NCP5393AMNR2G [ONSEMI]

2/3/4-Phase Controller for CPU Applications; 2/3/ 4相位控制器的CPU应用
NCP5393AMNR2G
型号: NCP5393AMNR2G
厂家: ONSEMI    ONSEMI
描述:

2/3/4-Phase Controller for CPU Applications
2/3/ 4相位控制器的CPU应用

控制器
文件: 总24页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5393A  
Product Preview  
2/3/4-Phase Controller for  
CPU Applications  
The NCP5393A is a multiphase synchronous buck regulator  
controller designed to power the Core and Northbridge of an AMD  
microprocessor. The controller has a user configurable two, three, or  
four phase regulator for the Core and an independent single phase  
regulator to power the microprocessor Northbridge. The NCP5393A  
incorporates differential voltage sensing, differential phase current  
sensing, optional loadline voltage positioning, and programmable  
http://onsemi.com  
MARKING  
DIAGRAM  
V
DD  
and V  
offsets to provide accurately regulated power  
DDNB  
1
paralleland serialVID AMD processors. Dualedge multiphase  
modulation provides the fastest initial response to dynamic load  
events. This reduces system cost by requiring less bulk and ceramic  
output capacitance to meet transient regulation specifications.  
High performance operational error amplifiers are provided to  
NCP5393A  
AWLYYWWG  
1
48  
QFN48, 7x7  
CASE 485AJ  
simplify compensation of the V and V  
regulators. Dynamic  
DD  
DDNB  
A
= Assembly Location  
= Wafer Lot  
Reference Injection further simplifies loop compensation by  
eliminating the need to compromise between response to load  
transients and response to VID code changes.  
Features  
WL  
YY  
WW  
G
= Year  
= Work Week  
= PbFree Package  
Meets AMD’s Hybrid VR Specifications  
Up to Four V Phases  
DD  
ORDERING INFORMATION  
SinglePhase V  
Controller  
DDNB  
DualEdge PWM for Fastest Initial Response to Transient Loading  
High Performance Operational Error Amplifiers  
Internal Soft Start and Slew Rate Limiting  
Device  
Package  
Shipping  
NCP5393AMNR2G QFN48  
2500 / Tape & Reel  
(PbFree)  
Dynamic Reference Injection (Patent #US07057381)  
DAC Range from 12.5 mV to 1.55 V  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
$0.5% DAC Accuracy fro 0.8 V to 1.55 V  
V and V Offset Ranges 0 mV 800 mV  
DD  
DD  
True Differential Remote Voltage Sense Amplifiers  
PhasetoPhase I Current Balancing  
DD  
Differential Current Sense Amplifiers for Each Phase of Each Output  
“Lossless” Inductor Current Sensing for V and V  
Outputs  
Outputs  
DD  
DDNB  
Supports Load Lines (Droop) for V and V  
DD  
DDNB  
Oscillator Range of 100 kHz 1 MHz  
Tracking Over Voltage Protection  
Output Inductor DCRBased Over Current Protection for V and  
DD  
V
DDNB  
Outputs  
Guaranteed Startup into Precharged Loads  
Temperature Range: 0°C to 70°C  
This is a PbFree Device  
Applications  
Desktop Processors  
Server Processors  
HighEnd Notebook PCs  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
© Semiconductor Components Industries, LLC, 2008  
1
Publication Order Number:  
August, 2008 Rev. P0  
NCP5393A/D  
NCP5393A  
48  
1
VCCA  
GND  
VID1  
VID0  
NB_COMP  
NB_FB  
COMP  
FB  
DROOP  
VS+  
NB_DROOP  
NB_VS+  
NB_VS  
NB_OFFSET  
NB_DIFFOUT  
ROSC  
VS−  
OFFSET  
DIFFOUT  
VFIX  
12VMON  
PSI_L  
VID5  
VID4  
Figure 1. Pinout  
http://onsemi.com  
2
NCP5393A  
NB_VS+  
+
+
NB_VS−  
NB_G  
MID  
Diff Amp  
HIZ  
NB_DIFFOUT  
PWM_NB  
OVP  
VDD PSI_L  
FAULT  
+
NB_FB  
1.3 V  
+
Error Amp  
ILIMIT_NB  
NB_DRVON  
NB_COMP  
NB REGULATOR  
Fault Logic  
and  
ILIMIT_NB =  
ILIMIT_VDD/N  
(N = VDD  
NB_SRL  
NB_DAC  
NB_VS+  
NB_VS−  
NB_DROOP  
Monitor Circuits  
Gain = 1  
Droop Amplifier  
phase count)  
1.3 V  
+
NB OFFSET  
SCALING  
X
+
NB_CS  
NB_CSN  
NORMAL OPERATION  
BOOT_VID & VFIX MODES  
NB_OFFSET  
Gain = 6  
NB  
Oscillator  
NB_DAC OUT  
NB_SRL OUT  
PWRGOOD  
PWROK  
+
NB  
NB Slew  
VID0  
VID1  
VID2/SVD  
VID3/SVC  
VID4  
Rate Limit  
f
= 1.27 x f  
NB  
VDD  
PVI/SVI  
HYBRID  
INTERFACE  
VDD Slew  
Rate Limit  
VID5  
VDD_DAC OUT  
+
VDD_SRL OUT  
+
VS−  
VS+  
VDD  
PSI_L  
DIFFOUT  
Diff Amp  
NORMAL OPERATION  
X
OFFSET  
BOOT_VID & VFIX MODES  
VDD OFFSET  
SCALING  
+
1.3 V  
FB  
FLAG  
Error Amp  
COMP  
GND  
DROOP  
Gain = 1  
Droop Amplifier  
1.3 V  
VDD PSI_L  
+
+
CS1  
CS1N  
+
G1  
+
HIZ  
MID  
MID  
MID  
MID  
PWM1  
Gain = 6  
+
CS2  
CS2N  
+
G2  
G3  
G4  
+
HIZ  
HIZ  
HIZ  
PWM2  
Gain = 6  
+
CS3  
CS3N  
+
+
PMW3  
Gain = 6  
+
CS4  
CS4N  
+
+
PWM4  
Gain = 6  
VDD  
SHED  
Oscillator  
OVP  
ROSC  
+
ILIMIT_VDD  
ILIM  
DRVON  
V
REGULATOR  
Fault Logic  
3Phase  
Detection  
and  
Monitor Circuits  
DD  
ENABLE  
VCCA  
VCCB  
+
+
5V UVLO  
VDD_SRL  
VDD_DAC  
4.25V/4.05V  
12VMON  
+
VS+  
VS−  
12V UVLO  
8.5V/7.5V  
NCP5393A  
Figure 2. NCP5393A Block Diagram  
http://onsemi.com  
3
NCP5393A  
Figure 3. NCP5393A Configured for 3 + 1 Phases, with Optional Droop  
http://onsemi.com  
4
NCP5393A  
NCP5393A PIN DESCRIPTIONS  
Pin No.  
Symbol  
Description  
1
VCCA  
5 V supply pin for the NCP5393A. The V bypassing capacitance must be connected between this  
CC  
pin and GND (preferably returned to the package flag).  
2
3
4
5
GND  
COMP  
FB  
Smallsignal power supply return. This pin should be tied directly to the package flag (exposed pad).  
Output of the voltage error amplifier for the V regulator.  
DD  
Voltage error amplifier inverting input for the V regulator.  
DD  
DROOP  
Voltage output signal proportional to total current drawn from the V regulator. Used when load line  
DD  
operation (“droop”) is desired.  
6
7
8
VS+  
VS−  
Noninverting input to the differential remote sense amplifier for the V regulator.  
DD  
Inverting input to the differential remote sense amplifier for the V regulator.  
DD  
OFFSET  
Input for offset voltage to be added to the V DAC’s output voltage. Ground this pin for zero V  
DD  
DD  
offset.  
9
DIFFOUT  
VFIX  
Output of the differential remote sense amplifier for the V regulator.  
DD  
10  
When pulled low, this pin causes the levels on the SVC (VID3) and SVD (VID2) pins to be decoded  
as a twobit DAC code, which controls the V and VDDNB outputs. Internally pulled high by 5 mA to  
DD  
V
CC  
11  
12  
12VMON  
PSI_L  
UVLO monitor input for the 12 V power rail.  
Determines number of phases operating in PSI_L mode. Phase shed count is locked upon ENABLE  
assertion. After softstart, becomes power saving control in PVID mode. Low = phase shed  
operation, High = normal operation.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
CS1  
CS1N  
CS2  
Noninverting input to current sense amplifier #1 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
Inverting input to current sense amplifier #1 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Noninverting input to current sense amplifier #2 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS2N  
CS3  
Inverting input to current sense amplifier #2 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Noninverting input to current sense amplifier #3 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS3N  
CS4  
Inverting input to current sense amplifier #3 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Noninverting input to current sense amplifier #4 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS4N  
ILIM  
Inverting input to current sense amplifier #4 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Overcurrent shutdown threshold for V and VDDNB. A resistor divider from ROSC to GND is  
DD  
typically used to develop an appropriate voltage on ILIM.  
22  
23  
24  
25  
26  
27  
VCCB  
NB_CS  
NB_CSN  
VID4  
5 V supply pin. Tie this pin to VCCA (Pin 1).  
Noninverting input to the current sense amplifier for the VDDNB regulator  
Inverting input to the current sense amplifier for the VDDNB regulator  
Parallel Voltage ID DAC Input 4. Not used in SVI mode.  
Parallel Voltage ID DAC Input 5. Not used in SVI mode.  
VID5  
ROSC  
A resistance from this pin to ground programs the V and VDDNB oscillator frequencies. This pin  
supplies a trimmed output voltage of 2 V.  
DD  
28  
29  
NB_DIFFOUT  
NB_OFFSET  
Output of the differential remote sense amplifier for the VDDNB regulator.  
Input for offset voltage to be added to the VDDNB DAC’s output voltage. Ground this pin for zero  
VDDNB offset.  
30  
31  
NB_VS−  
Inverting input to the differential remote sense amplifier for the VDDNB regulator.  
NB_VS+  
Noninverting input to the differential remote sense amplifier for the VDDNB regulator.  
http://onsemi.com  
5
NCP5393A  
NCP5393A PIN DESCRIPTIONS  
Pin No.  
Symbol  
Description  
32  
NB_DROOP  
Voltage output signal proportional to total current drawn from the VDDNB regulator. Used when load  
line operation (“droop”) is desired.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
NB_FB  
NB_COMP  
VID0  
Voltage error amplifier inverting input for the V  
regulator.  
DDNB  
Output of the voltage error amplifier for the V  
regulator.  
DDNB  
Parallel Voltage ID DAC Input 0. Not used in SVI mode.  
VID1  
Parallel Voltage ID DAC Input 1. Also used for PVI or SVI mode selection.  
System power supplies status input. Used in SVI mode only.  
High = Run, Low = Standby/Reset.  
PWROK  
ENABLE  
VID3/SVC  
VID2/SVD  
PWRGOOD  
Parallel Voltage ID DAC Input 1. Also used in SVI mode.  
Parallel Voltage ID DAC Input 1. Also used in SVI mode.  
Open drain output. High indicates that the active output(s) are within specification. Internally pulled  
high by 5 mA to V  
CC  
42  
43  
NB_DRVON  
DRVON  
NB_G  
G4  
Bidirectional Gate Drive Enable to the gate driver for the V  
regulator.  
DDNB  
Bidirectional Gate Drive Enable to gate drivers for the V regulator.  
DD  
44  
PWM output to the V  
gate driver.  
DDNB  
45  
PWM output #4. See Table: “Pin Connections vs. Phase Count”  
PWM output #3. See Table: “Pin Connections vs. Phase Count”  
PWM output #2. See Table: “Pin Connections vs. Phase Count”  
PWM output #1. See Table: “Pin Connections vs. Phase Count”  
46  
G3  
47  
G2  
48  
G1  
FLAG  
PGND  
Highcurrent power supply return via metal pad (flag) underneath package. The package flag should  
be tied directly to Pin 2.  
PIN CONNECTIONS VS. PHASE COUNT  
Number of  
CS4 &  
CS4N  
CS3 &  
CS3N  
CS2 &  
CS2N  
CS1 &  
CS1N  
Phases  
G4  
G3  
G2  
G1  
4
Phase 4  
Out  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Phase 4 CS  
Input  
Phase 3 CS  
Input  
Phase 2 CS  
Input  
Phase 1 CS  
Input  
3
2
Tie to  
GND  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Tie to GND  
Phase 3 CS  
Input  
Phase 2 CS  
Input  
Phase 1 CS  
Input  
or V  
DD  
Tie to  
GND  
Phase 2  
Out  
Tie to  
GND  
Phase 1  
Out  
Tie to GND  
or V  
Phase 2 CS  
input  
Tie to GND  
Phase 1 CS  
Input  
or V  
DD  
DD  
http://onsemi.com  
6
NCP5393A  
ABSOLUTE MAXIMUM RATINGS  
ELECTRICAL INFORMATION  
Pin Symbol  
12VMON  
V
V
I
I
SINK  
MAX  
MIN  
SOURCE  
13.2 V  
7.0 V  
5.5 V  
5.5 V  
5.5 V  
5.5 V  
5.5 V  
3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
N/A  
50 mA  
10 mA  
10 mA  
5 mA  
20 mA  
10 mA  
20 mA  
1 mA  
1 mA  
N/A  
VCC  
N/A  
10 mA  
5 mA  
20 mA  
5 mA  
N/A  
COMP, NB_COMP  
DROOP, NB_DROOP  
DIFFOUT, NB_DIFFOUT  
DRVON, NB_DRVON  
PWRGOOD  
VS+, NB_VS+  
VS, NB_VS−  
ROSC  
1 mA  
1 mA  
1 mA  
N/A  
0.3 V  
5.5 V  
5.5 V  
All Other Pins  
N/A  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: All signals are referenced to GND unless noted otherwise.  
THERMAL INFORMATION  
Rating  
Symbol  
Value  
30.5  
Unit  
°C/W  
°C  
Thermal Characteristic, QFN Package (Note 1)  
Operating Junction Temperature Range (Note 2)  
Operating Ambient Temperature Range  
Maximum Storage Temperature Range  
Moisture Sensitivity Level, QFN Package  
R
q
JA  
T
J
0 to 125  
0 to 70  
55 to +150  
1
T
A
°C  
T
STG  
°C  
MSL  
* The maximum package power dissipation must be observed.  
1. JESD 515 (1S2P DirectAttach Method) with 0 LFM.  
2. JESD 517 (1S2P DirectAttach Method) with 0 LFM.  
http://onsemi.com  
7
 
NCP5393A  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIERS (V & V  
)
DD  
DDNB  
Input Bias Current  
200  
1.0  
200  
1.0  
nA  
mV  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
V+ = V= 1.3V  
C = 60 pF to GND, R = 10 kW to GND  
80  
15  
70  
dB  
L
L
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 60 pF to GND, R = 10 kW to GND  
MHz  
deg  
V/ms  
L
L
C = 60 pF to GND, R = 10 kW to GND  
L
L
DV = 100 mV, AV = 10 V/V,  
IN  
1.5 V < V  
< 2.5 V,  
5
COMP  
C = 60 pF, DC Loading = $125 mA  
L
Maximum Output Voltage  
Minimum Output Voltage  
10 mV of Overdrive, I  
10 mV of Overdrive, I  
= 2.0 mA  
3.5  
2
2
1.0  
V
V
SOURCE  
= 2.0 mA  
SINK  
Output Source Current (Note 3)  
Output Sink Current (Note 3)  
10 mV of Overdrive, V  
10 mV of Overdrive, V  
= 3.5 V  
mA  
mA  
OUT  
OUT  
= 1.0 V  
DIFFERENTIAL SUMMING AMPLIFIERS (V & V  
)
DD  
DDNB  
VSInput Bias Current  
VSVoltage at 0 V  
DRVON = Low  
DRVON = High  
DRVON = Low  
DRVON = High  
33  
1.0  
7
mA  
kW  
VS+ Input Resistance  
VS+ Input Bias Voltage  
0.37  
0.05  
V
VS+ Input Voltage Range (Note 3)  
VSInput Voltage Range (Note 3)  
3dB Bandwidth (Note 3)  
0.3  
0.3  
3.0  
0.3  
V
V
C = 80 pF to GND, R = 10 kW to GND  
L
15  
MHz  
V/V  
L
DC gain, VS+ to DIFFOUT  
VS+ to VS= 0.5 V to 2.35 V  
0.982  
1.0  
1.022  
DAC Accuracy (Measured at VS+)  
Closed Loop Measurement, Error Amplifier Inside the  
Loop.  
1.0125 V v VDAC v 1.5500 V  
0.8000 V v VDAC v 1.0000 V  
12.5 mV v VDAC v 0.8000 V  
0.5  
5  
8  
0.5  
5
8
%
mV  
mV  
Slew Rate  
DV = 100 mV, DV  
= 1.3 V1.2 V  
OUT  
10  
V/ms  
V
IN  
SOURCE  
Maximum Output Voltage  
Minimum Output Voltage  
Output source current (Note 3)  
Output sink current (Note 3)  
I
I
= 2 mA  
= 2 mA  
2.0  
0.5  
6.3  
V
SINK  
V
V
= 3 V  
2.0  
2.0  
mA  
mA  
OUT  
OUT  
= 0.5 V  
DROOP AMPLIFIERS (V & V  
)
DD  
DDNB  
Gain from Current Sense Input to  
Droop Amplifier Output  
0 mV < (CSx CSxN) < 60 mV  
5.7  
6.0  
V/V  
Droop Amplifier DC Output Voltage  
Slew Rate  
CSx = CSxN = 1.3 V  
1.3  
5.0  
V
V/ms  
V
C = 20 pF to GND, R = 1 kW to GND  
L
3.0  
L
Maximum Output Voltage  
Minimum Output Voltage  
Output Source Current (Note 3)  
Output Sink Current (Note 3)  
I = 4.0 mA  
SOURCE  
I
= 1.0 mA  
1.0  
V
SINK  
V
V
= 3.0 V  
4.0  
1.0  
mA  
mA  
OUT  
OUT  
= 1.0 V  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
8
NCP5393A  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
CURRENT SENSE AMPLIFIERS (V & V  
Test Conditions  
Min  
Typ  
Max  
Unit  
)
DDNB  
DD  
Input Bias Current  
CSx = CSxN = 1.4 V  
50  
0.3  
120  
50  
2.6  
120  
nA  
V
Common Mode Input Voltage Range  
Differential Mode Input Voltage  
Range (Note 3)  
mV  
Input Offset Voltage (Note 3)  
CSx = CSxN = 1.00 V  
1.0  
1.0  
7.0  
mV  
V/V  
Gain from Current Sense Input to  
PWM Comparator  
0 mV < (CSx CSxN) < 60 mV  
5.0  
6.0  
INTERNAL OFFSET VOLTAGE  
Voltage at Error Amplifier NonIn-  
verting Inputs  
1.3  
V
DRVON & NB_DRVON  
Output Voltage (High)  
Output Voltage (Low)  
Delay Time  
Sourcing 500 mA  
Sinking 500 mA  
Propagation Delays  
Sourcing 500 mA  
Sinking 500 mA  
3.0  
0.7  
V
V
10  
ns  
kW  
W
Active Internal Pullup Resistance  
Active Internal Pulldown Resistance  
Rise Time  
2.0  
150  
130  
15  
C (PCB) = 20 pF, DV  
L
= 10% to 90%  
= 10% to 90%  
ns  
ns  
OUT  
OUT  
Fall Time  
C (PCB) = 20 pF, DV  
L
V
PWM OSCILLATOR  
DD  
Switching Frequency Range  
100  
900  
kHz  
kHz  
Switching Frequency Accuracy  
2or 4phase  
ROSC = 49.9 kW  
ROSC = 24.9 kW  
ROSC = 10 kW  
196  
380  
803  
226  
420  
981  
Switching Frequency Accuracy  
ROSC = 49.9 kW  
ROSC = 24.9 kW  
ROSC = 10 kW  
196  
380  
803  
226  
420  
981  
kHz  
V
3phase  
ROSC Output Voltage  
10 mA IROSC 200 mA  
1.94  
2.0  
2.06  
V
PWM OSCILLATOR  
DDNB  
Switching Frequency  
1.25  
x f  
VDD  
PWM COMPARATORS (V & V  
)
DD  
DDNB  
Minimum Pulse Width (Note 3)  
Propagation Delay (Note 3)  
Magnitude of the PWM Ramp  
0% Duty Cycle  
F
= 800 kHz  
30  
10  
ns  
ns  
V
SW  
$20 mV of Overdrive  
1.0  
0.2  
COMP Voltage at which the PWM Outputs Remain  
LOW  
V
100% Duty Cycle  
COMP Voltage at which the PWM Outputs Remain  
HIGH  
1.2  
V
PWM Phase Angle Error  
Between Adjacent Phases  
15  
+15  
°
PWRGOOD OUTPUT  
PWRGOOD Output Voltage (Low)  
PWRGOOD Rise Time  
I
= 5 mA  
0.4  
V
PGD  
External Pullup of 1 kW to 5 V C  
= 10% to 90%  
= 45 pF, DV  
125  
ns  
TOTAL  
OUT  
PWRGOOD HighState Leakage  
V
= 5.25 V  
1
mA  
PWRGOOD  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
9
NCP5393A  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
PWRGOOD OUTPUT  
Test Conditions  
Min  
Typ  
Max  
Unit  
PWRGOOD Upper Threshold  
PWRGOOD Lower Threshold  
V
V
Increasing, DAC = 1.3 V (Wrt DAC)  
Decreasing, DAC = 1.3 V  
300  
350  
mV  
mV  
OUT  
OUT  
PWM OUTPUTS (V & V  
)
DD  
DDNB  
Output Voltage (High)  
Output Voltage (Mid)  
Output Voltage (Low)  
Rise and Fall Times  
Sourcing 500 mA  
3.0  
1.3  
1.5  
V
V
V
CC  
R = 4 kW to GND  
L
1.7  
0.15  
Sinking 500 mA  
V
C = 50 pF, 0.7 V to 3.0 V or 3.0 V to 0.7 V  
L
15  
ns  
mA  
W
TriState Output Leakage  
Gx = 2.5 V (x = 14 or NB)  
1.5  
1.5  
Output Impedance HIGH or LOW  
State  
Resistance to V or GND  
50  
CC  
VDD REGULATOR 2/3/4 PHASE DETECTION  
Gate Pin Source Current  
80  
250  
20  
mA  
mV  
ms  
Gate Pin Threshold Voltage  
Phase Detect Timer  
SLEW RATE LIMITERS  
SoftStart Slew Rate  
In Any Mode During SoftStart  
In Any Mode after SoftStart Completes  
0.64  
0.8  
0.96  
mV/ms  
mV/ms  
Slew Rate Limit  
3.25  
VID INPUTS (Note: In SVI Mode, VID[2] = Bidirectional “SVD’ Line and VID[3] = “SVC” Clock Input)  
VID Input Voltage (High)  
VID Input Voltage (Low)  
VID Hysteresis  
V
V
V
V
0.9  
0.6  
V
V
HIGH  
LOW  
HIGH  
V  
or V  
V  
HIGH  
100  
15  
mV  
mA  
V
LOW  
LOW  
Input Pulldown Current  
SVD Output Voltage (Low)  
ENABLE INPUT  
= 0.6 V 1.9 V  
IN  
In SVI Mode, I  
= 5 mA  
0
0.25  
SINK  
ENABLE Input Voltage (High)  
ENABLE Input Voltage (Low)  
Enable Hysteresis  
V
V
2.0  
0.8  
V
V
HIGH  
LOW  
Low High or High Low  
Internal Pullup to V  
200  
15  
mV  
mA  
Enable Input PullUp Current  
VFIXEN INPUT (ActiveLow Input)  
VFIXEN Input Voltage (High)  
VFIXEN Input Voltage (Low)  
VFIXEN Hysteresis  
CC  
V
V
0.9  
V
V
HIGH  
LOW  
0.6  
Low High or High Low  
Internal Pullup to V  
100  
15  
mV  
mA  
VFIXEN Input PullUp Current  
CC  
PSI_L (Power Saving Phase Shed and Control, Active Low) (This pin is used in PVI mode only)  
PSI_L Phase Shed Count  
Before Enable Assertion, No Phase Shedding while  
PSI_L Active. All Phases Operate in Diode Emulation  
Mode  
0.6  
V
PSI_L Phase Shed Count  
PSI_L Phase Shed Count  
PSI_L Input Voltage (High)  
PSI_L Input Voltage (Low)  
Before ENABLE Assertion, Phase Shed to 2 Phases  
Before ENABLE Assertion, Phase Shed to 1 Phase  
0.9  
1.3  
0.9  
1.1  
V
V
V
V
After SoftStart, V  
After SoftStart, V  
HIGH  
LOW  
0.6  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
10  
NCP5393A  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
PSI_L (Power Saving Phase Shed and Control, Active Low) (This pin is used in PVI mode only)  
PSI_L Hysteresis  
After SoftStart, V  
V  
or V  
V  
HIGH  
100  
mV  
HIGH  
LOW  
LOW  
CURRENT LIMIT  
Current Sense Amp to I  
Gain  
20 mV < (CSx CSxN) < 60 mV (CS inputs tied)  
5.7  
6.0  
6.3  
0.5  
2.0  
V/V  
mA  
V
LIM  
ILIM Pin Input Bias Current  
ILIM Pin Working Voltage Range  
(Note 3)  
0.2  
ILIM Offset Voltage  
Offset extrapolated to CSxCSxN = 0 V, and referred  
30  
mV  
to the ILIM pin  
Delay  
600  
1.0  
ns  
V
VDDNB Current Limit Coefficient  
= N x V  
/V  
NBILIM  
, where N = number of VDD  
NBILIM  
ILIM  
phases, and V  
is the equivalent voltage  
threshold for NB Current Limit resulting from V  
.
ILIM  
OFFSET INPUTS (V & V  
)
DD  
DDNB  
Output Offset Voltage Above VDAC  
OUTPUT OVERVOLTAGE PROTECTION (V & V  
0
800  
mV  
mV  
)
DDNB  
DD  
Over Voltage Threshold  
In normal operation, with no VID changes  
V
V
V
DAC  
+ 250  
DAC  
+ 220  
DAC  
+ 235  
VCCA UNDERVOLTAGE PROTECTION  
VCCA UVLO Start Threshold  
VCCA UVLO Stop Threshold  
VCCA UVLO Hysteresis  
INPUT SUPPLY CURRENT  
VCC Operating Current  
12VMON  
4.0  
3.8  
4.25  
4.05  
200  
4.5  
4.3  
V
V
mV  
ENABLE held Low, No PWM operation  
25  
35  
mA  
12VMON (High Threshold)  
12VMON (Low Threshold)  
12VMON Hysteresis  
8
7
8.5  
7.5  
1.0  
9
8
V
V
V
Low High or High Low  
3. Guaranteed by design. Not production tested.  
TYPICAL CHARACTERISTICS  
2.03  
1.5  
1.4  
1.3  
1.2  
2.01  
1.99  
Enable Increasing Voltage  
1.97  
1.95  
Enable Decreasing Voltage  
25  
1.1  
1.0  
0
25  
50  
75  
0
50  
75  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 1. SS Time vs. Temperature  
Figure 2. Enable Threshold Voltage vs.  
Temperature  
http://onsemi.com  
11  
 
NCP5393A  
TYPICAL CHARACTERISTICS  
26.1  
25.8  
25.5  
25.2  
24.9  
24.6  
231.1  
230.8  
230.5  
230.2  
229.9  
229.6  
24.3  
24.0  
229.3  
229.0  
0
25  
50  
75  
0
25  
50  
75  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. ICC Current vs. Temperature  
Figure 4. 2/3/4 Phase Detection Threshold vs.  
Temperature  
4.5  
4.0  
2.009  
2.008  
2.007  
2.006  
2.005  
V
Increasing Voltage  
CCP  
V
Decreasing Voltage  
CCP  
3.5  
3.0  
2.004  
2.003  
0
25  
50  
75  
0
25  
50  
75  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCCP Undervoltage Lockout  
Threshold Voltage vs. Temperature  
Figure 6. ROSC Voltage vs. Temperature  
10  
370  
360  
350  
340  
330  
PWRGOOD Upper Voltage  
9.5  
9.0  
8.5  
8.0  
V
Increasing Voltage  
CC  
V
Decreasing Voltage  
25  
CC  
7.5  
7.0  
320  
310  
PWRGOOD Lower Voltage  
0
50  
75  
0
25  
50  
75  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. 12VMON Undervoltage Lockout  
Threshold Voltage vs. Temperature  
Figure 8. PWRGOOD Voltage vs. Temperature  
http://onsemi.com  
12  
NCP5393A  
Functional Description  
General  
Gate Driver Outputs and 2/3/4 Phase Operation  
NCP5393A is a universal CPU hybrid power Controller  
compatible with both Parallel VID interface (PVI) and  
Serial VID interface (SVI) protocols for AMD Processors.  
The part can be configured to run in 2, 3, or 4phase  
mode. In 2phase mode, phases 1 and 3 should be used to  
drive the external gate drivers, G2 and G4 must be grounded.  
In 3phase mode, gate output G4 must be grounded. In  
4phase mode all 4 gate outputs are used as shown in the  
4phase Applications Schematic. The Current Sense inputs  
of unused channels should be connected to GND or to V  
Please refer to table “PIN CONNECTIONS vs. PHASE  
COUNTS” for details.  
The Controller implements  
a singlephase control  
architecture to provide the Northbridge (NB) voltage on the  
same chip. For the CORE section, programmable 2to4  
phase featuring DualEdge multiphase architecture is  
implemented. It embeds two independent controllers for  
CPU CORE and the integrated NB, each one with its set of  
protections.  
.
DD  
The NCP5393A incorporates differential voltage sensing,  
differential phase current sensing, optional loadline  
voltage positioning, and programmable VDD and VDDNB  
offsets to provide accurately regulated power paralleland  
serialVID AMD processors. Dualedge multiphase  
modulation provides the fastest initial response to dynamic  
load events.  
NCP5393A also supports V_FIX mode for board debug  
and testing. In this particular configuration the SVI bus is  
used as a static bus configuring four operative voltages  
(through SVC and SVD) for both the sections and ignoring  
any serialVID command.  
Differential Current Sense Amplifiers and Summing  
Amplifier  
Four differential amplifiers are provided to sense the  
output current of each phase. The inputs of each current  
sense amplifier must be connected across the current sensing  
element of the phase controlled by the corresponding gate  
output (G1, G2, G3, or G4). If a phase is unused, the  
differential inputs to that phase’s current sense amplifier  
must be shorted together and connected to the GND or to  
V
DD  
.
The current signals sensed from inductor DCR are fed into  
a summing amplifier to have a summedup output. The  
outputs of current sense amplifiers control three functions.  
First, the summing current signal of all phases will go  
through DROOP amplifier and join the voltage feedback  
loop for output voltage positioning. Second, the output  
signal from DROOP amplifier also goes to ILIM amplifier  
to monitor the output current limit. Finally, the individual  
phase current contributes to the current balance of all phases  
by offsetting their ramp signals of PWM comparators.  
NCP5393A is able to detect which kind of CPU is  
connected and configures itself to work as a SinglePlane  
PVI controller or DualPlane SVI controller.  
Remote Output Sensing Amplifier (RSA)  
A true differential amplifier allows the NCP5393A to  
measure Vcore voltage feedback with respect to the Vcore  
ground reference point by connecting the Vcore reference point  
to VSP, and the Vcore ground reference point to VSN. This  
configuration keeps ground potential differences between the  
local controller ground and the Vcore ground reference point  
from affecting regulation of Vcore between Vcore and Vcore  
ground reference points. The RSA also subtracts the DAC  
(minus VID offset) voltage, thereby producing an unamplified  
output error voltage at the DIFFOUT pin. This output also has  
a 1.3 V bias voltage as the floating ground to allow both  
positive and negative error voltages.  
Oscillator and Triangle Wave Generator  
The controller embeds a programmable precision  
dualOscillator: one section is used for the CORE and it is  
a multiphase programmable oscillator managing equal  
phaseshift among all phases and the other section is used  
for the NB section. The oscillator’s frequency is  
programmed by the resistance connected from the ROSC  
pin to ground. The user will usually form this resistance  
from two resistors in order to create a voltage divider that  
uses the ROSC output voltage as the reference for creating  
the current limit setpoint voltage. The oscillator frequency  
range is 100 kHz per phase to 1.0 MHz per phase. The  
oscillator generates up to 4 symmetrical triangle waveforms  
with amplitude between 1.3 V and 2.3 V. The triangle waves  
have a phase delay between them such that for 2, 3and  
4phase operation the PWM outputs are separated by 180,  
120, and 90 angular degrees, respectively.  
Precision Programmable DAC  
A precision programmable DAC is provided and system  
trimmed. This DAC has 0.5% accuracy over the entire  
operating temperature range of the part. The NCP5393A is  
a Hybrid controller which supports both a six bit parallel  
VID interface (PVI) and a seven bit serial VID interface  
(SVI). The NCP5393A allows manufacturers to build a  
motherboard that will accommodate either parallel or serial  
VID processors in the same socket.  
When the NB phase is enabled, in order to ensure that the  
VDDNB oscillator does not accidentally lock to the VDD  
oscillator, the VDDNB oscillator will freerun at a  
High Performance Voltage Error Amplifier  
The error amplifier is designed to provide high slew rate  
and bandwidth. Although not required when operating as the  
controller of a voltage regulator, a capacitor from COMP to  
VFB is required for stable unity gain test configurations.  
frequency which is nominally 1.25 ratio of f  
.
VDD  
http://onsemi.com  
13  
NCP5393A  
CPU Support  
The NCP5393A will sample the VID1 line to  
determine whether to start in SVI or PVI mode.  
PVID mode is determined when VID1 = High.  
The NCP5393A samples the voltage on the PSI_L  
pin in order to determine the desired operating  
configuration during power saving mode.  
The Boot VID is captured from decoding the  
voltages on the VID[0:5].  
NCP5393A is able to detect the CPU it is going to supply  
and configure itself to PVI or SVI mode. When in PVI mode,  
to address the CORE section the NCP5393A uses VID[5:0].  
When in SVI mode NCP5393A uses VID2 and VID3 alone  
for SVC and SVD information respectively. Whether the  
controller is controlled by the serial or parallel interface is  
determined by sampling the VID1 line at the time that the  
voltage regulator enable line is asserted; if the VID1 line is  
high when Enable is asserted, the voltage regulator starts in  
PVI mode, otherwise the voltage regulator starts in SVI  
mode.  
The NCP5393A V regulator will softstart and ramp  
DD  
to the initial Boot VID. The VDDNB regulator remains  
off (highZ output).  
PWRGOOD is asserted by the NCP5393A.  
PWROK is not used in PVID mode.  
PVI Parallel Interface  
PVI is a 6bit wide parallel interface to address the CORE  
Section reference. NB is kept in HiZ mode. Parallel mode  
operation is depicted in Figure 9. Voltage identifications for  
the 6bit AMD mode is given in Table 2.  
The normal PVI startup sequence for the NCP5393A is as  
follows:  
The NCP5393A will accept new VID codes on the  
parallel VID interface (See Table 2).  
See Figure 9 for details.  
Table 1. Metal VID/BOOT VID  
Output Voltage  
5 V is applied to the VCCA and VCCB pins to power  
PrePWROK Metal VID  
SVC  
SVD  
the NCP5393A and 12 V is applied to 12VMON.  
The NCP5393A samples the load on the G4 and G2  
pins. If these pins are tied to ground the operating mode  
will be altered from four phase mode, to three phase, or  
two phase operation.  
The system power sequence logic asserts the  
NCP5393A ENABLE pin:  
0
0
1
1
0
1
0
1
1.1 V  
1.0 V  
0.9 V  
0.8 V  
DC IN  
With ENABLE assertion, the PSI_L Phase Shed Strategy is Locked  
therefore Voltages on PSI_L must be stable prior to ENABLE assertion.  
VR TurnOn  
Command  
VR TurnOff  
Command  
VDDIO  
ENABLE  
VID[5]  
BOOT VID MSB  
VID[1] High at Rise of Enable Selects PVI Operation  
BOOT VID LSB  
PVIEN/  
VID[1]  
VID[0]  
At end of softstart, PSI_L can be asserted.  
VDD ONLY  
[NDDNB N/A]  
PWRGOOD  
PWROK IS N/A  
PWRGOOD  
DeAssertion  
Occurs on  
SoftStart is  
Complete  
Output Rises to BOOT  
VID at SS Rate  
Further VDD Transition(s)  
at Regular Slew Rate  
VR TurnOff Command  
Forces PWRGOOD Low  
Faults Only  
Figure 9. Power Up Sequences in Parallel Mode Operation  
http://onsemi.com  
14  
 
NCP5393A  
Table 2. SIXBIT PARALLEL VID CODES in PVI Modes  
SVID[5:0]  
00_0000  
00_0001  
00_0010  
00_0011  
00_0100  
00_0101  
00_0110  
00_0111  
00_1000  
00_1001  
00_1010  
00_1011  
00_1100  
00_1101  
00_1110  
00_1111  
V
(V)  
SVID[5:0]  
01_0000  
01_0001  
01_0010  
01_0011  
01_0100  
01_0101  
01_0110  
01_0111  
01_1000  
01_1001  
01_1010  
01_1011  
01_1100  
10_1101  
01_1110  
01_1111  
V
(V)  
SVID[5:0]  
10_0000  
10_0001  
10_0010  
10_0011  
10_0100  
10_0101  
10_0110  
10_0111  
10_1000  
10_1001  
10_1010  
10_1011  
10_1100  
10_1101  
10_1110  
10_1111  
V
(V)  
SVID[5:0]  
11_0000  
11_0001  
11_0010  
11_0011  
11_0100  
11_0101  
11_0110  
11_0111  
11_1000  
11_1001  
11_1010  
11_1011  
11_1100  
11_1101  
11_1110  
11_1111  
V
(V)  
OUT  
OUT  
OUT  
OUT  
1.5500  
1.5250  
1.5000  
1.4750  
1.4500  
1.4250  
1.4000  
1.3750  
1.3500  
1.3250  
1.3000  
1.2750  
1.2500  
1.2250  
1.2000  
1.1750  
1.1500  
1.1250  
1.1000  
1.0750  
1.0500  
1.0250  
1.0000  
0.9750  
0.9500  
0.9250  
0.9000  
0.8750  
0.8500  
0.8250  
0.8000  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6325  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
SVI Serial Interface  
SVI is a two wire, Clock and Data, bus that connects a  
single master (CPU) to one NCP5393A. The master initiates  
and terminates SVI transactions and drives the clock, SVC,  
and the data SVD, during a transaction. The slave receives  
the SVI transactions and acts accordingly. SVI wire protocol  
is based on fastmode I2C.  
PWROK is properitery of the SVI protocol and is  
considered at startup. The SVI mode operation is explained  
in Figure 10. The VID codes from the decoded SVI value are  
given in Table 3.  
The NCP5393A will sample the VID1 line to  
determine whether to start in SVI or PVI mode.  
SVID mode is determined when VID1 = Low.  
The NCP5393A samples the voltage on the PSI_L  
pin in order to determine the desired operating  
configuration during power saving mode.  
The Boot VID is captured from decoding the  
voltages on the VID3/SVC and VID2/SVD pins per  
Table 1 and stored.  
The NCP5393A will start the VDD and VDDNB  
regulators. Both regulators will soft start and ramp to  
the Boot VID Voltage (See Table 1).  
The normal SVI startup sequence for the NCP5393A is as  
follows:  
5 V is applied to the VCCA and VCCB pins to power  
the NCP5393A and 12 V is applied to 12VMON.  
The NCP5393A samples the load on the G4 and G2  
pins. If these pins are tied to ground the operating mode  
will be altered from four phase mode, to three phase, or  
two phase operation.  
The NCP5393A asserts PWRGOOD.  
The system asserts PWROK The system processor will  
hold the boot VID voltage for at least 10us after  
PWROK signal is asserted  
Now the NCP5393A can accept new SVID codes on  
the serial VID interface (See Table 3).  
If the system should deassert PWROK, then the  
NCP5393A will reset the Core and Northbridge VIDs  
and regulate at the Boot VID voltage.  
The system power sequence logic asserts the  
NCP5393A ENABLE pin:  
http://onsemi.com  
15  
NCP5393A  
Table 3. SEVENBIT SERIAL VID CODES for SVI Mode  
SVID[6:0]  
000_0000  
000_0001  
000_0010  
000_0011  
000_0100  
000_0101  
000_0110  
000_0111  
000_1000  
000_1001  
000_1010  
000_1011  
000_1100  
000_1101  
000_1110  
000_1111  
001_0000  
001_0001  
001_0010  
001_0011  
001_0100  
001_0101  
001_0110  
001_0111  
001_1000  
001_1001  
001_1010  
001_1011  
001_1100  
001_1101  
001_1110  
001_1111  
V
(V)  
SVID[6:0]  
010_0000  
010_0001  
010_0010  
010_0011  
010_0100  
010_0101  
010_0110  
010_0111  
010_1000  
010_1001  
010_1010  
010_1011  
010_1100  
010_1101  
010_1110  
010_1111  
011_0000  
011_0001  
011_0010  
011_0011  
011_0100  
011_0101  
011_0110  
011_0111  
011_1000  
011_1001  
011_1010  
011_1011  
011_1100  
011_1101  
011_1110  
011_1111  
V
(V)  
SVID[6:0]  
100_0000  
100_0001  
100_0010  
100_0011  
100_0100  
100_0101  
100_0110  
100_0111  
100_1000  
100_1001  
100_1010  
100_1011  
100_1100  
100_1101  
100_1110  
100_1111  
101_0000  
101_0001  
101_0010  
101_0011  
101_0100  
101_0101  
101_0110  
101_0111  
101_1000  
101_1001  
101_1010  
101_1011  
101_1100  
110_1101  
101_1110  
101_1111  
V
(V)  
SVID[6:0]  
110_0000  
110_0001  
110_0010  
110_0011  
110_0100  
110_0101  
110_0110  
110_0111  
110_1000  
110_1001  
110_1010  
110_1011  
110_1100  
110_1101  
110_1110  
110_1111  
111_0000  
111_0001  
111_0010  
111_0011  
111_0100  
111_0101  
111_0110  
111_0111  
111_1000  
111_1001  
111_1010  
111_1011  
111_1100  
111_1101  
111_1110  
111_1111  
V
(V)  
OUT  
OUT  
OUT  
OUT  
1.5500  
1.5375  
1.5250  
1.5125  
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6325  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
OFF  
OFF  
OFF  
OFF  
http://onsemi.com  
16  
NCP5393A  
DC IN  
With ENABLE assertion, the PSI_L Phase Shed Strategy is Locked therefore  
Voltages on PSI_L must be stable prior to ENABLE assertion.  
VR TurnOn  
Command  
VR TurnOff  
Command  
VDDIO  
ENABLE  
PVIEN/  
VID[1]  
VID[1] Low at Rise of Enable Selects SVI Operation  
BOOT VID MSB  
BOOT VID LSB  
SVC/  
VID[3]  
SVD/  
VID[2]  
VR TurnOff  
Command Forces  
PWRGOOD Low  
VDD and VDDNB  
PWRGOOD  
PWROK  
SoftStart is  
Complete  
Possible PWRGOOD  
DeAssertion  
CPU Can Begin  
Serial Data Xfer  
System Power Fault −  
Revert to BOOT VID  
Resume Serial  
VID Transactions  
At end of softstart, PSI_L can be asserted  
Outputs Rise to BOOT  
VID at SS Rate  
PWRGOOD DeAssertion  
Causes System PWROK  
DeAssertion  
through the SVID protocal.  
Figure 10. PowerUp Sequence in Serial Mode Operation  
Hardware Jumper Override V_FIX  
The system power sequence logic asserts the  
VFIX is an active low pin and when it is pulled low, the  
controller enters V_FIX mode.The voltage regulator can be  
powered when an external SVI bus master is not present.  
When in VFIX mode, all of the voltage regulator’s output  
voltages will be governed by the information shown in  
Table 4, regardless of the state of PWROK. VFIX mode is  
for debug only. If VFIX mode is necessary for processor  
bringup, VFIXEN, SVC, and SVD should be connected  
with jumpers to either ground or VDDIO through suitable  
pullup resistors. SVC and SVD are considered as static  
VID and the output voltage will change according to their  
status.  
NCP5393A ENABLE pin:  
The NCP5393A will sample the VID1 line to  
determine whether to start in SVI or PVI mode.  
The NCP5393A samples the voltage on the PSI_L  
pin in order to determine the desired operating  
configuration during power saving mode.  
The Boot VID is dependent on SVI or PVI mode  
startup.  
The NCP593A V regulator (and VDDNB if in SVID  
DD  
mode) will softstart and ramp to the initial Boot VID.  
VFIXEN mode is entered once VFIXEN is asserted and  
the V and VDDNB regulators will regulate to the  
DD  
VFIXEN VID.  
Table 4. SVI VFIX VID CODES (TWOBIT PARALLEL)  
VFIXEN VID is captured from decoding the voltages  
on the VID3/SVC and VID2/SVD pins per Table 4.  
If VFIXEN is asserted prior to the VID controller  
reaching the Boot VID, the VID controller will move to  
the VFIXEN VID.  
SVC  
SVD  
V
(V)  
OUT  
0
0
1
1
0
1
0
1
1.4  
1.2  
1.0  
0.8  
If VFIXEN is deasserted, the evice PORs. This occurs  
independent of ENABLE.  
The normal VFIXEN startup sequence for the NCP5393A  
is as follows:  
PWROK DeAssertion  
5 V is applied to the VCCA and VCCB pins to power  
the NCP5393A and 12 V is applied to 12VMON.  
The NCP5393A samples the load on the G4 and G2  
pins. If these pins are tied to ground the operating mode  
will be altered from four phase mode, to three phase, or  
two phase operation.  
Anytime PWROK deasserts while EN is asserted, the  
controller uses the previously stored BOOT VID and  
regulates all planes to that level performing an ontheFly  
transition to that level. PWRGOOD remains asserted in this  
process.  
http://onsemi.com  
17  
 
NCP5393A  
Power Saving Indicator (PSI_L) and Phase Shedding  
overcurrent latch is set when the current information  
exceeds the voltage at the ILIM pin. The outputs are pulled  
low, and the softstart is pulled low. The outputs will remain  
disabled until the VCC voltage is removed and reapplied, or  
the ENABLE input is brought low and then high.  
The NCP5393A handles Core perphase OverCurrent  
also. If OverCurrent is detected in a phase, then the PWM  
of that phase will be turned off. Cyclebycycle current  
limit protection is implemented for perphase OverCurrent  
in the NCP5393A. DRVON never goes low due to  
perphase current trip.  
An AMD PVID processor provides an output signal to the  
NCP5393A controller’s PSI_L input to indicate when the  
processor is in a low power state. An AMD SVID processor  
indicates PSI_L mode through the SVID protocol. The  
NCP5393A uses PSI_L assertion to maximize efficiency at  
light loads. When PSI_L is asserted, the PSI_L function will  
be enabled, and the NCP5393A will run with a reduced  
phase count. The number of phases in PSI_L mode is  
determined by the voltage level present on the PSI_L input  
upon ENABLE assertion. This detection of phase count  
applies for both PVID and SVID AMD processors. In power  
saving mode, the NCP5393A works with the NCP5359A  
driver to emulate diode conduction mode at light load for  
further power saving.  
NB Over current is handled in similar way as the global  
CORE Over current. The total output current is compared  
with Ilimit * 1.0. When Overcurrent occurs in the NB,  
NBDRVON is pulled low.  
Protection Features:  
Output Overvoltage and Undervoltage Protection and  
Power Good Monitor  
The NCP5393A handles many protection features.  
Undervoltage lockout, Over current shutdown,  
Overvoltage, Under voltage, SoftStart etc are the main  
features. All the fault responses of the NCP5393A are listed  
in Table 5.  
An output voltage monitor is incorporated. Duringnormal  
operation, if the output voltage is 250 mV over the DAC  
voltage, the PWRGOOD goes low, the DRVON signal  
remains high, the PWM outputs are set low. The outputs will  
remain disabled until the VCC voltage is removed and  
reapplied. Every time the OV is triggered it will increment  
the OV counter. If the counter reaches a count of 16 then the  
OV condition will latch into a permanent OV state. It will  
require POR or disable/enable to restart. Prior to latching if  
the OV condition goes away then normal operation will  
resume. An OV decrement counter is also incorporated. It  
consists of a freerunning clock which runs at 8x the PWM  
frequency. So essentially every 4096 PWM cycles the OV  
counter will decrement. For example, for a max PWM  
frequency of 1 MHz, the counter decrements roughly every  
4 ms and for a PWM frequency of 400 kHz, it would be  
about every 10 ms. During normal operation, if the output  
voltage falls more than 350 mV below the DAC setting, the  
PWRGOOD pin will be set low until the output voltage rises.  
Undervoltage Lockout  
An undervoltage lockout (UVLO) senses the VCC and  
VCCP input. During powerup, the input voltage to the  
controller is monitored, and the PWM outputs and the  
softstart circuit are disabled until the input voltage exceeds  
the threshold voltage of the UVLO comparator. The UVLO  
comparator incorporates hysteresis to avoid chattering,  
since VCC is likely to decrease as soon as the converter  
initiates softstart.  
Overcurrent Shutdown  
A programmable overcurrent function is incorporated  
within the IC. A comparator and latch make up this function.  
The inverting input of the comparator is connected to the  
ILIM pin. The voltage at this pin sets the maximum output  
current the converter can produce. The ROSC pin provides  
a convenient and accurate reference voltage from which a  
resistor divider can create the overcurrent setpoint voltage.  
Although not actually disabled, tying the ILIM pin directly  
to the ROSC pin sets the limit above useful levels −  
effectively disabling overcurrent shutdown. The  
comparator noninverting input is the summed current  
information from the VDRP minus offset voltage. The  
SoftStart  
The NCP5393A ramps VDD (and VDDNB in SVID  
mode) to the Boot VID at a softstart rate of 0.8 mV/ms  
typical. Upon receiving a PVID or SVID code (after  
PWROK assertion) the outputs ramp to the final DAC  
setting at the Dynamic VID slew rate of 3.25 mV/ms. Typical  
softstart sequence timing is shown in Figure 11.  
http://onsemi.com  
18  
NCP5393A  
VID  
Setting  
Boot  
Voltage  
NCP5393A Internal  
Dynamic VID Slew  
Rate 3.25 mV/ms  
NCP5393A SoftStart  
Slew Rate 0.8 mV/ms  
TIME  
Figure 11. Soft Start Sequence to VCORE  
Table 5. FAULT RESPONSES  
PWM  
DRVON  
(VDD)  
RESET  
METHOD  
OUTPUT(s)  
CONDITION  
PWRGOOD  
DRVON (NB)  
NOTES  
VDD Global  
OCP  
All to HighZ  
Latched Low  
Latched Low  
Latched Low  
Cycle  
ENABLE  
or +5 V and  
+12 V  
NB OCP  
All to HighZ  
Latched Low  
Unaffected  
Latched Low  
Latched Low  
Cycle  
ENABLE  
or +5 V and  
+12 V  
VDD  
PerPhase  
Current Limit  
Affected  
phase set to  
Low or Mid  
state  
Unaffected  
Unaffected  
Unaffected  
Unaffected  
Unaffected  
Unaffected  
May eventually cause a  
Global OCP or Output UV.  
Output OVP  
Infrequent  
Held Low for  
duration of  
OV  
Held Low for  
duration of  
OV plus  
“Infrequent” = fewer than 17  
events per 4096/Fpwm  
seconds (e.g., 4.096 ms at  
Core PWM = 1 MHz)  
500 ms  
Output OVP  
Latched Low  
Latched Low  
Cycle  
ENABLE,  
“Frequent” = 17 or more  
events per 4096/Fpwm  
seconds (e.g., 4.096 ms at  
Core PWM = 1 MHz)  
Frequent  
VCC (5 V) or  
12 VMON  
Output UV  
Monitor  
Unaffected  
Held Low for  
duration of  
UV  
Unaffected  
Unaffected  
Unaffected  
Unaffected  
Unused  
Phase of  
VDD  
Set to  
HighZ  
Unaffected  
Regulator  
VDDNB  
Disabled  
Set to  
HighZ  
Unaffected  
by NB status  
Unaffected  
Latched Low  
5 V UVLO  
All to HighZ  
Held Low  
Low until 5 V  
and 12 V are  
OK  
Low until 5 V  
and 12 V are  
OK  
Raise +5 V  
above UVLO  
Threshold  
5 V and 12 V UVLO are the  
only modes which will force  
reevaluating the phase  
count.  
12 V UVLO  
All to HighZ  
Held Low  
Low until 5 V  
and 12 V are  
OK  
Low until 5 V  
and 12 V are  
OK  
Raise +12 V  
above UVLO  
Threshold  
5 V and 12 V UVLO are the  
only modes which will force  
reevaluating the phase  
count.  
http://onsemi.com  
19  
 
NCP5393A  
Table 5. FAULT RESPONSES  
PWM  
DRVON  
RESET  
OUTPUT(s)  
(VDD)  
METHOD  
CONDITION  
PWRGOOD  
DRVON (NB)  
NOTES  
DRVON is  
Pulled Low  
by External  
Means  
Unaffected  
Held Low  
While Low a  
weak pullup  
turns on  
Unaffected  
Address  
underlying  
cause, and let  
DRVON go  
High  
VDD will try to regulate to  
0 V. DRVON low will cause  
VDD MOSFETs to turn off.  
Both VDD & VDDNB will go  
through a SS upon recovery.  
(See Notes  
³ )  
NB_DRVON  
is Pulled  
Low by  
External  
Means  
Unaffected  
Held Low  
Held Low  
Unaffected  
While Low a  
weak pullup  
turns on  
Address  
underlying  
cause, and let  
NB_DRVON  
go High  
VDDNB will try to regulate to  
0 V. With NB_DRVON Low,  
all VDDNB MOSFETs to  
turnoff. Both VDD & VDDNB  
will go through a SS upon  
recovery.  
(See Notes  
³ )  
ENABLE is  
Low  
All to HighZ  
Held Low  
Held Low  
Assert  
ENABLE High  
Cycling ENABLE does not  
cause the NCP5393A to re−  
evaluate the programmed  
number of phases  
http://onsemi.com  
20  
NCP5393A  
Programming the Current Limit and the Oscillator Frequency  
The demo board is set for an operating frequency of  
approximately 330 kHz. The ROSC pin provides a 2.0 V  
reference voltage which is divided down with a resistor  
divider and fed into the current limit pin ILIM. Calculate the  
total series resistance to set the frequency and then calculate  
the individual RLIM1 and RLIM2 values for the divider.  
The series resistors RLIM1 and RLIM2 sink current from  
the ILIM pin to ground. This current is internally mirrored  
into a capacitor to create an oscillator. The period is  
proportional to the resistance and frequency is inversely  
proportional to the total resistance. The total resistance may  
be estimated by Equation 2. This equation is valid for the  
individual phase frequency in both three and four phase  
mode.  
1.1549  
R
^ 24686   Fsw  
TOTAL  
(eq. 1)  
1.1549  
30.5 · kW ^ 24686   330  
Figure 12. ROSC vs. Frequency  
The current limit function is based on the total sensed  
current of all phases multiplied by a gain of 6. DCR sensed  
inductor current is function of the winding temperature. The  
best approach is to set the maximum current limit based on  
the expected average maximum temperature of the inductor  
windings.  
DCR  
+ DCR ·  
25C  
Tmax  
(eq. 2)  
(1 ) 0.00393 (T  
25))  
max  
Calculate the current limit voltage:  
DCR  
· Vout  
Tmax  
VinVout  
Vout  
L
(eq. 3)  
· ǒ  
Ǔ
^ 6 · ǒI  
Ǔ
V
· DCR )  
Tmax  
* (N1) ·  
ILIMIT  
MIN_OCP  
L
2 · Vin · F  
sw  
Solve for the individual resistors:  
V
· R  
TOTAL  
2 · V  
ILIMIT  
RLIM1 + R  
R  
(eq. 4)  
(eq. 5)  
(eq. 6)  
RLIM2 +  
TOTAL LIM2  
Final Equation for the Current Limit Threshold  
2 · V · RLIM2  
RLIM1)RLIM2  
ǒ
Ǔ
Vout  
· ǒ  
2 · Vin · F  
sw  
VinVout  
Vout  
Ǔ
L
I
(T  
LIMIT inductor  
) ^  
*
* (N1) ·  
L
6 · (DCR  
· (1 ) 0.00393(T  
25)))  
Inductor  
25C  
The inductors on the demo board have a DCR at 25°C of  
limit of 152 A at 100°C. The total sensed current can be  
observed as a scaled voltage at the VDRP pin added to a  
positive, noload offset of approximately 1.3 V.  
0.75 mW. Selecting the closest available values of 16.9 kW  
for RLIM1 and 13.7 kW for RLIM2 yield a nominal  
operating frequency of 330 kHz and an approximate current  
http://onsemi.com  
21  
 
NCP5393A  
OUTPUT OFFSET VOLTAGES  
External offset voltages from 0 mv to 800 mV ‘above the DAC’ can be added for the V and V  
independently.  
DD  
DD_NB  
Offset is set by a resistor divider from V to GND. Output offsets are ratiometric to V . As V changes, the onchip scaling  
CC  
CC  
CC  
factors change by the same amount:  
Offset = 0.8 V x V  
/V  
OFFSET CC  
For example: For 0 V offset: pin voltage = GND; For 800 mV offset: pin voltage = V  
CC  
Minimum Voffset_IN  
(as Vin/Vcc)  
Typical Voffset_IN  
(as Vin/Vcc)  
Maximum Voffset_IN  
(as Vin/Vcc)  
Resulting Output Offset  
Units  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
0
0
0.046875  
0.078125  
0.109375  
0.140625  
0.171875  
0.203125  
0.234375  
0.265625  
0.296875  
0.328125  
0.359375  
0.390625  
0.421875  
0.453125  
0.484375  
0.515625  
0.546875  
0.578125  
0.609375  
0.640625  
0.671875  
0.703125  
0.734375  
0.765625  
0.796875  
0.828125  
0.859375  
0.890625  
0.921875  
0.953125  
0.984375  
Vcc+0.3V  
0
0.046875  
0.078125  
0.109375  
0.140625  
0.171875  
0.203125  
0.234375  
0.265625  
0.296875  
0.328125  
0.359375  
0.390625  
0.421875  
0.453125  
0.484375  
0.515625  
0.546875  
0.578125  
0.609375  
0.640625  
0.671875  
0.703125  
0.734375  
0.765625  
0.796875  
0.828125  
0.859375  
0.890625  
0.921875  
0.953125  
0.984375  
0.06250  
0.09375  
0.12500  
0.15625  
0.18750  
0.21875  
0.25000  
0.28125  
0.31250  
0.34375  
0.37500  
0.40625  
0.43750  
0.46875  
0.50000  
0.53125  
0.56250  
0.59375  
0.62500  
0.65625  
0.68750  
0.71875  
0.75000  
0.78125  
0.81250  
0.84375  
0.87500  
0.90625  
0.93750  
0.96875  
1.00000  
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
400  
425  
450  
475  
500  
525  
550  
575  
600  
625  
650  
675  
700  
725  
750  
800  
The input to the OFFSET pin for the VDD output is encoded by an internal ADC.  
The input to the NB_OFFSET pin for the VDDNB output is encoded by the same ADC.  
The reference for this ADC is VCC. The ADC’s output is ratiometric to VCC.  
Voffset IN represents the voltage applied to the OFFSET or NB_OFFSET pin.  
It is intended that these voltages be derived by a resistive divider from Vcc.  
The recommended total driving impedance is <10 kilohms.  
http://onsemi.com  
22  
NCP5393A  
In some modes, significant offset above VDAC could cause unpredictable results, or be harmful. The NCP5393A avoids such  
modes.  
MODE  
PVI (SoftStart)  
PVI (Normal Operation)  
SVI (SoftStart)  
SVI (Boot VID)  
VDD OFFSET  
NB OFFSET  
N/A  
NOTES  
SoftStart is to Boot VID; NB is OFF  
Open it up for testing and gaming.  
SoftStart is to Boot VID; NB is ON  
Boot VID is AMD’s startup value  
Open it up for testing and gaming.  
VFIX is a special test mode  
NO  
YES  
NO  
N/A  
NO  
NO  
NO  
SVI (Normal Operation)  
VFIX  
YES  
NO  
YES  
NO  
http://onsemi.com  
23  
NCP5393A  
PACKAGE DIMENSIONS  
QFN48 7x7, 0.5P  
CASE 485AJ01  
ISSUE O  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO THE PLATED  
TERMINAL AND IS MEASURED ABETWEEN  
0.15 AND 0.30 MM FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
LOCATION  
MILLIMETERS  
E
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
2X  
L
A3  
b
0.20 REF  
0.15  
C
0.20  
0.30  
D
7.00 BSC  
DETAIL A  
OPTIONAL CONSTRUCTION  
2X SCALE  
D2 5.00  
E
E2 5.00  
5.20  
5.20  
2X  
7.00 BSC  
0.15  
C
C
TOP VIEW  
e
K
L
0.50 BSC  
0.20  
0.30  
−−−  
0.50  
(A3)  
0.05  
0.08  
A
SOLDERING FOOTPRINT*  
C
A1  
2X  
5.20  
NOTE 4  
SEATING  
PLANE  
C
SIDE VIEW  
D2  
DETAIL A  
1
K
13  
25  
12  
2X  
7.30  
48X  
0.63  
E2  
48X  
0.50 PITCH  
0.30  
1
36  
DIMENSIONS: MILLIMETERS  
48  
37  
48X  
b
0.10 C A B  
e
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
48X  
L
e/2  
NOTE 3  
C
0.05  
BOTTOM VIEW  
The products described herein (NCP5393A), may be covered by one or more of the following U.S. patents, #US07057381. There may be other patents  
pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent  
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an  
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP5393A/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY