
RisingFalling Threshold  
Measure Time from Enable  
Transitioning HI to when Output  
Begins  
2.5  
5.0  
CURRENT LIMIT  
I
I
I
I
I
to V  
to V  
to V  
to V  
Gain  
Between V  
V = 450 mV  
DFB  
DFB  
0.95  
1.0  
0.25  
0.33  
0.5  
1.05  
V/V  
V/V  
V/V  
V/V  
LIM  
LIM  
LIM  
LIM  
LIM  
DRP  
DRP  
DRP  
DRP  
DRP  
and V  
V  
= 650 mV  
DRP  
Gain in PSI 4 phase  
Gain in PSI 3 phase  
Gain in PSI 2 phase  
Between V  
V  
DFB  
= 450 mV  
DRP  
DFB  
and V  
V  
= 650 mV  
DRP  
Between V  
V  
DFB  
= 450 mV  
DRP  
DFB  
and V  
V  
= 650 mV  
DRP  
Between V  
V  
DFB  
= 450 mV  
DRP  
DFB  
and V  
V  
= 650 mV  
DRP  
Offset  
V
DRP  
V  
= 520 mV  
50  
0
50  
mV  
ns  
DFB  
Delay  
100  
OVERVOLTAGE PROTECTION  
VR11 Overvoltage Threshold  
DAC +150  
DAC +185  
100  
DAC +200  
mV  
mV  
VR11 PSI Overvoltage Threshold  
(Note 3)  
(1.6 V DAC)  
+150  
(1.6 V DAC)  
+200  
Delay  
ns  
UNDERVOLTAGE PROTECTION  
VCC UVLO Start Threshold  
VCC UVLO Stop Threshold  
VCC UVLO Hysteresis  
4
4.25  
4.05  
200  
4.5  
4.3  
V
V
3.8  
mV  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
12  
NCP5392T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 F)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VR_HOT  
VR_HOT Upper Voltage Threshold  
19.6 kP.U. to V , 68 kꢂ  
,
0.257  
0.316  
0.268  
0.329  
0.280  
0.343  
1.0  
V
V
CC  
NTC  
CC  
= 3740  
VR_HOT Lower Voltage Threshold  
19.6 kP.U. to VCC, 68 Kꢂ  
= 3740  
,
NTC  
CC  
VR_HOT Output Voltages at  
Powerup (Note 3)  
External Pullup resistor of 2 Kꢂ  
to 5 V, t 3 x t  
V
,
R_VCC  
R_5 V  
20 ms  
100 s t  
R_VCC  
VR_HOT Saturation Output Voltage  
0.3  
V
I
= 4 mA  
SINK  
VR_HOT Output Leakage Current  
NTC Pin Bias Current  
1
1
A  
A  
12VMON UVLO  
12VMON (High Threshold)  
12VMON (Low Threshold)  
V
V
Valid  
0.77  
0.68  
0.82  
V
V
CC  
Valid  
0.66  
CC  
DAC (FEED FORWARD FUNCTION)  
Output Source Current  
V
V
= 3 V  
0.25  
1.5  
3
mA  
mA  
V
OUT  
Output Sink Current  
= 0.3 V  
= 2 mA  
OUT  
Max Output Voltage (Note 3)  
Min Output Voltage (Note 3)  
I
I
source  
= 2 mA  
0.5  
V
sink  
VRM 11 DAC  
Positive DAC Slew Rate  
11  
16.5  
mV/s  
System Voltage Accuracy  
(DAC Value has a 19 mV Offset Over  
the Output Value)  
1.0 V < DAC < 1.6 V  
0.8 V < DAC < 1.0 V  
0.5 V < DAC < 0.8 V  
0.5  
5
8
%
mV  
mV  
V
CC  
V
CC  
Operating Current  
EN Low, No PWM  
15  
30  
mA  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
13  
 
NCP5392T  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
50 mV  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
http://onsemi.com  
14  
 
NCP5392T  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
http://onsemi.com  
15  
NCP5392T  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
http://onsemi.com  
16  
NCP5392T  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
90  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
FE  
FF  
OFF  
http://onsemi.com  
17  
NCP5392T  
FUNCTIONAL DESCRIPTION  
General  
corresponding gate output (G1, G2, G3, or G4). If a phase  
The NCP5392T provides up to fourphase buck solution  
is unused, the differential inputs to that phase’s current  
sense amplifier must be shorted together and connected to  
the output as shown in the 2and 3phase Application  
Schematics.  
The current signals sensed from inductor DCR are fed into  
a summing amplifier to have a summedup output (CSSUM).  
Signal of CSSUM combines information of total current of all  
phases in operation.  
The outputs of current sense amplifiers control three  
functions. First, the summing current signal (CCSUM) of  
all phases will go through DROOP amplifier and join the  
voltage feedback loop for output voltage positioning.  
Second, the output signal from DROOP amplifier also goes  
to ILIM amplifier to monitor the output current limit.  
Finally, the individual phase current contributes to the  
current balance of all phases by offsetting their ramp  
signals of PWM comparators.  
which combines differential voltage sensing, differential  
phase current sensing, and adaptive voltage positioning to  
provide accurately regulated power necessary for both  
Intel VR11.1 CPU power system. NCP5392T has been  
designed to work with the NCP5359 driver.  
Remote Output Sensing Amplifier(RSA)  
A true differential amplifier allows the NCP5392T to  
measure V  
ground reference point by connecting the V  
point to VSP, and the V  
This configuration keeps ground potential differences  
between the local controller ground and the V ground  
voltage feedback with respect to the V  
core  
core  
reference  
core  
ground reference point to VSN.  
core  
core  
reference point from affecting regulation of V  
between  
core  
V
core  
and V  
ground reference points. The RSA also  
core  
subtracts the DAC (minus VID offset) voltage, thereby  
producing an unamplified output error voltage at the  
DIFFOUT pin. This output also has a 1.3 V bias voltage as  
the floating ground to allow both positive and negative  
error voltages.  
Thermal Compensation Amplifier with VDRP and VDFB  
Pins  
Thermal compensation amplifier is an internal amplifier  
in the path of droop current feedback for additional  
adjustment of the gain of summing current and temperature  
compensation. The way thermal compensation is  
implemented separately ensures minimum interference to  
the voltage loop compensation network.  
Precision Programmable DAC  
A precision programmable DAC is provided and system  
trimmed. This DAC has 0.5% accuracy over the entire  
operating temperature range of the part. The DAC can be  
programmed to support Intel VR11 VID code  
specifications.  
Oscillator and Triangle Wave Generator  
A programmable precision oscillator is provided. The  
oscillators frequency is programmed by the resistance  
connected from the ROSC pin to ground. The user will  
usually form this resistance from two resistors in order to  
create a voltage divider that uses the ROSC output voltage  
as the reference for creating the current limit setpoint  
voltage. The oscillator frequency range is 100 kHz per  
phase to 1.0 MHz per phase. The oscillator generates up to  
4 symmetrical triangle waveforms with amplitude between  
1.3 V and 2.3 V. The triangle waves have a phase delay  
between them such that for 2, 3and 4phase operation  
the PWM outputs are separated by 180, 120, and 90 angular  
degrees, respectively.  
High Performance Voltage Error Amplifier  
The error amplifier is designed to provide high slew rate  
and bandwidth. Although not required when operating as the  
controller of a voltage regulator, a capacitor from COMP to  
VFB is required for stable unity gain test configurations.  
Gate Driver Outputs and 2/3/4 Phase Operation  
The part can be configured to run in 2, 3, or 4phase  
mode. In 2phase mode, phases 1 and 3 should be used to  
drive the external gate drivers as shown in the 2phase  
Applications Schematic, G2 and G4 must be grounded. In  
3phase mode, gate output G4 must be grounded as shown  
in the 3phase Applications Schematic. In 4phase mode  
all 4 gate outputs are used as shown in the 4phase  
Applications Schematic. The Current Sense inputs of  
unused channels should be connected to VCCP shown in  
the Application Schematics. Please refer to table “PIN  
CONNECTIONS vs. PHASE COUNTS” for details.  
PWM Comparators with Hysteresis  
Four PWM comparators receive an error signal at their  
noninverting input. Each comparator receives one of the  
triangle waves at its inverting output. The output of each  
comparator generates the PWM outputs G1, G2, G3, and G4.  
During steady state operation, the duty cycle will center  
on the valley of the triangle waveform, with steady state  
Differential Current Sense Amplifiers and Summing  
Amplifier  
Four differential amplifiers are provided to sense the  
output current of each phase. The inputs of each current  
sense amplifier must be connected across the current  
sensing element of the phase controlled by the  
duty cycle calculated by V /V . During a transient event,  
out in  
both high and low comparator output transitions shift phase  
to the points where the error signal intersects the down and  
up ramp of the triangle wave.  
http://onsemi.com  
18  
NCP5392T  
Power Saving Mode  
reads the VID pins to determine the DAC setting. Then  
ramps V to the final DAC setting at the Dynamic VID  
slew rate of up to 12.5 mV/S. Typical VR11 softstart  
sequences are shown in the following graphs (Figure 9 and  
10).  
Upon receiving PSI low command, the NCP5392T  
enters power saving mode with PWM signals varying  
between high and mid level to allow diode emulation. The  
device is also forced into RPM mode.  
core  
PROTECTION FEATURES  
APPLICATION INFORMATION  
The NCP5392T demo board for the NCP5392T is  
available by request. It is configured as a four phase  
solution with decoupling designed to provide a 1 mload  
line under a 100 A step load.  
Undervoltage Lockout (VCC) and 12VMON  
An undervoltage lockout (UVLO) senses the V input  
CC  
directly. 12 V UVLO senses the 12 V power supply by  
connecting it to the 12VMON pin through an appropriate  
resistor divider. During powerup, both the VCC input and  
12VMON are monitored, and the PWM outputs and the  
softstart circuit are disabled until both input voltages  
exceed the threshold voltages of their individual UVLO  
comparators. The UVLO comparators both incorporate  
hysteresis to avoid chattering. The second function of  
12VMON pin is to provide a feedforward input voltage  
information when the device works in RPM mode.  
Startup Procedure  
Start by installing the test tool software. It is best to  
power the test tool from a separate ATX power supply. The  
test tool should be set to a valid VID code of 0.5 V or above  
in order for the controller to start. Consult the VTT help  
manual for more detailed instruction.  
Step Load Testing  
The VTT tool is used to generate the d /d step load.  
i
t
Overcurrent Shutdown  
Select the dynamic loading option in the VTT test tool  
software. Set the desired step load size, frequency, duty,  
and slew rate. See Figure 6.  
A programmable overcurrent function is incorporated  
within the IC. A comparator and latch make up this  
function. The inverting input of the comparator is  
connected to the ILIM pin. The voltage at this pin sets the  
maximum output current the converter can produce. The  
ROSC pin provides a convenient and accurate reference  
voltage from which a resistor divider can create the  
overcurrent setpoint voltage. Although not actually  
disabled, tying the ILIM pin directly to the ROSC pin sets  
the limit above useful levels effectively disabling  
overcurrent shutdown. The comparator noninverting input  
is the summed current information from the VDRP minus  
offset voltage. The overcurrent latch is set when the current  
information exceeds the voltage at the ILIM pin. The  
outputs are pulled low, and the softstart is pulled low. The  
outputs will remain disabled until the V  
voltage is  
CC  
removed and reapplied, or the ENABLE input is brought  
low and then high.  
Output Overvoltage and Undervoltage Protection and  
Power Good Monitor  
Figure 6. Typical Load Step Response  
(full load, 35 A 100 A)  
An output voltage monitor is incorporated. During  
normal operation, if the output voltage is 180 mV (typical)  
over the DAC voltage, the VR_RDY goes low, the DRVON  
signal remains high, the PWM outputs are set low. The  
Dynamic VID Testing  
The VTT tool provides for VID stepping based on the  
Intel Requirements. Select the Dynamic VID option.  
Before enabling the test set the lowest VID to 0.5 V or  
greater and set the highest VID to a value that is greater than  
the lowest VID selection, then enable the test. See Figures  
7 and 8.  
outputs will remain disabled until the V  
voltage is  
CC  
removed and reapplied. During normal operation, if the  
output voltage falls more than 350 mV below the DAC  
setting, the VR_RDY pin will be set low until the output  
voltage rises.  
SoftStart  
The VR11 mode ramps V  
to 1.1 V boot voltage at a  
core  
fixed rate of 0.8 mV/S, pauses at 1.1 V for around 500 S,  
http://onsemi.com  
19  
 
NCP5392T  
Figure 9. VR11.1 Startup  
Figure 7. 1.6 V to 0.5 V Dynamic VID response  
Figure 10. VR11.1 Biased Startup  
Figure 8. Dynamic VID Settling Time Rising  
(CH1: VID1, CH2: DAC, CH3:VCCP)  
Programming the Current Limit and the Oscillator  
Frequency  
The demo board is set for an operating frequency of  
DESIGN METHODOLOGY  
Decoupling the VCC Pin on the IC  
approximately 330 kHz. The R  
pin provides a 2.0 V  
OSC  
An RC input filter is required as shown in the V pin to  
CC  
reference voltage which is divided down with a resistor  
divider and fed into the current limit pin ILIM. Then  
calculate the individual RLIM1 and RLIM2 values for the  
divider. The series resistors RLIM1 and RLIM2 sink  
current from the ILIM pin to ground. This current is  
internally mirrored into a capacitor to create an oscillator.  
The period is proportional to the resistance and frequency  
is inversely proportional to the total resistance. The total  
resistance may be estimated by Equation 1. This equation  
is valid for the individual phase frequency in both three and  
four phase mode.  
minimize supply noise on the IC. The resistor should be  
sized such that it does not generate a large voltage drop  
between 5 V supply and the IC.  
Understanding SoftStart  
The controller supports standard VR11 startup routines.  
The Vcore voltage ramps up to the 1.1 V boot voltage, with  
a pause to capture the VID code then resume ramping to  
target value based on internal slew rate limit. The initial  
ramp rate was set to be 0.8 mV/S.  
*1.1262  
(eq. 1)  
Rosc ^ 20947   FSW  
30.5 k^ 20947   330*1.1262  
http://onsemi.com  
20  
 
NCP5392T  
60  
50  
40  
30  
20  
10  
0
The current limit function is based on the total sensed  
current of all phases multiplied by a controlled gain  
(Acssum*Adrp). DCR sensed inductor current is a function  
of the winding temperature. The best approach is to set the  
maximum current limit based on expected average  
maximum temperature of the inductor windings,  
(eq. 2)  
DCRTmax + DCR25C(1 ) 0.00393 @ (Tmax * 25))  
Calculation  
Real  
100  
1000  
FreqkHz  
Figure 11. ROSC vs. Frequency  
For multiphase controller, the ripple current can be calculated as,  
(Vin * N @ Vout) @ Vout  
(eq. 3)  
(eq. 4)  
Ipp +  
L @ FSW @ Vin  
Therefore calculate the current limit voltage as below,  
V
LIMIT ^ ACSSUM @ ADRP @ DCRTmax @ (IMIN_OCP @ ) 0.5 @ Ipp)  
(Vin * N @ Vout) @ Vout  
@ ǒI  
Ǔ
V
LIMIT ^ ACSSUM @ ADRP @ DCRTmax  
MIN_OCP @ ) 0.5 @  
L @ FSW @ Vin  
In Equation 4, A  
and A  
are the gain of current summing amplifier and droop amplifier.  
CSSUM  
DRP  
Acssum  
Adrp  
RNOR  
R
and R  
are in series with R , the NTC  
ISO1  
ISO2 T2  
temperature sense resistor placed near inductor. R  
is  
SUM  
RISO1  
RSUM  
the resistor connecting between pin VDFB and pin  
CSSUM. If PSI = 1, PSI function is off, the current limit  
follows the Equation 7; if PSI = 0, the power saving mode  
will be enabled, COEpsi is a coefficient for the current  
limiting related with power saving function (PSI), the  
current limit can be calculated from Equation 8. COEpsi  
value is one over the original phase count N. Refer to the  
PSI and phase shedding section for more details.  
RISO2  
I1  
RT2  
+
I2  
I3  
I4  
+
+
OCP  
event  
Ilim  
Figure 12. ACSSUM and ADRP  
As introduced before, V  
comes from a resistor  
LIMIT  
divider connected to Rosc pin, thus,  
RLIM2  
LIM1 ) RLIM2  
(eq. 5)  
V
A
LIMIT + 2 V @  
CSSUM + *4  
@ COEpsi  
R
R
NOR @ (RISO1 ) RISO2 ) RT2  
)
A
DRP + *  
(eq. 6)  
(RNOR ) RISO1 ) RISO2 ) RT2) @ RSUM  
http://onsemi.com  
21  
 
NCP5392T  
Final Equations for the Current Limit Threshold  
Final equations are described based on two conditions: normal mode and PSI mode.  
2V@R  
LIM2  
R
)R  
(Vin * N @ Vout) @ Vout  
L @ FSW @ Vin  
LIM1  
LIM2  
ILIMIT(normal) ^  
* 0.5 @  
R
@(R  
)R  
)R  
)
T2  
)R )@R  
NOR  
ISO1  
ISO2  
4 @ (R  
@ DCR25C(1 ) 0.00393 @ (Tinductor * 25))  
@ COEpsi  
LIM2  
(eq. 7)  
)R  
)R  
T2  
NOR  
ISO1  
ISO2  
SUM  
2V@R  
LIM2  
)R  
R
(Vin * Vout) @ Vout  
L @ FSW @ Vin  
LIM1  
)
ILIMIT(PSI) ^  
* 0.5 @  
(eq. 8)  
R
@(R  
)R  
)R  
T2  
)R )@R  
NOR  
)R  
ISO1  
ISO2  
4 @ (R  
@ DCR25C(1 ) 0.00393 @ (Tinductor * 25))  
)R  
T2  
NOR  
ISO1  
ISO2  
SUM  
Inductor Current Sensing Compensation  
N is the number of phases involved in the circuit.  
The inductors on the demo board have a DCR at 25°C of  
0.6 m. Selecting the closest available values of 21.3 kꢂ  
The NCP5392T uses the inductor current sensing  
method. An RC filter is selected to cancel out the  
impedance from inductor and recover the current  
information through the inductor’s DCR. This is done by  
matching the RC time constant of the sensing filter to the  
L/DCR time constant. The first cut approach is to use a 0.1  
F capacitor for C and then solve for R.  
for R  
and 9.28 kfor R  
yields a nominal  
LIM1  
LIM2  
operating frequency of 330 kHz. Select R 1 = 1 k, R  
ISO  
ISO2  
= 1 k, R = 10 K (25°C), R  
/R  
= 2, (refer to  
T2  
NOR SUM  
application diagram). That results to an approximate  
current limit of 133 A at 100°C for a four phase operation  
and 131 A at 25°C. The total sensed current can be  
observed as a scaled voltage at the VDRP with a positive  
noload offset of approximately 1.3 V.  
(eq. 9)  
L
Rsense(T) +  
0.1 @ F @ DCR25C @ (1 ) 0.00393(T * 25))  
Because the inductor value is a function of load and  
inductor temperature final selection of R is best done  
Inductor Selection  
When using inductor current sensing it is recommended  
that the inductor does not saturate by more than 10% at  
maximum load. The inductor also must not go into hard  
saturation before current limit trips. The demo board  
includes a four phase output filter using the T448 core  
from Micrometals with 3 turns and a DCR target of 0.6 mꢂ  
@ 25°C. Smaller DCR values can be used, however,  
current sharing accuracy and droop accuracy decrease as  
DCR decreases. Use the NCP5392T design aide for  
regulation accuracy calculations for specific value of DCR.  
experimentally on the bench by monitoring the V  
pin  
droop  
and performing a step load test on the actual solution.  
http://onsemi.com  
22  
NCP5392T  
Simple Average SPICE Model  
A simple state average model shown in Figure 13 can be used to determine a stable solution and provide insight into the  
control system.  
GAIN = 1  
{2/3*4}  
E1  
+
+
Voff  
E
V3  
GAIN = {6}  
L
0
12V  
0
LBRD  
100p  
RBRD  
0.75m  
DCR  
{0.6E3/4}  
2
1
1
2
0
{185e9/4}  
12  
CCer  
CBulk  
{560e6*6}  
ESRBulk  
{7e3/6}  
{22e6*18}  
VRamp_min  
I1 = 50  
I2 = 110  
RSUM  
1k  
1.3V  
ESRCer  
{1.5e3/18}  
2
I1  
TD = 100u  
TR = 50n  
0Aac  
0Adc  
2
22p  
CDFB  
Vdrp  
RDFB  
2k  
TF = 50n  
ESLCer  
{1.5e9/18}  
Vout  
ESLBulk  
PW = 100u  
PER = 200u  
{3.5e9/6}  
1E3  
R8  
1k  
Voff  
1
1
C5  
10.6p  
RDAC CDAC  
0
0
VDAC  
50  
12n  
DC = 1.2V  
R12  
AC = 0  
5.11k  
CFB1  
680P  
CH  
RFB1  
69.8  
TRAN = PULSE  
(0 0.05 400u 5u 5u 500u 1000u)  
22p  
RFB  
RF  
2.2k  
CF  
1.8n  
R6  
0
1k  
Voff  
1E3  
R11  
1k  
Vdrp  
Voffset  
1.3V  
1k  
C4  
10.6p  
R10  
2k  
Unity Gain BW=15MHz  
1E3  
0
0
R9  
C6  
Voff  
IMON  
1k 10.6p  
Figure 13. NCP5392T Average SPICE Model  
0
Compensation and Output Filter Design  
If the required output filter and switching frequency are  
significantly different, it’s best to use the available PSPICE  
models to design the compensation and output filter from  
scratch.  
The design target for this demo board was 1.0 mup to  
2.0 MHz. The phase switching frequency is currently set to  
330 kHz. It can easily be seen that the board impedance of  
0.75 mbetween the load and the bulk capacitance has a  
large effect on the output filter. In this case the six 560 F  
bulk capacitors have an ESR of 7.0 m. Thus the bulk ESR  
plus the board impedance is 1.15 m+ 0.75 mor  
1.9 m. The actual output filter impedance does not drop  
to 1.0 muntil the ceramic breaks in at over 375 kHz. The  
controller must provide some loop gain slightly less than  
one out to a frequency in excess 300 kHz. At frequencies  
below where the bulk capacitance ESR breaks with the  
bulk capacitance, the DCDC converter must have  
sufficiently high gain to control the output impedance  
completely. Standard Type3 compensation works well  
with the NCP5392T.  
http://onsemi.com  
23  
 
NCP5392T  
Zout Open Loop  
Zout Closed Loop  
Open Loop Gain with Current Loop Closed  
Voltage Loop Compensation Gain  
80  
60  
40  
20  
0
20  
40  
60  
1mOhm  
80  
100  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency  
Figure 14. NCP5392T Circuit Frequency Response  
CH  
CF  
The goal is to compensate the system such that the  
resulting gain generates constant output impedance from  
DC up to the frequency where the ceramic takes over  
holding the impedance below 1.0 m. See the example of  
the locations of the poles and zeros that were set to optimize  
the model above.  
By matching the following equations a good set of  
starting compensation values can be found for a typical  
mixed bulk and ceramic capacitor type output filter.  
CFB1  
RFB1  
RF  
I Bias  
RFB  
+
+
Error  
Amp  
1.3 V  
Droop  
Amp  
RDRP  
RISO2  
PWM  
Comparator  
+
RNOR  
RT  
1.3 V  
RISO1  
RSUM  
Gain = 4  
1
1
+
(eq. 10)  
+
2@ CF @ RF  
2@ (RBRD ) ESRBulk) @ CBulk  
CSSUM  
Amp  
1.3 V  
(eq. 11)  
1
1
RSx  
+
+
2@ CFB1 @ (RFB1 ) RFB)  
2@ C  
@ (RBRD ) ESR  
)
Bulk  
Cer  
+
RL  
+
R
should be set to provide optimal thermal  
FB  
CSx  
Gain = 1  
compensation in conjunction with thermistor R , R  
T2  
ISO1  
and R  
. With R set to 1.0 k, R  
is usually set to  
ISO2  
FB  
FB1  
100 for maximum phase boost, and the value of RF is  
typically set to 3.0 k.  
Figure 15. Droop Injection and Thermal  
Compensation  
RDRP determines the target output impedance by the  
basic equation:  
Droop Injection and Thermal Compensation  
The VDRP signal is generated by summing the sensed  
output currents for each phase. A droop amplifier is added  
to adjust the total gain to approximately eight. VDRP is  
externally summed into the feedback network by the  
resistor RDRP. This introduces an offset which is  
proportional to the output current thereby forcing a  
controlled, resistive output impedance.  
R
FB @ DCR @ ACSSUM @ ADRP  
V
Iout  
out + Zout  
+
(eq. 12)  
RDRP  
R
FB @ DCR @ ACSSUM @ ADRP  
RDRP  
+
(eq. 13)  
Zout  
The value of the inductor’s DCR is a function of  
temperature according to the Equation 14:  
DCR (T) + DCR25C @ (1 ) 0.00393 @ (T * 25))  
(eq. 14)  
http://onsemi.com  
24  
 
NCP5392T  
Actual DCR increases by temperature, the system can be  
thermally compensated to cancel this effect to a great  
degree by adding an NTC in parallel with R to reduce  
temperature. The series resistor is split and inserted on both  
sides of the NTC to reduce noise injection into the feedback  
loop. The recommended total value for R  
plus R  
is  
NOR  
ISO1  
ISO2  
the droop gain as the temperature increases. The NTC  
device is nonlinear. Putting a resistor in series with the NTC  
helps make the device appear more linear with  
approximately 1.0 k.  
The output impedance varies with inductor temperature  
by the equation:  
R
FB @ DCR25C @ (1 ) 0.00393 @ (T * 25)) @ ACSSUM @ ADRP  
RDRP  
(eq. 15)  
Zout(T) +  
By including the NTC R and the series isolation resistors the new equation becomes:  
T2  
R
@(R  
)R  
)R  
)
T2  
)R )@R  
NOR  
ISO1  
ISO2  
R
FB @ DCR25C @ (1 ) 0.00393 @ (T * 25)) @ ACSSUM @  
(R  
)R  
)R  
T2  
NOR  
ISO1  
ISO2  
SUM  
(eq. 16)  
Zout(T) +  
RDRP  
Acssum  
Adrp  
RNOR  
The typical equation of an NTC is based on a curve fit  
Equation 17  
RISO1  
RISO2  
1
1
298  
I1  
ƪǒ  
Ǔ*ǒ Ǔƫ  
RT2  
+
273)T  
(eq. 17)  
RT2(T) + RT225C @ eꢄ  
I2  
I3  
I4  
+
RSUM  
The demo board use a 10 kNTC with a value of 3740.  
Figure 16 shows the comparison of the compensated output  
impedance and uncompensated output impedance varying  
with temperature.  
+
OCP  
event  
Ilim  
Imon  
+
0.0013  
Zout  
0.0012  
Zout(uncomp)  
Gain = 2  
0.0011  
0.001  
Figure 17. IMON Circuit  
0.0009  
0.0008  
0.0007  
0.0006  
Vimon vs. Iout  
1.05  
0.84  
0.63  
0.42  
0.21  
0
25  
45  
65  
85  
105  
Celsius  
Figure 16. Zout vs. Temperature  
IMON for Current Monitor  
Since VDRP signal reflects the current information of all  
phases. It can be fed into the IMON amplifier for current  
monitoring as shown in Figure 17. IMON amplifier has a  
fixed gain of 2 with an offset when VDRP is equal to 1.3 V,  
the internal floating reference voltage. The IMON  
amplifier will be saturated at an maximum output of 1.09 V  
therefore the total gain of current should be carefully  
considered to make the maximum load current indicated by  
the IMON output. Figure 18 shows a typical of the relation  
between IMON output and the load current.  
0
10 20 30 40 50 60 70 80 90 100  
IoutA  
Figure 18. IMON Output vs. Output Current  
Power Saving Indicator (PSI) and Phase Shedding  
VR11.1 requires the processor to provide an output  
signal to the VR controller to indicate when the processor  
is in a low power state. NCP5392T use the status of PSI pin  
to decide if there is a need to change its operating state to  
maximize efficiency at light loads. When PSI = 0, the PSI  
function will be enabled, and VR system will be running at  
a single phase power saving mode.  
The PSI signal will deassert 1 s prior to moving to a  
normal power state.  
At power saving mode, NCP5392T works with the  
NCP5359 driver to represent diode emulation mode at light  
load for further power saving.  
When system switches on PSI function, an phase  
shedding will be presented. Only one phase is active in the  
http://onsemi.com  
25  
 
NCP5392T  
emulation mode while other phases are shed. Figure 19  
impedance. The following equations can be used to find the  
temperature trip points.  
indicates a PSIon transition from a 3phase mode to a  
single phase mode. While staying stable in PSI mode, the  
PWM signal of phase 1 will vary from a midstate level  
(1.5 V typical) to high level while other phases all go to  
midstate level. Vice verse, when PSI signal goes high, the  
system will go back to the original phase mode such as  
shown in Figure 20.  
1
1
298  
ƪǒ  
Ǔ*ǒ Ǔƫ  
(eq. 18)  
273)T  
RT1(T) + RT125C @ eꢄ  
With a beta value of 3740, a 68 kNTC resistor is  
selected for RT1, RNTC1 is populated with 19.6 k.  
VR_HOT threshold is carefully selected to make sure when  
board temperature is less than 92°C.  
VCC  
RNTC1  
NTC  
VRHOT  
+
OUT  
RT1  
0.268 Vcc  
0
0
Figure 21. VRHOT Circuit  
OVP Improved Performance  
The overvoltage protection threshold is not adjustable.  
OVP protection is enabled as soon as softstart begins and  
is disabled when part is disabled. When OVP is tripped, the  
controller commands all four gate drivers to enable their  
low side MOSFETs and VR_RDY transitions low. In order  
Figure 19. PSI turns on, CH1: PWM1, CH2: PWM2,  
CH3: PWM3, CH4: PSI  
to recover from an OVP condition, V must fall below the  
CC  
UVLO threshold. See the state diagram for further details.  
The OVP circuit monitors the output of DIFFOUT. If the  
DIFFOUT signal reaches 180 mV (typical) above the  
nominal 1.3 V offset the OVP will trip and VRRDY will be  
pulled low, after eight consecutive OVP events are  
detected, all PWMs will be latched. The DIFFOUT signal  
is the difference between the output voltage and the DAC  
voltage (minus 19 mV if in VR11.1 modes) plus the 1.3 V  
internal offset. This results in the OVP tracking on the DAC  
voltage even during a dynamic change in the VID setting  
during operation.  
Figure 20. PSI turns off, CH1: PWM1, CH2: PWM2,  
CH3: PWM3, CH4: PSI  
VRHOT  
Thermal monitoring circuit consists of one sensitive  
comparator that compares the voltage on the NTC pin with  
an internal voltage reference. VR_HOT is an open drain  
type of output. In normal temperature, the voltage value on  
NTC pin is higher than the internal reference, VR_HOT  
will be low impedance. When the temperature is higher  
than certain threshold, the VR_HOT will be high  
Figure 22. VR11.1, 1.6 V OVP Event  
http://onsemi.com  
26  
 
NCP5392T  
Gate Driver and MOSFET Selection  
Board Stackup and Board Layout  
ON Semiconductor provides the NCP5359 as  
a
Close attention should be paid to the routing of the sense  
traces and control lines that propagate away from the  
controller IC. Routing should follow the demo board  
example. For further information or layout review contact  
ON Semiconductor.  
companion gate driver IC. The NCP5359 driver is  
optimized to work with a range of MOSFETs commonly  
used in CPU applications. The NCP5359 provides special  
functionality including power saving mode operation and  
is required for high performance dynamic VID operation.  
Contact your local ON Semiconductor applications  
engineer for MOSFET recommendations.  
http://onsemi.com  
27  
NCP5392T  
SYSTEM TIMING DIAGRAM  
12 V (Gate Driver)  
5 V (Controller)  
UVLO  
UVLO  
EN  
3.5 ms  
VID  
Valid VID  
DRVON  
1 s min  
1.5 ms  
500 s  
VSPVSN  
500 s  
VR_RDY  
Figure 23. Normal Startup  
12 V (Gate Driver)  
UVLO  
5 V (Controller)  
UVLO  
POR  
EN  
3.5 ms  
DRVON  
VID  
Valid VID  
1 s min  
1.5 ms  
500 s  
1 ms  
VSPVSN  
500 s  
VR_RDY  
Figure 24. Driver UVLO Limited Startup  
http://onsemi.com  
28  
NCP5392T  
1
2
3
4
5
6
7
8
185 mV  
Diffout ~ 1.3 V  
VR_RDY  
DRVON = High  
1
2
3
4
5
6
7
8
185 mV  
VSP = VID 19 mV  
Figure 25. OVP Shutdown  
I
+ 1.3  
limit  
VDRP  
VR_RDY  
DRVON  
Figure 26. NonPSI Current Limit  
http://onsemi.com  
29  
NCP5392T  
PACKAGE DIMENSIONS  
QFN40 6x6, 0.5P  
CASE 488AR01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30mm FROM TERMINAL  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
2X  
0.15  
C
0.18  
0.30  
D
D2  
E
6.00 BSC  
TOP VIEW  
2X  
0.15  
C
4.00  
4.20  
6.00 BSC  
E2  
e
L
4.00  
0.50 BSC  
0.30  
0.20  
4.20  
(A3)  
0.10  
C
C
0.50  
−−−  
A
K
40X  
0.08  
SIDE VIEW  
D2  
A1  
SOLDERING FOOTPRINT*  
SEATING  
PLANE  
C
6.30  
4.20  
L
K
40X  
11  
20  
40X  
40X  
0.65  
21  
10  
EXPOSED PAD  
1
E2  
4.20 6.30  
40X b  
1
30  
0.10  
0.05  
C
A B  
40  
31  
C
36X  
e
BOTTOM VIEW  
40X  
0.30  
36X  
0.50 PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCP5392T/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY