NCP5393 [ONSEMI]

2/3/4-Phase Controller for CPU Applications; 2/3/ 4相位控制器的CPU应用
NCP5393
型号: NCP5393
厂家: ONSEMI    ONSEMI
描述:

2/3/4-Phase Controller for CPU Applications
2/3/ 4相位控制器的CPU应用

控制器
文件: 总21页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5393  
2/3/4-Phase Controller for  
CPU Applications  
The NCP5393 controls up to four V  
phases and one V  
DDNB  
DD  
phase to provide a buck regulator solution for current and  
next-generation AMD processors. The NCP5393 incorporates  
differential voltage sensing, differential phase current sensing,  
http://onsemi.com  
optional load-line voltage positioning, and programmable V and  
V
DD  
offsets to provide accurately regulated power parallel- and  
DDNB  
MARKING  
DIAGRAM  
serial-VID AMD processors. Dual-edge multiphase modulation  
provides the fastest initial response to dynamic load events. This  
reduces system cost by requiring less bulk and ceramic output  
capacitance to meet transient regulation specifications.  
1
High performance operational error amplifiers are provided to  
regulators. Dynamic  
NCP5393  
AWLYYWWG  
simplify compensation of the V and V  
DD  
DDNB  
1
48  
Reference Injection further simplifies loop compensation by  
eliminating the need to compromise between response to load  
transients and response to VID code changes.  
QFN48, 7x7  
CASE 485AJ  
A
= Assembly Location  
= Wafer Lot  
= Year  
Features  
WL  
YY  
WW  
G
ꢀMeets AMD's Parallel, Serial (SVI) and Hybrid VR Specifications  
= Work Week  
= Pb-Free Package  
ꢀUp to Four V Phases  
DD  
ꢀSingle-Phase V  
Controller  
DDNB  
ꢀDual-Edge PWM for Fastest Initial Response to Transient Loading  
ꢀHigh Performance Operational Error Amplifiers  
ꢀInternal Soft Start and Slew Rate Limiting  
ORDERING INFORMATION  
Device  
NCP5393MNR2G  
Package  
Shipping  
ꢀDynamic Reference Injection (Patent #US07057381)  
ꢀDAC Range from 12.5 mV to 1.55 V  
QFN48  
(Pb-Free)  
2500 / Tape & Reel  
$0.5% DAC Accuracy fro 0.8 V to 1.55 V  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
ꢀV and V Offset Ranges 0 mV - 800 mV  
DD  
DD  
ꢀTrue Differential Remote Voltage Sense Amplifiers  
ꢀPhase-to-Phase I Current Balancing  
DD  
ꢀDifferential Current Sense Amplifiers for Each Phase of Each Output  
ꢀ“Lossless” Inductor Current Sensing for V and V  
Outputs  
DD  
DDNB  
ꢀSupports Load Lines (Droop) for V and V  
Outputs  
DD  
DDNB  
ꢀOscillator Range of 100 kHz - 1 MHz  
ꢀTracking Over Voltage Protection  
ꢀOutput Inductor DCR-Based Over Current Protection for V and  
DD  
V
DDNB  
Outputs  
ꢀGuaranteed Startup into Precharged Loads  
ꢀTemperature Range: 0°C to 70°C  
ꢀThis is a Pb-Free Device*  
Applications  
ꢀDesktop Processors  
ꢀServer Processors  
ꢀHigh-End Notebook PCs  
*For additional information on our Pb-Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©ꢀ Semiconductor Components Industries, LLC, 2008  
February, 2008 - Rev. 0  
1
Publication Order Number:  
NCP5393/D  
NCP5393  
48  
1
VCCA  
GND  
VID1  
VID0  
NB_COMP  
NB_FB  
COMP  
FB  
DROOP  
VS+  
VS-  
NB_DROOP  
NB_VS+  
NB_VS-  
NB_OFFSET  
NB_DIFFOUT  
ROSC  
OFFSET  
DIFFOUT  
VFIX  
12VMON  
PSI_L  
VID5  
VID4  
Figure 1. Pinout  
http://onsemi.com  
2
NCP5393  
NB_VS+  
NB_VS-  
-
+
+
-
NB_G  
HI-Z  
MID  
Diff Amp  
NB_DIFFOUT  
PWM_NB  
OVP  
FAULT VDD PSI_L  
1.3 V  
+
-
NB_FB  
+
-
Error Amp  
ILIMIT_NB  
NB_DRVON  
NB_COMP  
NB_DROOP  
NB REGULATOR  
Fault Logic  
and  
ILIMIT_NB =  
ILIMIT_VDD/N  
(N = VDD  
NB_SRL  
NB_DAC  
NB_VS+  
Monitor Circuits  
Gain = 1  
Droop Amplifier  
phase count) NB_VS-  
1.3 V  
+
NB OFFSET  
SCALING  
X
NB_CS  
NB_CSN  
+
-
Gain  
= 6  
NORMAL OPERATION  
NB_OFFSET  
BOOT_VID & VFIX MODES  
NB  
NB_DAC OUT  
Oscillator  
PWRGOOD  
PWROK  
NB_SRL  
OUT  
+
NB  
NB Slew  
Rate Lim‐  
it  
VID0  
f
= 1.27 x f  
NB  
VDD  
PVI/SVI  
HYBRID  
VID1  
VID2/SVD  
VID3/SVC  
VID4  
INTERFACE  
VDD Slew  
Rate Limit  
VID5  
VDD_DAC OUT  
+
VDD_SRL OUT  
VS-  
VS+  
-
+
VDD  
PSI_L  
DIFFOUT  
Diff Amp  
NORMAL OPERATION  
X
OFFSET  
BOOT_VID & VFIX MODES  
VDD OFFSET  
SCALING  
1.3 V  
+
FB  
FLAG  
-
Error Amp  
COMP  
GND  
DROOP  
Gain = 1  
1.3 V  
VDD PSI_L  
Droop Amplifier  
+
+
CS1  
CS1N  
+
G1  
+
-
PWM1  
-
Gain = 6  
HI-Z  
HI-Z  
HI-Z  
MID  
MID  
+
CS2  
CS2N  
+
G2  
G3  
G4  
+
-
PWM2  
-
Gain = 6  
+
CS3  
CS3N  
+
+
-
PMW3  
-
Gain = 6  
MID  
MID  
+
CS4  
CS4N  
+
-
+
-
PWM4  
HI-Z  
Gain = 6  
VDD  
SHED  
FAULT  
4OFF  
Oscillator  
OVP  
ROSC  
ILIM  
+
-
ILIMIT_VDD  
DRVON  
V
REGULATOR  
DD  
ENABLE  
VCCA  
Fault Logic  
3-Phase  
+
-
Detection  
and  
5V UVLO  
4.25V/4.05V  
VDD_SRL  
Monitor Circuits  
VDD_DAC  
VS+  
VS-  
12VMON  
+
-
12V UVLO  
NCP5393  
8.5V/7.5V  
Figure 2. NCP5393 Block Diagram  
http://onsemi.com  
3
NCP5393  
Figure 3. NCP5393 Configured for 3 + 1 Phases, with Optional Droop  
http://onsemi.com  
4
NCP5393  
NCP5393 PIN DESCRIPTIONS  
Pin No.  
Symbol  
Description  
1
VCCA  
5 V supply pin for the NCP5393. The V bypassing capacitance must be connected between this  
CC  
pin and GND (preferably returned to the package flag).  
2
3
4
5
GND  
COMP  
FB  
Small-signal power supply return. This pin should be tied directly to the package flag (exposed pad).  
Output of the voltage error amplifier for the V regulator.  
DD  
Voltage error amplifier inverting input for the V regulator.  
DD  
DROOP  
Voltage output signal proportional to total current drawn from the V regulator. Used when load line  
DD  
operation (“droop”) is desired.  
6
7
8
VS+  
VS-  
Non-inverting input to the differential remote sense amplifier for the V regulator.  
DD  
Inverting input to the differential remote sense amplifier for the V regulator.  
DD  
OFFSET  
Input for offset voltage to be added to the V DAC's output voltage. Ground this pin for zero V  
DD  
DD  
offset.  
9
DIFFOUT  
VFIX  
Output of the differential remote sense amplifier for the V regulator.  
DD  
10  
When pulled low, this pin causes the levels on the SVC (VID3) and SVD (VID2) pins to be decoded  
as a two-bit DAC code, which controls the V and VDDNB outputs.  
DD  
11  
12  
12VMON  
PSI_L  
UVLO monitor input for the 12 V power rail.  
Power Saving Control. Low = single phase operation, High = normal operation. This pin is not used in  
SVI mode.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
CS1  
CS1N  
CS2  
Non-inverting input to current sense amplifier #1 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
Inverting input to current sense amplifier #1 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Non-inverting input to current sense amplifier #2 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS2N  
CS3  
Inverting input to current sense amplifier #2 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Non-inverting input to current sense amplifier #3 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS3N  
CS4  
Inverting input to current sense amplifier #3 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Non-inverting input to current sense amplifier #4 for the V regulator. See Table: “Pin Connections  
DD  
vs. Phase Count”  
CS4N  
ILIM  
Inverting input to current sense amplifier #4 for the V regulator. See Table: “Pin Connections vs.  
DD  
Phase Count”  
Overcurrent shutdown threshold for V and VDDNB. A resistor divider from ROSC to GND is typic‐  
DD  
ally used to develop an appropriate voltage on ILIM.  
22  
23  
24  
25  
26  
27  
VCCB  
NB_CS  
NB_CSN  
VID4  
5 V supply pin. Tie this pin to VCCA (Pin 1).  
Non-inverting input to the current sense amplifier for the VDDNB regulator  
Inverting input to the current sense amplifier for the VDDNB regulator  
Parallel Voltage ID DAC Input 4. Not used in SVI mode.  
Parallel Voltage ID DAC Input 5. Not used in SVI mode.  
VID5  
ROSC  
A resistance from this pin to ground programs the V and VDDNB oscillator frequencies. This pin  
DD  
supplies a trimmed output voltage of 2 V.  
28  
29  
NB_DIFFOUT  
NB_OFFSET  
Output of the differential remote sense amplifier for the VDDNB regulator.  
Input for offset voltage to be added to the VDDNB DAC's output voltage. Ground this pin for zero  
VDDNB offset.  
30  
31  
NB_VS-  
NB_VS+  
Inverting input to the differential remote sense amplifier for the VDDNB regulator.  
Non-inverting input to the differential remote sense amplifier for the VDDNB regulator.  
http://onsemi.com  
5
NCP5393  
NCP5393 PIN DESCRIPTIONS  
Pin No.  
Symbol  
Description  
32  
NB_DROOP  
Voltage output signal proportional to total current drawn from the VDDNB regulator. Used when load  
line operation (“droop”) is desired.  
33  
34  
NB_FB  
NB_COMP  
VID0  
Voltage error amplifier inverting input for the V  
regulator.  
DDNB  
Output of the voltage error amplifier for the V  
regulator.  
DDNB  
35  
Parallel Voltage ID DAC Input 0. Not used in SVI mode.  
Parallel Voltage ID DAC Input 1. Also used for PVI or SVI mode selection.  
System power supplies status input. Used in SVI mode only.  
High = Run, Low = Standby/Reset.  
36  
VID1  
37  
PWROK  
ENABLE  
VID3/SVC  
VID2/SVD  
PWRGOOD  
NB_DRVON  
DRVON  
NB_G  
38  
39  
Parallel Voltage ID DAC Input 1. Also used in SVI mode.  
Parallel Voltage ID DAC Input 1. Also used in SVI mode.  
Open drain output. High indicates that the active output(s) are within specification.  
40  
41  
42  
Bidirectional Gate Drive Enable to the gate driver for the V  
regulator.  
DDNB  
43  
Bidirectional Gate Drive Enable to gate drivers for the V regulator.  
DD  
44  
PWM output to the V  
gate driver.  
DDNB  
45  
G4  
PWM output #4. See Table: “Pin Connections vs. Phase Count”  
PWM output #3. See Table: “Pin Connections vs. Phase Count”  
PWM output #2. See Table: “Pin Connections vs. Phase Count”  
PWM output #1. See Table: “Pin Connections vs. Phase Count”  
46  
G3  
47  
G2  
48  
G1  
FLAG  
PGND  
High-current power supply return via metal pad (flag) underneath package. The package flag should  
be tied directly to Pin 2.  
PIN CONNECTIONS VS. PHASE COUNT  
Number of  
Phases  
CS4 &  
CS4N  
CS3 &  
CS3N  
CS2 &  
CS2N  
CS1 &  
CS1N  
G4  
G3  
G2  
G1  
4
Phase 4  
Out  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Phase 4 CS  
Input  
Phase 3 CS  
Input  
Phase 2 CS  
Input  
Phase 1 CS  
Input  
3
2
Tie to  
GND  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Tie to GND  
Phase 3 CS  
Input  
Phase 2 CS  
Input  
Phase 1 CS  
Input  
Tie to  
GND  
Phase 2  
Out  
Tie to  
GND  
Phase 1  
Out  
Tie to GND  
Phase 2 CS  
input  
Tie to GND  
Phase 1 CS  
Input  
http://onsemi.com  
6
NCP5393  
ABSOLUTE MAXIMUM RATINGS  
ELECTRICAL INFORMATION  
Pin Symbol  
12VMON  
V
V
I
I
SINK  
MAX  
MIN  
SOURCE  
13.2 V  
7.0 V  
5.5 V  
5.5 V  
5.5 V  
5.5 V  
5.5 V  
3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
N/A  
50 mA  
10 mA  
10 mA  
5 mA  
20 mA  
10 mA  
20 mA  
1 mA  
1 mA  
N/A  
VCC  
N/A  
10 mA  
5 mA  
20 mA  
5 mA  
N/A  
COMP, NB_COMP  
DROOP, NB_DROOP  
DIFFOUT, NB_DIFFOUT  
DRVON, NB_DRVON  
PWRGOOD  
VS+, NB_VS+  
VS-, NB_VS-  
ROSC  
1 mA  
1 mA  
1 mA  
N/A  
0.3 V  
5.5 V  
5.5 V  
All Other Pins  
N/A  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: All signals are referenced to GND unless noted otherwise.  
THERMAL INFORMATION  
Rating  
Symbol  
Value  
30.5  
Unit  
°C/W  
°C  
Thermal Characteristic, QFN Package (Note 1)  
Operating Junction Temperature Range (Note 2)  
Operating Ambient Temperature Range  
Maximum Storage Temperature Range  
Moisture Sensitivity Level, QFN Package  
R
q
JA  
T
0 to 125  
0 to 70  
-55 to +150  
1
J
T
A
°C  
T
°C  
STG  
MSL  
* The maximum package power dissipation must be observed.  
1. JESD 51-5 (1S2P Direct-Attach Method) with 0 LFM.  
2. JESD 51-7 (1S2P Direct-Attach Method) with 0 LFM.  
http://onsemi.com  
7
 
NCP5393  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIERS (V & V  
DD  
)
DDNB  
Input Bias Current  
-200  
-1.0  
-
-
200  
1.0  
-
nA  
mV  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
V+ = V- = 1.3V  
C = 60 pF to GND, R = 10 kW to GND  
-
80  
15  
70  
dB  
L
L
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 60 pF to GND, R = 10 kW to GND  
L L  
-
-
MHz  
deg  
V/ms  
C = 60 pF to GND, R = 10 kW to GND  
L L  
-
-
DV = 100 mV, AV = -10 V/V,  
< 2.5 V,  
IN  
1.5 V < V  
-
5
-
COMP  
C = 60 pF, DC Loading = $125 mA  
L
Maximum Output Voltage  
Minimum Output Voltage  
10 mV of Overdrive, I  
10 mV of Overdrive, I  
= 2.0 mA  
3.5  
-
-
-
2
2
-
1.0  
-
V
V
SOURCE  
= 2.0 mA  
SINK  
Output Source Current (Note 3)  
Output Sink Current (Note 3)  
10 mV of Overdrive, V  
= 3.5 V  
-
mA  
mA  
OUT  
OUT  
10 mV of Overdrive, V  
= 1.0 V  
-
-
DIFFERENTIAL SUMMING AMPLIFIERS (V & V  
DD  
)
DDNB  
VS- Input Bias Current  
VS+ Input Resistance  
VS- Voltage at 0 V  
DRVON = Low  
DRVON = High  
DRVON = Low  
DRVON = High  
33  
1.0  
7
mA  
kW  
VS+ Input Bias Voltage  
0.37  
0.05  
-
V
VS+ Input Voltage Range (Note 3)  
VS- Input Voltage Range (Note 3)  
-3dB Bandwidth (Note 3)  
-0.3  
-0.3  
3.0  
0.3  
V
V
-
C = 80 pF to GND, R = 10 kW to GND  
L L  
15  
1.0  
MHz  
V/V  
DC gain, VS+ to DIFFOUT  
VS+ to VS- = 0.5 V to 2.35 V  
0.982  
1.022  
DAC Accuracy (Measured at VS+)  
Closed Loop Measurement, Error Amplifier Inside the  
Loop.  
1.0125 V v VDAC v 1.5500 V  
0.8000 V v VDAC v 1.0000 V  
12.5 mV v VDAC v 0.8000 V  
-0.5  
-5  
-8  
-
-
-
0.5  
5
8
%
mV  
mV  
Slew Rate  
DV = 100 mV, DV  
IN  
= 1.3 V-1.2 V  
10  
V/ms  
V
OUT  
Maximum Output Voltage  
Minimum Output Voltage  
Output source current (Note 3)  
Output sink current (Note 3)  
I
I
= 2 mA  
= 2 mA  
2.0  
SOURCE  
0.5  
6.3  
V
SINK  
V
= 3 V  
2.0  
2.0  
mA  
mA  
OUT  
OUT  
V
= 0.5 V  
DROOP AMPLIFIERS (V & V  
DD  
)
DDNB  
Gain from Current Sense Input to  
Droop Amplifier Output  
0 mV < (CSx - CSxN) < 60 mV  
CSx = CSxN = 1.3 V  
5.7  
6.0  
V/V  
Droop Amplifier DC Output Voltage  
Slew Rate  
1.3  
5.0  
-
V
V/ms  
V
C = 20 pF to GND, R = 1 kW to GND  
L L  
-
3.0  
-
-
-
Maximum Output Voltage  
Minimum Output Voltage  
Output Source Current (Note 3)  
Output Sink Current (Note 3)  
I = 4.0 mA  
SOURCE  
I
= 1.0 mA  
-
1.0  
-
V
SINK  
V
OUT  
V
OUT  
= 3.0 V  
-
4.0  
1.0  
mA  
mA  
= 1.0 V  
-
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
8
NCP5393  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
CURRENT SENSE AMPLIFIERS (V & V  
Test Conditions  
Min  
Typ  
Max  
Unit  
)
DDNB  
DD  
Input Bias Current  
CSx = CSxN = 1.4 V  
-50  
-0.3  
-120  
-
-
-
50  
2.6  
120  
nA  
V
Common Mode Input Voltage Range  
Differential Mode Input Voltage  
Range (Note 3)  
mV  
Input Offset Voltage (Note 3)  
CSx = CSxN = 1.00 V  
-1.0  
5.0  
-
1.0  
7.0  
mV  
V/V  
Gain from Current Sense Input to  
PWM Comparator  
0 mV < (CSx - CSxN) < 60 mV  
6.0  
INTERNAL OFFSET VOLTAGE  
Voltage at Error Amplifier Non-In‐  
verting Inputs  
-
1.3  
-
V
DRVON & NB_DRVON  
Output Voltage (High)  
Output Voltage (Low)  
Delay Time  
Sourcing 500 mA  
Sinking 500 mA  
Propagation Delays  
Sourcing 500 mA  
Sinking 500 mA  
3.0  
-
-
-
0.7  
-
V
V
-
-
10  
ns  
kW  
W
Active Internal Pull-up Resistance  
Active Internal Pull-down Resistance  
Rise Time  
-
2.0  
150  
130  
15  
-
-
-
C (PCB) = 20 pF, DV  
L
= 10% to 90%  
= 10% to 90%  
-
-
ns  
ns  
OUT  
Fall Time  
C (PCB) = 20 pF, DV  
L
-
-
OUT  
V
DD  
PWM OSCILLATOR  
Switching Frequency Range  
100  
-
900  
kHz  
kHz  
Switching Frequency Accuracy  
2- or 4-phase  
ROSC = 49.9 kW  
ROSC = 24.9 kW  
ROSC = 10 kW  
196  
380  
803  
-
-
-
226  
420  
981  
Switching Frequency Accuracy  
3-phase  
ROSC = 49.9 kW  
ROSC = 24.9 kW  
ROSC = 10 kW  
196  
380  
803  
-
-
-
226  
420  
981  
kHz  
V
ROSC Output Voltage  
10 mA IROSC 200 mA  
1.94  
2.0  
2.06  
V
DDNB  
PWM OSCILLATOR  
Switching Frequency  
-
1.25  
-
x f  
VDD  
PWM COMPARATORS (V & V  
DD  
)
DDNB  
Minimum Pulse Width (Note 3)  
Propagation Delay (Note 3)  
Magnitude of the PWM Ramp  
0% Duty Cycle  
F
= 800 kHz  
-
-
-
-
30  
10  
-
-
-
-
ns  
ns  
V
SW  
$20 mV of Overdrive  
1.0  
0.2  
COMP Voltage at which the PWM Outputs Remain  
LOW  
V
100% Duty Cycle  
COMP Voltage at which the PWM Outputs Remain  
HIGH  
-
1.2  
-
V
PWM Phase Angle Error  
Between Adjacent Phases  
-15  
+15  
°
PWRGOOD OUTPUT  
PWRGOOD Output Voltage (Low)  
PWRGOOD Rise Time  
I
= 5 mA  
-
-
-
0.4  
-
V
PGD  
External Pullup of 1 kW to 5 V C  
= 10% to 90%  
= 45 pF, DV  
125  
ns  
TOTAL  
OUT  
PWRGOOD High-State Leakage  
V
= 5.25 V  
-
-
1
mA  
PWRGOOD  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
9
NCP5393  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
PWRGOOD OUTPUT  
Test Conditions  
Min  
Typ  
Max  
Unit  
PWRGOOD Upper Threshold  
PWRGOOD Lower Threshold  
V
V
Increasing, DAC = 1.3 V (Wrt DAC)  
Decreasing, DAC = 1.3 V  
-
-
300  
350  
-
-
mV  
mV  
OUT  
OUT  
PWM OUTPUTS (V & V  
DD  
)
DDNB  
Output Voltage (High)  
Output Voltage (Mid)  
Output Voltage (Low)  
Rise and Fall Times  
Tri-State Output Leakage  
Sourcing 500 mA  
3.0  
1.3  
-
-
1.5  
-
V
V
V
CC  
R = 4 kW to GND  
L
1.7  
0.15  
-
Sinking 500 mA  
V
C = 50 pF, 0.7 V to 3.0 V or 3.0 V to 0.7 V  
L
-
15  
-
ns  
mA  
W
Gx = 2.5 V (x = 1-4 or NB)  
-1.5  
-
1.5  
-
Output Impedance - HIGH or LOW  
State  
Resistance to V or GND  
CC  
50  
VDD REGULATOR 2/3/4 PHASE DETECTION  
Gate Pin Source Current  
-
-
-
80  
250  
20  
-
-
-
mA  
mV  
ms  
Gate Pin Threshold Voltage  
Phase Detect Timer  
SLEW RATE LIMITERS  
Soft Start Ramp Time  
Slew Rate Limit  
DAC = 0 to DAC = BOOT_VID  
In Any Mode after Soft-Start Completes  
-
-
2
-
-
ms  
3.25  
mV/ms  
VID INPUTS (Note: In SVI Mode, VID[2] = Bidirectional “SVD' Line and VID[3] = “SVC” Clock Input)  
VID Input Voltage (High)  
VID Input Voltage (Low)  
VID Hysteresis  
V
V
V
V
0.9  
-
-
-
-
0.6  
-
V
V
HIGH  
LOW  
HIGH  
- V  
or V  
- V  
HIGH  
-
100  
15  
-
mV  
mA  
V
LOW  
LOW  
Input Pulldown Current  
SVD Output Voltage (Low)  
ENABLE INPUT  
= 0.6 V - 1.9 V  
-
-
IN  
In SVI Mode, I  
= 5 mA  
0
0.25  
SINK  
ENABLE Input Voltage (High)  
ENABLE Input Voltage (Low)  
Enable Hysteresis  
V
V
2.0  
-
-
-
-
0.8  
-
V
V
HIGH  
LOW  
Low - High or High - Low  
Internal Pullup to V  
-
200  
15  
mV  
mA  
Enable Input Pull-Up Current  
VFIXEN INPUT (Active-Low Input)  
VFIXEN Input Voltage (High)  
VFIXEN Input Voltage (Low)  
VFIXEN Hysteresis  
-
-
CC  
V
V
0.9  
-
-
-
-
V
V
HIGH  
0.6  
LOW  
Low - High or High - Low  
Internal Pullup to V  
100  
15  
mV  
mA  
VFIXEN Input Pull-Up Current  
-
-
CC  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
10  
NCP5393  
ELECTRICAL CHARACTERISTICS (Unless otherwise stated: 0°CvT v70°C; 4.75 VvV v5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
PSI_L (Power Saving Control, Active Low) (This pin is used in PVI mode only)  
PSI_L Input Voltage (High)  
PSI_L Input Voltage (Low)  
PSI_L Hysteresis  
V
HIGH  
V
LOW  
V
HIGH  
0.9  
-
-
-
-
V
V
0.6  
- V  
or V  
- V  
HIGH  
100  
mV  
LOW  
LOW  
CURRENT LIMIT  
Current Sense Amp to ILIM Gain  
ILIM Pin Input Bias Current  
20 mV < (CSx - CSxN) < 60 mV (CS inputs tied)  
5.7  
-
6.0  
-
6.3  
0.5  
2.0  
V/V  
mA  
V
ILIM Pin Working Voltage Range  
(Noteꢀ3)  
0.2  
-
ILIM Offset Voltage  
Offset extrapolated to CSx-CSxN = 0 V, and referred  
to the ILIM pin  
-
-
30  
-
-
mV  
Delay  
600  
1.0  
ns  
V
VDDNB Current Limit Coefficient  
= N x V  
/V  
, where N = number of VDD  
NBILIM ILIM  
is the equivalent voltage  
phases, and V  
NBILIM  
threshold for NB Current Limit resulting from V  
.
ILIM  
OFFSET INPUTS (V & V  
DD  
)
DDNB  
Output Offset Voltage Above VDAC  
OUTPUT OVERVOLTAGE PROTECTION (V & V  
0
-
800  
mV  
mV  
)
DDNB  
DD  
Over Voltage Threshold  
In normal operation, with no VID changes  
V
DAC  
+ 250  
VCCA UNDERVOLTAGE PROTECTION  
VCCA UVLO Start Threshold  
VCCA UVLO Stop Threshold  
VCCA UVLO Hysteresis  
INPUT SUPPLY CURRENT  
VCC Operating Current  
12VMON  
4.0  
3.8  
4.25  
4.05  
200  
4.5  
4.3  
V
V
mV  
ENABLE held Low, No PWM operation  
-
25  
35  
mA  
12VMON (High Threshold)  
12VMON (Low Threshold)  
12VMON Hysteresis  
8
7
8.5  
7.5  
1.0  
9
8
V
V
V
Low - High or High - Low  
3. Guaranteed by design. Not production tested.  
http://onsemi.com  
11  
 
NCP5393  
TYPICAL CHARACTERISTICS  
2.03  
2.01  
1.99  
1.5  
1.4  
Enable Increasing Voltage  
1.3  
1.2  
1.97  
1.95  
Enable Decreasing Voltage  
1.1  
1.0  
0
0
0
25  
50  
75  
75  
75  
0
0
0
25  
50  
75  
75  
75  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 1. SS Time vs. Temperature  
Figure 2. Enable Threshold Voltage vs.  
Temperature  
26.1  
25.8  
25.5  
25.2  
24.9  
24.6  
231.1  
230.8  
230.5  
230.2  
229.9  
229.6  
24.3  
24.0  
229.3  
229.0  
25  
50  
25  
50  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 3. ICC Current vs. Temperature  
Figure 4. 2/3/4 Phase Detection Threshold vs.  
Temperature  
4.5  
4.0  
2.009  
2.008  
2.007  
2.006  
2.005  
V
Increasing Voltage  
CCP  
V
Decreasing Voltage  
CCP  
3.5  
3.0  
2.004  
2.003  
25  
50  
25  
50  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCCP Undervoltage Lockout  
Threshold Voltage vs. Temperature  
Figure 6. ROSC Voltage vs. Temperature  
http://onsemi.com  
12  
NCP5393  
TYPICAL CHARACTERISTICS  
10  
370  
PWRGOOD Upper Voltage  
9.5  
360  
350  
340  
330  
9.0  
8.5  
8.0  
V
CC  
Increasing Voltage  
V
CC  
Decreasing Voltage  
7.5  
7.0  
320  
310  
PWRGOOD Lower Voltage  
25  
0
25  
50  
75  
0
50  
75  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. 12VMON Undervoltage Lockout  
Threshold Voltage vs. Temperature  
Figure 8. PWRGOOD Voltage vs. Temperature  
Functional Description  
General  
NCP5393 is an universal CPU Power Supply Controller  
compatible with both Parallel (PVI) and Serial (SVI)  
protocols for AMD Processors. The device provides  
and the Vcore ground reference point to VSN. This  
configuration keeps ground potential differences between the  
local controller ground and the Vcore ground reference point  
from affecting regulation of Vcore between Vcore and Vcore  
ground reference points. The RSA also subtracts the DAC  
(minus VID offset) voltage, thereby producing an unamplified  
output error voltage at the DIFFOUT pin. This output also has  
a 1.3 V bias voltage as the floating ground to allow both  
positive and negative error voltages.  
complete control logic and protections for  
a
high-performance step-down DC-DC voltage regulator,  
optimized for advanced microprocessor power supply  
supporting both PVI and SVI communication. It embeds two  
independent controllers for CPU CORE and the integrated  
NB, each one with its set of protections. The Controller  
performs a single-phase control for the NB Section and a  
programmable 2- to-4 phase control for the CORE Section  
featuring Dual-Edge multiphase architecture.  
Precision Programmable DAC  
A precision programmable DAC is provided and system  
trimmed. This DAC has 0.5% accuracy over the entire  
operating temperature range of the part. The DAC can be  
programmed to support both PVI and SVI VID code  
specifications.  
NCP5393 also supports V_FIX mode for board debug: in  
this particular configuration the SVI bus is used as a static  
bus configuring 4 operative voltages for both the sections  
and ignoring any serial-VID command. It can be used for  
the board debug before plugging-in the CPU.  
High Performance Voltage Error Amplifier  
The NCP5393 incorporates differential voltage sensing,  
differential phase current sensing, optional load-line  
voltage positioning, and programmable VDD and VDDNB  
offsets to provide accurately regulated power parallel- and  
serial-VID AMD processors. Dual-edge multiphase  
modulation provides the fastest initial response to dynamic  
load events.  
NCP5393 is able to detect which kind of CPU is connected  
in order to configure itself to work as a Single-Plane PVI  
controller or Dual-Plane SVI controller. The NCP5393  
manages On the Fly VID transitions and maintains the slew  
rates as defined when the transitions take place. NCP5393  
is available in TQFN48 Package.  
The error amplifier is designed to provide high slew rate  
and bandwidth. Although not required when operating as the  
controller of a voltage regulator, a capacitor from COMP to  
VFB is required for stable unity gain test configurations.  
Gate Driver Outputs and 2/3/4 Phase Operation  
The part can be configured to run in 2-, 3-, or 4-phase  
mode. In 2-phase mode, phases 1 and 3 should be used to  
drive the external gate drivers, G2 and G4 must be grounded.  
In 3-phase mode, gate output G4 must be grounded. In  
4-phase mode all 4 gate outputs are used as shown in the  
4-phase Applications Schematic. The Current Sense inputs  
of unused channels should be connected to GND. Please  
refer to table “PIN CONNECTIONS vs. PHASE COUNTS”  
for details.  
Remote Output Sensing Amplifier (RSA)  
A true differential amplifier allows the NCP5393 to measure  
Vcore voltage feedback with respect to the Vcore ground  
reference point by connecting the Vcore reference point to VSP,  
http://onsemi.com  
13  
NCP5393  
Differential Current Sense Amplifiers and Summing  
Amplifier  
oscillator generates up to 4 symmetrical triangle waveforms  
with amplitude between 1.3_V and 2.3_V. The triangle  
waves have a phase delay between them such that for 2-, 3-  
and 4-phase operation the PWM outputs are separated by  
180, 120, and 90 angular degrees, respectively.  
Four differential amplifiers are provided to sense the  
output current of each phase. The inputs of each current  
sense amplifier must be connected across the current sensing  
element of the phase controlled by the corresponding gate  
output (G1, G2, G3, or G4). If a phase is unused, the  
differential inputs to that phase's current sense amplifier  
must be shorted together and connected to the GND.  
The current signals sensed from inductor DCR are fed into  
a summing amplifier to have a summed-up output. The  
outputs of current sense amplifiers control three functions.  
First, the summing current signal of all phases will go  
through DROOP amplifier and join the voltage feedback  
loop for output voltage positioning. Second, the output  
signal from DROOP amplifier also goes to ILIM amplifier  
to monitor the output current limit. Finally, the individual  
phase current contributes to the current balance of all phases  
by offsetting their ramp signals of PWM comparators.  
When the NB phase is enabled, in order to ensure that the  
VDDNB oscillator does not accidentally lock to the VDD  
oscillator, the VDDNB oscillator will free-run at a  
frequency which is nominally 1.25 ratio of f  
.
VDD  
CPU Support  
NCP5393 is able to detect the CPU it is going to supply  
and configure itself accordingly. At system Start-up, on the  
rising-edge of the EN signal, the device monitors the status  
of VID1 and switches in PVI mode (VID1 = 1) or SVI mode  
(VID1 = 0). When in PVI mode, NCP5393 uses the  
information available on the VID[0:5] bus to address the  
CORE Section output voltage. NB Section is kept in HiZ  
mode. When in SVI mode, NCP5393 discards the  
information available on VID0, VID4 and VID5 and uses  
VID2 and VID3 for SVC and SVD respectively.  
Oscillator and Triangle Wave Generator  
The controller embeds a programmable precision  
dual-Oscillator: one section is used for the CORE and it is  
a multiphase programmable oscillator managing equal  
phase-shift among all phases and the other section is used  
for the NB section. The oscillator's frequency is  
programmed by the resistance connected from the ROSC  
pin to ground. The user will usually form this resistance  
from two resistors in order to create a voltage divider that  
uses the ROSC output voltage as the reference for creating  
the current limit setpoint voltage. The oscillator frequency  
range is 100_kHz per phase to 1.0_MHz per phase. The  
PVI - Parallel Interface  
PVI is a 6-bit-wide parallel interface used to address the  
CORE Section reference. According to the selected code,  
the device sets the CORE Section reference and regulates its  
output voltage. NB Section is kept in HiZ; no activity is  
performed on this section. furthermore, PWROK  
information is ignored as well since the signal is propietary  
of the SVI protocol. Start-up sequences before soft start and  
after soft start are given in Figure 9. Voltage identifications  
for the 6Bit AMD mode is given in Table 1.  
Figure 9. Power Up Sequences Before and After Soft Start in PVI Mode  
http://onsemi.com  
14  
 
NCP5393  
Table 1. SIX-BIT PARALLEL VID CODES in PVI Modes  
SVID[5:0]  
00_0000  
00_0001  
00_0010  
00_0011  
00_0100  
00_0101  
00_0110  
10_0111  
00_1000  
00_1001  
00_1010  
00_1011  
00_1100  
00_1101  
00_1110  
00_1111  
V
(V)  
SVID[5:0]  
01_0000  
01_0001  
01_0010  
01_0011  
01_0100  
01_0101  
01_0110  
01_0111  
01_1000  
01_1001  
01_1010  
01_1011  
01_1100  
10_1101  
01_1110  
01_1111  
V
(V)  
SVID[5:0]  
10_0000  
10_0001  
10_0010  
10_0011  
10_0100  
10_0101  
10_0110  
10_0111  
10_1000  
10_1001  
10_1010  
10_1011  
10_1100  
10_1101  
10_1110  
10_1111  
V
(V)  
SVID[5:0]  
11_0000  
11_0001  
11_0010  
11_0011  
11_0100  
11_0101  
11_0110  
11_0111  
11_1000  
11_1001  
11_1010  
11_1011  
11_1100  
11_1101  
11_1110  
11_1111  
V
(V)  
OUT  
OUT  
OUT  
OUT  
1.5500  
1.5250  
1.5000  
1.4750  
1.4500  
1.4250  
1.4000  
1.3750  
1.3500  
1.3250  
1.3000  
1.2750  
1.2500  
1.2250  
1.2000  
1.1750  
1.1500  
1.1250  
1.1000  
1.0750  
1.0500  
1.0250  
1.0000  
0.9750  
0.9500  
0.9250  
0.9000  
0.8750  
0.8500  
0.8250  
0.8000  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6325  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
SVI - Serial Interface  
SVI is a two wire, Clock and Data, bus that connects a  
single master (AMD processor) to one NCP5393. The  
master initiates and terminates SVI transactions and drives  
the clock, SVC, and the data SVD, during a transaction. The  
slave receives the SVI transactions and acts accordingly.  
SVI wire protocol is based on fast-mode I2C. The SVI  
communications are given in Figure 10.  
SVI interface also considers EN and PWROK signals for  
start-up. The device returns a PWRGOOD signal if the  
output voltages are in regulation. The VID codes for SVI are  
given in Table 2.  
Figure 10. SVI Communication - Send Byte  
The start-up sequences before and after soft start are  
given in Figure 11.  
http://onsemi.com  
15  
 
NCP5393  
Table 2. SEVEN-BIT SERIAL VID CODES for SVI Mode  
SVID[6:0]  
000_0000  
000_0001  
000_0010  
000_0011  
000_0100  
000_0101  
000_0110  
000_0111  
000_1000  
000_1001  
000_1010  
000_1011  
000_1100  
000_1101  
000_1110  
000_1111  
001_0000  
001_0001  
001_0010  
001_0011  
001_0100  
001_0101  
001_0110  
001_0111  
001_1000  
001_1001  
001_1010  
001_1011  
001_1100  
001_1101  
001_1110  
001_1111  
V
(V)  
SVID[6:0]  
010_0000  
010_0001  
010_0010  
010_0011  
010_0100  
010_0101  
010_0110  
010_0111  
010_1000  
010_1001  
010_1010  
010_1011  
010_1100  
010_1101  
010_1110  
010_1111  
011_0000  
011_0001  
011_0010  
011_0011  
011_0100  
011_0101  
011_0110  
011_0111  
011_1000  
011_1001  
011_1010  
011_1011  
011_1100  
011_1101  
011_1110  
011_1111  
V
(V)  
SVID[6:0]  
100_0000  
100_0001  
100_0010  
100_0011  
100_0100  
100_0101  
100_0110  
100_0111  
100_1000  
100_1001  
100_1010  
100_1011  
100_1100  
100_1101  
100_1110  
100_1111  
101_0000  
101_0001  
101_0010  
101_0011  
101_0100  
101_0101  
101_0110  
101_0111  
101_1000  
101_1001  
101_1010  
101_1011  
101_1100  
110_1101  
101_1110  
101_1111  
V
(V)  
SVID[6:0]  
110_0000  
110_0001  
110_0010  
110_0011  
110_0100  
110_0101  
110_0110  
110_0111  
110_1000  
110_1001  
110_1010  
110_1011  
110_1100  
110_1101  
110_1110  
110_1111  
111_0000  
111_0001  
111_0010  
111_0011  
111_0100  
111_0101  
111_0110  
111_0111  
111_1000  
111_1001  
111_1010  
111_1011  
111_1100  
111_1101  
111_1110  
111_1111  
V
(V)  
OUT  
OUT  
OUT  
OUT  
1.5500  
1.5375  
1.5250  
1.5125  
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6325  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
OFF  
OFF  
OFF  
OFF  
http://onsemi.com  
16  
NCP5393  
Figure 11. Power Up Sequences Before and After Soft Start in SVI Mode  
Hardware Jumper Override - V_FIX  
VFIX is an active low pin and when it is pulled low, the  
controller enters V_FIX mode.The voltage regulator can be  
powered when an external SVI bus master is not present.  
When in VFIX mode, all of the voltage regulator's output  
voltages will be governed by the information shown in  
Tableꢁ3, regardless of the state of PWROK. VFIX mode is  
for debug and bring-up only. If VFIX mode is necessary for  
processor bring-up, VFIXEN, SVC, and SVD should be  
connected with jumpers to either ground or VDDIO through  
suitable pull-up resistors. SVC and SVD are considered as  
static VID and the output voltage will change according to  
their status.  
This capture is INDEPENDENT of any other signal.  
SVI/PVI is determined by sampling VID[1] during  
rising edge of ENABLE (SVI: VID[1]=0, PVI:  
VID[1]=1). Once SVI/PVI is determined, the VID  
controller is enabled and increments to the Boot VID at  
the Soft Start rate. VFIXEN mode is entered once  
VFIXEN is asserted.  
If VFIXEN is asserted prior to the VID controller  
reaching the Boot VID, the VID controller will move to  
the VFIXEN VID. Once the first VID value is reached  
(either BOOT VID or VFIXEN VID), the VID will  
now increment at the Normal rate. Once the VID  
controller is enabled, the VID controller can receive  
VFIXEN VIDs, independent of PWROK which is  
ignored in VFIXEN mode.  
Table 3. SVI VFIX VID CODES (TWO-BIT PARALLEL)  
SVC  
SVD  
V
OUT  
(V)  
If VFIXEN is de-asserted, the device PORs. This  
0
0
1
1
0
1
0
1
1.4  
occurs independent of ENABLE  
1.2  
1.0  
0.8  
PWROK De-assertion  
Anytime PWROK de-asserts while EN is asserted, the  
controller uses the previously stored BOOT VID and  
regulates all planes to that level performing an on-the-Fly  
transition to that level. PWRGOOD remains asserted in this  
process.  
Start-up sequences are presented below:  
Boot VID is captured from SVC and SVD pins on  
rising edge of ENABLE.  
http://onsemi.com  
17  
 
NCP5393  
Protection Features:  
voltage, the PWRGOOD goes low, the DRVON signal  
remains high, the PWM outputs are set low. The outputs will  
remain disabled until the VCC voltage is removed and  
reapplied. Every time the OV is triggered it will increment  
the OV counter. If the counter reaches a count of 16 then the  
OV condition will latch into a permanent OV state. It will  
require POR or disable/enable to restart. Prior to latching if  
the OV condition goes away then normal operation will  
resume. An OV decrement counter is also incorporated. It  
consists of a free-running clock which runs at 8x the PWM  
frequency. So essentially every 4096 PWM cycles the OV  
counter will decrement. For example, for a max PWM  
frequency of 1 MHz, the counter decrements roughly every  
4ꢁms and for a PWM frequency of 400 kHz, it would be  
about every 10 ms. During normal operation, if the output  
voltage falls more than 350_mV below the DAC setting, the  
PWRGOOD pin will be set low until the output voltage  
rises.  
Undervoltage Lockout  
An undervoltage lockout (UVLO) senses the VCC and  
VCCP input. During powerup, the input voltage to the  
controller is monitored, and the PWM outputs and the  
soft-start circuit are disabled until the input voltage exceeds  
the threshold voltage of the UVLO comparator. The UVLO  
comparator incorporates hysteresis to avoid chattering,  
since VCC is likely to decrease as soon as the converter  
initiates soft-start.  
Overcurrent Shutdown  
A programmable overcurrent function is incorporated  
within the IC. A comparator and latch make up this function.  
The inverting input of the comparator is connected to the  
ILIM pin. The voltage at this pin sets the maximum output  
current the converter can produce. The ROSC pin provides  
a convenient and accurate reference voltage from which a  
resistor divider can create the overcurrent setpoint voltage.  
Although not actually disabled, tying the ILIM pin directly  
to the ROSC pin sets the limit above useful levels -  
effectively disabling overcurrent shutdown. The  
comparator noninverting input is the summed current  
information from the VDRP minus offset voltage. The  
overcurrent latch is set when the current information  
exceeds the voltage at the ILIM pin. The outputs are pulled  
low, and the soft-start is pulled low. The outputs will remain  
disabled until the VCCvoltage is removed and re-applied, or  
the ENABLE input is brought low and then high.  
Soft-Start  
The NCP5393 simply ramps Vcore to boot voltage at a  
fixed rate of 2 ms (0.8ꢁmV/uS), and then reads the VID pins  
to determine the DAC setting. Then ramps Vcore to the final  
DAC setting at the Dynamic VID slew rate of up to  
3.25ꢁmV/mS. In SVI mode, SoftStart Time is intended as the  
time required by the device to set the output voltages to the  
Pre-PWROK Metal VID. In PVI mode, VID[0:5] or V_FIX  
VID in V_FIX mode are the set output voltages. Typical soft  
start sequence timing in SVI mode is given in Figure 12.  
Output Overvoltage and Undervoltage Protection and  
Power Good Monitor  
An output voltage monitor is incorporated. Duringnormal  
operation, if the output voltage is 250 mV over the DAC  
Figure 12. Soft-Start Sequence to Vcore = 1.3 V  
http://onsemi.com  
18  
 
NCP5393  
Programming the Current Limit and the Oscillator Frequency  
The demo board is set for an operating frequency of  
approximately 330 kHz. The ROSC pin provides a 2.0 V  
reference voltage which is divided down with a resistor  
divider and fed into the current limit pin ILIM. Calculate the  
total series resistance to set the frequency and then calculate  
the individual RLIM1 and RLIM2 values for the divider.  
The series resistors RLIM1 and RLIM2 sink current from  
the ILIM pin to ground. This current is internally mirrored  
into a capacitor to create an oscillator. The period is  
proportional to the resistance and frequency is inversely  
proportional to the total resistance. The total resistance may  
be estimated by Equation 2. This equation is valid for the  
individual phase frequency in both three and four phase  
mode.  
-1.1549  
R
^ 24686   Fsw  
TOTAL  
(eq. 1)  
-1.1549  
30.5ꢀ·ꢀkW ^ 24686   330  
Figure 13. ROSC vs. Frequency  
The current limit function is based on the total sensed  
current of all phases multiplied by a gain of 6. DCR sensed  
inductor current is function of the winding temperature. The  
best approach is to set the maximum current limit based on  
the expected average maximum temperature of the inductor  
windings.  
DCR  
+ DCR ꢀ·ꢀ  
25C  
Tmax  
(eq. 2)  
(1 ) 0.00393ꢀ(T  
-25))  
max  
Calculate the current limit voltage:  
DCR  
Tmax  
2ꢀ·ꢀVinꢀ·ꢀF  
ꢀ·ꢀVout  
Vin-Vout  
L
Vout  
L
(eq. 3)  
ꢀ ·ꢀǒ  
Ǔ
^ 6ꢀ·ꢀǒIMIN_OCP  
Ǔ
V
ꢀ·ꢀDCR  
Tmax  
)
* (N-1)ꢀ·ꢀ  
ILIMIT  
sw  
Solve for the individual resistors:  
V
ꢀ·ꢀR  
ILIMIT TOTAL  
RLIM1 + R  
-R  
TOTAL LIM2  
(eq. 4)  
(eq. 5)  
(eq. 6)  
RLIM2 +  
2ꢀ·ꢀV  
Final Equation for the Current Limit Threshold  
2ꢀ·ꢀVꢀ·ꢀRLIM2  
RLIM1)RLIM2  
ǒ
Ǔ
Vout  
2ꢀ·ꢀVinꢀ·ꢀF  
sw  
Vin-Vout  
L
Vout  
L
ꢀ ·ꢀǒ  
Ǔ
I
(T  
LIMIT inductor  
) ^  
*
* (N-1)ꢀ·ꢀ  
6ꢀ·ꢀ(DCR  
ꢀ·ꢀ(1 ) 0.00393(T  
25C  
-25)))  
Inductor  
The inductors on the demo board have a DCR at 25°C of  
limit of 152 A at 100°C. The total sensed current can be  
observed as a scaled voltage at the VDRP pin added to a  
positive, no-load offset of approximately 1.3 V.  
0.75 mW. Selecting the closest available values of 16.9 kW  
for RLIM1 and 13.7 kW for RLIM2 yield a nominal  
operating frequency of 330 kHz and an approximate current  
http://onsemi.com  
19  
 
NCP5393  
OUTPUT OFFSET VOLTAGES  
External offset voltages from 0 mv to 800 mV `above the DAC' can be added for the V and V independently.  
Offset is set by a resistor divider from V to GND. Output offsets are ratiometric to V . As V changes, the on-chip scaling  
DD  
DD_NB  
CC  
CC  
CC  
factors change by the same amount:  
Offset = 0.8 V x V  
/V  
OFFSET CC  
For example: For 0 V offset: pin voltage = GND; For 800 mV offset: pin voltage = V  
CC  
Minimum Voffset_IN  
(as Vin/Vcc)  
Typical Voffset_IN  
(as Vin/Vcc)  
Maximum Voffset_IN  
(as Vin/Vcc)  
Resulting Output Offset  
Units  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
0
0
0.046875  
0.078125  
0.109375  
0.140625  
0.171875  
0.203125  
0.234375  
0.265625  
0.296875  
0.328125  
0.359375  
0.390625  
0.421875  
0.453125  
0.484375  
0.515625  
0.546875  
0.578125  
0.609375  
0.640625  
0.671875  
0.703125  
0.734375  
0.765625  
0.796875  
0.828125  
0.859375  
0.890625  
0.921875  
0.953125  
0.984375  
Vcc+0.3V  
0
0.046875  
0.078125  
0.109375  
0.140625  
0.171875  
0.203125  
0.234375  
0.265625  
0.296875  
0.328125  
0.359375  
0.390625  
0.421875  
0.453125  
0.484375  
0.515625  
0.546875  
0.578125  
0.609375  
0.640625  
0.671875  
0.703125  
0.734375  
0.765625  
0.796875  
0.828125  
0.859375  
0.890625  
0.921875  
0.953125  
0.984375  
0.06250  
0.09375  
0.12500  
0.15625  
0.18750  
0.21875  
0.25000  
0.28125  
0.31250  
0.34375  
0.37500  
0.40625  
0.43750  
0.46875  
0.50000  
0.53125  
0.56250  
0.59375  
0.62500  
0.65625  
0.68750  
0.71875  
0.75000  
0.78125  
0.81250  
0.84375  
0.87500  
0.90625  
0.93750  
0.96875  
1.00000  
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
400  
425  
450  
475  
500  
525  
550  
575  
600  
625  
650  
675  
700  
725  
750  
800  
The input to the OFFSET pin for the VDD output is encoded by an internal ADC.  
The input to the NB_OFFSET pin for the VDDNB output is encoded by the same ADC.  
The reference for this ADC is VCC. The ADC's output is ratiometric to VCC.  
Voffset IN represents the voltage applied to the OFFSET or NB_OFFSET pin.  
It is intended that these voltages be derived by a resistive divider from Vcc.  
The recommended total driving impedance is <10 kilohms.  
http://onsemi.com  
20  
NCP5393  
PACKAGE DIMENSIONS  
QFN48 7x7, 0.5P  
CASE 485AJ-01  
ISSUE O  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO THE PLATED  
TERMINAL AND IS MEASURED ABETWEEN  
0.15 AND 0.30 MM FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
LOCATION  
MILLIMETERS  
E
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
2X  
L
A3  
b
0.20 REF  
0.15  
C
0.20  
0.30  
D
D2 5.00  
E 7.00 BSC  
E2 5.00  
7.00 BSC  
DETAIL A  
OPTIONAL CONSTRUCTION  
2X SCALE  
5.20  
5.20  
2X  
0.15  
C
C
TOP VIEW  
e
K
L
0.50 BSC  
0.20  
0.30  
---  
0.50  
(A3)  
0.05  
0.08  
A
SOLDERING FOOTPRINT*  
2X  
C
A1  
NOTE 4  
SEATING  
PLANE  
5.20  
C
SIDE VIEW  
D2  
DETAIL A  
1
K
13  
25  
12  
2X  
7.30  
48X  
0.63  
E2  
48X  
0.50 PITCH  
0.30  
1
36  
DIMENSIONS: MILLIMETERS  
48  
37  
48X  
b
e
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
48X L  
0.10 C A B  
e/2  
NOTE 3  
C
0.05  
BOTTOM VIEW  
The products described herein (NCP5393), may be covered by one or more of the following U.S. patents, #US07057381. There may be other patents  
pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
ꢁLiterature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
N. American Technical Support: 800-282-9855 Toll Free  
ꢁUSA/Canada  
Europe, Middle East and Africa Technical Support:  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada ꢁPhone: 421 33 790 2910  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
Japan Customer Focus Center  
ꢁPhone: 81-3-5773-3850  
NCP5393/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY