NCP5395T [ONSEMI]

2/3/4-Phase Controller with On Board Gate Drivers for CPU Applications; 2/3/ 4相控制器与CPU应用在董事会栅极驱动器
NCP5395T
型号: NCP5395T
厂家: ONSEMI    ONSEMI
描述:

2/3/4-Phase Controller with On Board Gate Drivers for CPU Applications
2/3/ 4相控制器与CPU应用在董事会栅极驱动器

驱动器 栅极 栅极驱动 控制器
文件: 总25页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5395T  
2/3/4-Phase Controller with  
On Board Gate Drivers for  
CPU Applications  
The NCP5395T provides up to a fourphase buck solution which  
combines differential voltage sensing, differential phase current  
sensing, and adaptive voltage positioning to provide accurately  
regulated power for both Intel and AMD processors. It also receives  
power saving command (PSI) from CPU, and operates in a single  
phase emulation diode mode to obtain a high efficiency at light load.  
Dualedge pulsewidth modulation (PWM) combined with precise  
inductor current sensing provides the fastest initial response to  
dynamic load events both in power saving and normal modes.  
Dualedge multiphase modulation reduces the total bulk and ceramic  
output capacitance required therefore reducing the system cost to meet  
transient regulation specifications.  
http://onsemi.com  
QFN48, 7x7  
CASE 485AJ  
1
48  
MARKING DIAGRAM  
48  
1
The on board gate drivers includes adaptive non overlap and power  
saving operation. A high performance operational error amplifier is  
provided to simplify compensation of the system. Patented Dynamic  
Reference Injection further simplifies loop compensation by  
eliminating the need to compromise between closedloop transient  
NCP5395T  
AWLYYWWG  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
response and Dynamic V performance.  
ID  
Features  
Meets Intel’s VR11.1 and AMD’s 6 Bit Code Specifications  
Enhanced Power Saving Function  
Internal Soft Start  
Dualedge PWM for Fastest Initial Response to Transient Loading  
High Performance Operational Error Amplifier  
Dynamic Reference Injection (Patent #US07057381)  
DAC Range from 0.5 V to 1.6 V  
48  
1
BG1  
BG3  
PSI  
G4  
VRRDY  
EN  
VID0  
VID1  
CS1N  
CS1P  
CS2N  
CS2P  
CS3N  
CS3P  
CS4N  
CS4P  
VID2  
AGND  
Downbonded to  
Exposed Flag  
DAC Feed Forward Function (Patient Pending)  
VID3  
VID4  
0.5% DAC Voltage Accuracy from 1.0 V to 1.6 V  
VID5  
VID6  
True Differential Remote Voltage Sensing Amplifier  
PhasetoPhase Current Balancing  
VID7/AMD  
ROSC  
ILIM  
“Lossless” Differential Inductor Current Sensing  
Accurate Current Monitoring (IMON)  
Differential Current Sense Amplifiers for Each Phase  
Adaptive Voltage Positioning (AVP)  
ORDERING INFORMATION  
Oscillator Frequency Range of 125 kHz 1 MHz  
Latched Over Voltage Protection (OVP)  
Device  
NCP5395TMNR2G  
Package  
Shipping  
Guaranteed Startup into PreCharged Loads  
Threshold Sensitive Enable Pin for VTT Sensing  
Power Good Output with Internal Delays  
QFN48  
(PbFree)  
2500/Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
Output Disable Control Turn Off of Both Phase Pair MOSFETs  
Thermally Compensated Current Monitoring  
AdaptiveNonOverlap Gate Drive Circuit  
Applications  
Thermal Shutdown Protection  
This is a PbFree Device  
Desktop Processors  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
June, 2009 Rev. 0  
NCP5395T/D  
NCP5395T  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7/AMD  
Flexible DAC  
VCCP  
Overvoltage  
Protection  
-
+
PSI  
BST1  
TG1  
+
-
DAC  
Phase 1  
Gate Driver  
with  
Adaptive  
Nonoverlap  
VSN  
VSP  
-
+
SWN1  
BG1  
Diff Amp  
DIFFOUT  
1.3 V  
Error Amp  
+
-
BST2  
TG2  
VFB  
Phase 2  
Gate Driver  
with  
Adaptive  
Nonoverlap  
+
-
COMP  
VDRP  
SWN2  
BG2  
+
-
VDFB  
2/3  
CSSUM  
+
CS1P  
CS1N  
+
-
+
Gain = 6  
Gain = 6  
BST3  
TG3  
CS2P  
CS2N  
+
-
+
Phase 3  
Gate Driver  
with  
Adaptive  
Nonoverlap  
+
-
SWN3  
CS3P  
CS3N  
+
-
+
BG3  
G4  
Gain = 6  
Gain = 6  
+
-
CS4P  
CS4N  
+
+
-
Oscillator  
IMON  
ROSC  
ILIM  
DRVON  
Control,  
Fault Logic  
and  
Monitor  
Circuits  
+
-
12VMON  
VR_RDY  
I
Limit  
EN  
VCC  
+
-
4.25 V  
UVLO  
GND (FLAG)  
Figure 1. NCP5395T Functional Block Diagram  
http://onsemi.com  
2
NCP5395T  
VTT  
PSI#_CPU  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
12V_FILTER  
D
1
2
12V_FILTER  
G
S
IMON  
D
S
D
G
PWM3_SENSE_N  
PWM3_SENSE_P  
G
S
VCCP  
48  
VBST3  
13  
14  
IMON  
VSP  
CFB  
RFB  
47  
46  
45  
44  
43  
42  
TG3  
SWN3  
DRVON  
BST2  
15  
16  
17  
18  
19  
VSN  
DIFFOUT  
COMP  
VFB  
RF  
CF  
RFB  
RDRP  
R
DRVON  
CH  
NCP5395T  
48L 7x7 QFN  
FLAG = GND  
TG2  
SWN2  
VDRP  
VDFB  
12V_FILTER  
CDFB  
RDFB  
12V_FILTER  
20  
21  
22  
BG2 41  
40  
39  
38  
37  
VCCP  
SWN1  
TG1  
CSSUM  
DAC  
2
1
RISO  
RISO  
RT  
D
G
23  
24  
12V_FILTER  
12VMON  
VCC  
S
BST1  
D
S
D
S
PWM1_SENSE_N  
PWM1_SENSE_P  
C17  
G
G
+5.0V  
VTT  
VCCP  
PWM1_SENSE_P  
PWM1_SENSE_N  
ENABLE  
PWM3_SENSE_P  
PWM3_SENSE_N  
Figure 2. Typical 2 Phase Application  
http://onsemi.com  
3
NCP5395T  
VTT  
R236  
PSI#_CPU  
12V_FILTER  
D
2
1
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
12V_FILTER  
G
S
D
S
D
PWM3_SENSE_N  
PWM3_SENSE_P  
G
G
S
VCCP  
12V_FILTER  
48  
VBST3  
IMON  
13  
14  
CFB  
RFB  
2
1
RFB  
47  
46  
45  
44  
43  
42  
41  
VSP  
TG3  
SWN3  
DRVON  
BST2  
TG2  
D
15  
16  
17  
18  
19  
20  
VSN  
G
S
DIFFOUT  
COMP  
VFB  
DRVON  
RF  
CH  
NCP5395T  
48L 7x7 QFN  
FLAG = GND  
D
S
D
CF  
PWM2_SENSE_N  
PWM2_SENSE_P  
RDRP  
R
G
S
G
VDRP  
VDFB  
CSSUM  
DAC  
SWN2  
BG2  
CDFB  
RDFB  
RT  
12V_FILTER  
21  
22  
VCCP  
SWN1  
TG1  
40  
39  
12V_FILTER  
RISO  
RISO  
38  
37  
23  
24  
12VMON  
VCC  
12V_FILTER  
2
1
D
G
BST1  
S
C37  
VCCP  
+5.0V  
VTT  
D
S
D
S
PWM1_SENSE_N  
PWM1_SENSE_P  
G
G
PWM1_SENSE_P  
PWM1_SENSE_N  
PWM2_SENSE_P  
12V_FILTER  
ENABLE  
PWM2_SENSE_N  
PWM3_SENSE_P  
PWM3_SENSE_N  
Figure 3. Typical 3 Phase Application  
http://onsemi.com  
4
NCP5395T  
VTT  
PSI#_CPU  
1
2
12V_FILTER  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
12V_FILTER  
D
G
S
D
S
D
G
G
PWM3_SENSE_N  
PWM3_SENSE_P  
S
IMON  
VCCP  
12V_FILTER  
48  
47  
46  
45  
VBST3  
TG3  
13  
14  
IMON  
VSP  
2
1
CFB  
RFB  
RFB  
CH  
D
G
15  
16  
17  
18  
19  
20  
21  
22  
VSN  
SWN3  
DRVON  
BST2  
TG2  
DRVON  
S
DIFFOUT  
COMP  
VFB  
RF  
CF  
NCP5395T  
48L 7x7 QFN  
FLAG = GND  
44  
43  
D
S
D
G
PWM2_SENSE_N  
PWM2_SENSE_P  
RDRP  
G
42  
VDRP  
VDFB  
CSSUM  
DAC  
SWN2  
BG2  
S
CDFB  
41  
12V_FILTER  
40  
RDFB  
RT  
VCCP  
SWN1  
TG1  
12V_FILTER  
39  
38  
37  
RISO  
RISO  
23  
24  
2
1
12VMON  
VCC  
12V_FILTER  
D
G
BST1  
S
VCCP  
D
S
D
+5.0V  
VTT  
PWM1_SENSE_N  
PWM1_SENSE_P  
PWM4_GATE  
G
G
S
PWM1_SENSE_P  
PWM1_SENSE_N  
12V_FILTER  
12V_FILTER  
PWM2_SENSE_P  
2
1
ENABLE  
D
S
PWM2_SENSE_N  
PWM3_SENSE_P  
G
BST  
1
VCC  
4
DRH  
SW  
PWM3_SENSE_N  
DRVON  
PWM4_GATE  
PWM4_SENSE_P  
8
7
5
6
OD  
IN  
3
2
DRL  
PGND  
D
S
D
S
PWM4_SENSE_N  
PWM4_SENSE_P  
NCP5359  
G
G
PWM4_SENSE_N  
Figure 4. Typical 4 Phase Application  
http://onsemi.com  
5
NCP5395T  
Table 1. Pin Descriptions  
Pin No.  
Symbol  
Description  
1
2
BG3  
PSI  
Low side gate drive #3  
Power Saving Control. Low = single phase operation; High = normal operation  
3
VID0  
Voltage ID DAC input  
Voltage ID DAC input  
Voltage ID DAC input  
Voltage ID DAC input  
Voltage ID DAC input  
Voltage ID DAC input  
Voltage ID DAC input  
4
VID1  
5
VID2  
6
VID3  
7
VID4  
8
VID5  
9
VID6  
10  
11  
VID7/AMD  
ROSC  
Voltage ID DAC input. Pull to V (5 V) to enable AMD 6bit DAC code.  
CC  
A resistance from this pin to ground programs the oscillator frequency and provides a 2 V reference  
for programming the ILIM voltage.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
FLAG  
ILIM  
Over current shutdown threshold setting. ILIM = VDRP 1.3 V. Resistor divide ROSC to set threshold  
0 to 1.1 V analog signal proportional to the output load current. VSN referenced Clamped to 1.1 Vmax  
Noninverting input to the internal differential remote sense amplifier  
Inverting input to the internal differential remote sense amplifier  
Output of the differential remote sense amplifier  
Output of the compensation amplifier  
IMON  
VSP  
VSN  
DIFFOUT  
COMP  
VFB  
Compensation amplifier voltage feedback  
VDRP  
VDFB  
CSSUM  
DAC  
Voltage output signal proportional to current used for current limit and output voltage droop  
Droop Amplifier Voltage Feedback  
Inverted Sum of the Differential Current Sense inputs  
DAC output used to provide feed forward for dynamic VID  
Monitor a 12 V input through a resistor divider  
12VMON  
VCC  
Power for the internal control circuits with UVLO monitor  
Noninverting input to current sense amplifier #4  
Inverting input to current sense amplifier #4  
CS4P  
CS4N  
CS3P  
CS3N  
CS2P  
CS2N  
CS1P  
CS1N  
EN  
Noninverting input to current sense amplifier #3  
Inverting input to current sense amplifier #3  
Noninverting input to current sense amplifier #2  
Inverting input to current sense amplifier #2  
Noninverting input to current sense amplifier #1  
Inverting input to current sense amplifier #1  
Threshold sensitive input. High = startup, Low =shutdown.  
Open collector output. High indicates that the output is regulating  
PWM output pulse to gate driver.  
VR_RDY  
G4  
BG1  
Low side gate drive #1  
BST1  
TG1  
Upper MOSFET floating bootstrap supply for driver#1  
High side gate drive #1  
SWN1  
VCCP  
BG2  
Switch Node #1  
Power V for gate drivers with UVLO monitor  
CC  
Low side gate drive #2  
SWN2  
TG2  
Switch Node #2  
High side gate drive #2  
BST2  
DRVON  
SWN3  
TG3  
Upper MOSFET floating bootstrap supply for driver#2  
Bidirectional Gate Drive Enable  
Switch Node #3  
High side gate drive #3  
BST3  
GND  
Upper MOSFET floating bootstrap supply for driver#3  
Power supply return (QFN Flag)  
http://onsemi.com  
6
NCP5395T  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
ELECTRICAL INFORMATION  
Controller Power Supply Voltages to GND  
Driver Power Supply Voltages to GND  
HighSide Gate Driver Supplies: BSTx to SWNx  
V
0.3, 7  
V
V
V
CC  
V
CCP  
0.3, 15  
V
V  
35 V wrt/GND  
40 V 50 ns wrt/GND  
0.3, 15 wrt/SWN  
BST  
SWN  
HighSide FET Gate Driver Voltages: TGx to SWNx  
Switch Node: SWNx  
V
V  
BOOT + 0.3 V  
35 V 50 ns wrt/GND  
0.3, 15 wrt/SWN  
5 V (200 ns)  
V
V
V
TG  
SWN  
V
SWN  
35  
40 V 50 ns wrt/GND  
5 VDC  
10 V (200 ns)  
LowSide Gate Drive: BGx  
V
BG  
AGND  
V
CC  
+ 0.3 V  
5 V (200 ns)  
0.3, 6  
0
Logic Inputs  
V
V
V
LOGIC  
GND  
V
GND  
V−  
GND 300  
1.1  
mV  
V
Imon Out  
V
IMON  
All Other Pins  
0.3, 5.5  
V
THERMAL INFORMATION  
Thermal Characteristic  
QFN Package (Note 1)  
R
30.5  
°C/W  
q
JA  
Operating Junction Temperature Range (Note 2)  
Operating Ambient Temperature Range  
Maximum Storage Temperature Range  
T
0 to 125  
0 to +70  
55 to +150  
1
°C  
°C  
°C  
J
T
AMB  
T
STG  
Moisture Sensitivity Level  
QFN Package  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*All signals referenced to GND unless noted otherwise.  
*The maximum package power dissipation must be observed.  
1. JESD 515 (1S2P DirectAttach Method) with 0 LFM  
2. Operation at 40°C to 0°C guaranteed by design, not production tested.  
http://onsemi.com  
7
 
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIER  
Open Loop DC Gain  
C = 60 pF to GND,  
L
100  
18  
dB  
MHz  
°
L
R = 10 kW to GND  
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 60 pF to GND,  
L
R = 10 kW to GND  
L
C = 60 pF to GND,  
70  
L
R = 10 kW to GND  
L
DV = 100 mV, G = 10V/V,  
10  
V/ms  
in  
DV = 1.5 V 2.5 V,  
out  
C = 60 pF to GND,  
L
DC Load = 125 mA to GND  
Maximum Output Voltage  
Minimum Output Voltage  
Output Source Current  
Output Sink Current  
10 mV of Overdrive,  
SOURCE  
3.0  
75  
V
I
= 2.0 mA  
10 mV of Overdrive,  
= 500 mA  
mV  
mA  
mA  
I
SINK  
10 mV of Overdrive,  
= 3.5 V  
1.5  
0.65  
2.0  
1.0  
V
out  
10 mV of Overdrive,  
= 0.1 V  
V
out  
DIFFERENTIAL SUMMING AMPLIFIER  
V+ Input Pull down Resistance  
DRVON = low  
DRVON = high  
0.6  
6.0  
kW  
V+ Input Bias Voltage  
DRVON = low  
DRVON = high  
0.8  
0.05  
0.88  
0.1  
0.95  
V
Input Voltage Range (Note 3)  
0.3  
3.0  
V
3 dB Bandwidth  
C = 80 pF to GND,  
L
15  
MHz  
L
R = 10 kW to GND  
Closed Loop DC gain VS to Diffout  
Maximum Output Voltage  
VS+ to VS= 0.5 V to 1.6 V  
0.98  
3.0  
1.0  
1.02  
V/V  
V
10 mV of Overdrive,  
I
= 2 mA  
SOURCE  
Minimum Output Voltage  
Output Source Current  
10 mV of Overdrive,  
= 1 mA  
0.5  
V
I
SINK  
10 mV of Overdrive,  
= 3 V  
1.5  
1.0  
2.0  
1.5  
mA  
mA  
V
out  
Output Sink Current  
10 mV of Overdrive,  
= 0.2 V  
V
out  
INTERNAL OFFSET VOLTAGE  
Offset Voltage to the (+) Pin of the Error Amp & the  
VDRP Pin  
2  
0
+2  
mV  
3. Design guaranteed.  
http://onsemi.com  
8
 
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDROOP AMPLIFIER  
Inverting Voltage Range  
Open Loop DC Gain  
0
1.3  
3.0  
V
C = 20 pF to GND including ESD  
L
100  
dB  
L
R = 1 kW to GND  
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 20 pF to GND including ESD  
L
18  
70  
10  
MHz  
°
L
R = 1 kW to GND  
C = 20 pF to GND including ESD  
L
R = 1 kW to GND  
L
C = 20 pF to GND including ESD  
V/ms  
V
L
R = 1 kW to GND  
L
Maximum Output Voltage  
Minimum Output Voltage  
Output Source Current  
Output Sink Current  
10 mV of Overdrive,  
3.0  
I
= 4.0 mA  
SOURCE  
10 mV of Overdrive,  
= 1.0 mA  
1.0  
V
I
SINK  
10 mV of Overdrive,  
= 3.0 V  
4.0  
1.0  
mA  
mA  
V
out  
10 mV of Overdrive,  
= 1.0 V  
V
out  
CSSUM AMPLIFIER  
Current Sense Input to V  
3 dB Bandwidth  
C = 10 pF to GND,  
L
12  
MHz  
DRP  
L
R = 10 kW to GND  
Current Summing Amp Output Offset Voltage  
Maximum CSSUM Output Voltage  
CSx CSNx = 0, CSx = 1.1 V  
CSx CSxN = 0.2 V  
13  
8.0  
mV  
V
3.0  
(all phases) I  
= 1 mA  
SOURCE  
Minimum CSSUM Output Voltage  
CSx CSxN = 0.7 V  
(all phases) I = 1 mA  
0.3  
V
SINK  
Output Source Current  
Output Sink Current  
PSI  
V
= 3.0 V  
= 0.3 V  
1.0  
4.0  
mA  
mA  
out  
V
out  
Enable High Input Leakage Current  
Threshold  
External 1k Pullup to 3.3 V  
450  
1.0  
770  
mA  
mV  
ns  
600  
100  
Delay  
DRVON  
Output High Voltage  
Output Low Voltage  
Delay Time  
Sourcing 500 mA  
Sinking 500 mA  
3.0  
0.7  
V
V
Propagation delays  
10  
10  
ns  
ns  
Rise Time  
C (PCB) = 20 pF,  
L
DVo = 10% to 90%  
Fall Time  
C (PCB) = 20 pF,  
10  
ns  
L
DVo = 10% to 90%  
Internal PullDown Resistance  
35  
70  
140  
2.0  
kW  
V
CC  
Voltage when DRVON Output Valid  
V
CURRENT SENSE AMPLIFIERS  
Input Bias Current  
CSx = CSxN = 1.4 V  
all VIOS  
50  
0.3  
120  
2.5  
50  
2.0  
120  
2.5  
nA  
V
Common Mode Input Voltage Range  
Differential Mode Input Voltage Range  
Current Sharing Offset CS1 to CSx (Note 3)  
mV  
mV  
http://onsemi.com  
9
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
CURRENT SENSE AMPLIFIERS  
Current Sense Input to PWM Gain  
Current Sense Input to CSSUM Gain  
IMON  
0 V < CSx CSxN < 0.1 V,  
0 V < CSx CSxN < 0.1 V  
5.45  
5.75  
6.05  
V/V  
V/V  
3.834  
3.7  
3.574  
V
DRP  
to IMON Gain  
1.325 V > V  
> 1.75 V  
1.965  
2.02  
V/V  
DRP  
Current Sense Input to V  
3 dB Bandwidth  
C = 30 pF to GND,  
L
4.0  
MHz  
DRP  
L
R = 100 kW to GND  
Output Referred Offset Voltage  
Minimum Output Voltage  
Maximum Output Voltage  
Output Sink Current  
V
V
= 1.5 V, I  
= 0 mA  
SOURCE  
0
25  
50  
0.1  
mV  
V
DRP  
DRP  
= 1.3 V, I  
= 25 mA  
SINK  
I
= 300 mA  
1.0  
175  
1.1  
V
out  
V
out  
= 0.3 V  
mA  
V
Maximum Clamp Voltage  
IMON VSN V  
R
= HIGH  
1.2  
DRP  
= Open  
LOAD  
OSCILLATOR  
Switching Frequency Range  
Switching Frequency Accuracy  
Switching Frequency Accuracy  
Switching Frequency Accuracy (2ph or 4ph)  
Switching Frequency Accuracy (3ph)  
ROSC Output Voltage  
100  
1100  
5.0  
kHz  
%
200 kHz < F  
100 kHz < F  
< 600 kHz  
< 1 MHz  
SW  
10  
%
SW  
R
R
= 16.2k  
454  
468  
1.93  
502  
518  
2.05  
kHz  
kHz  
V
OSC  
OSC  
= 16.2k  
2.00  
MODULATORS (PWM Comparators)  
Minimum Pulse Width  
Fsw = 800 kHz  
30  
1.1  
250  
ns  
V
Magnitude of the PWM Ramp  
0% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain LO  
50  
400  
mV  
100% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain HI  
1.1  
1.35  
1.6  
15  
V
PWM Phase Angle Error  
Between Adjacent Phases  
15  
°
VR_RDY (Power Good) OUTPUT  
VR_RDY Output Saturation Voltage  
VR_RDY Rise Time (Note 3)  
I
= 10 mA  
0.4  
V
PGD  
External pullup of 1 KW to 1.25 V,  
= 45 pF, DVo = 10% to 90%  
100  
150  
ns  
C
TOT  
VR_RDY Output Voltage at Powerup  
VR_RDY pulled up to 5 V via 2 kW,  
3 x t  
1.0  
V
t
R(VCC)  
R(5V)  
100 ms t  
20 ms  
R(VCC)  
VR_RDY High Output Leakage Current  
VR_RDY = 5.5 V via 1 K  
0.1  
mA  
VR_RDY Upper Threshold Voltage (INTEL)  
VCore Increasing, DAC = 1.3 V  
300  
250  
mV  
(below  
DAC)  
VR_RDY Lower Threshold Voltage (INTEL)  
VR_RDY Upper Threshold Voltage (AMD)  
VR_RDY Lower Threshold Voltage (AMD)  
VCore Decreasing, DAC = 1.3 V  
VCore Increasing, DAC = 1.3 V  
VCore Decreasing, DAC = 1.3 V  
390  
350  
300  
142  
192  
mV  
(below  
DAC)  
mV  
(below  
DAC)  
282  
mV  
(below  
DAC)  
http://onsemi.com  
10  
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VR_RDY (Power Good) OUTPUT  
VR_RDY Rising Delay  
VR_RDY Falling Delay  
PWM G4 OUTPUT  
VCore Increasing  
250  
5.0  
ms  
ms  
VCore Decreasing  
Sourcing 500 mA  
Sinking 500 mA  
Output High Voltage  
3.0  
1.4  
1.5  
1.6  
0.7  
V
V
Mid Output Voltage  
Output Low Voltage  
V
Delay + Rise Time (Note 3)  
C (PCB) = 50 pF,  
10  
ns  
L
DVo = V to GND  
CC  
Delay + Fall Time (Note 3)  
C (PCB) = 50 pF,  
10  
ns  
L
DVo = GND to V  
CC  
TriState Output Leakage (Note 3)  
Gx = 2.5 V, x = 14  
1.5  
mA  
Output Impedance −  
HI or LO State  
Max Resistance to V (HI) or  
GND (LO)  
75  
150  
W
CC  
Minimum V for Valid PWM Output Level  
2.0  
V
CC  
PWM 4 2/3/4 Phase Detection  
2 Phase Mode  
Note Gate 4 tied to V  
3.2  
1.2  
0
V
V
V
V
CC  
CC  
4 Phase Mode  
Note Gate Driver will pull to 1.5 V  
Note Gate 4 tied to GND  
2.8  
0.8  
3 Phase Mode  
DIGITAL SOFTSTART  
SoftStart Ramp Time  
DAC = 0 to DAC = 1.1 V  
1.0  
1.3  
ms  
VR11 V  
time  
Not used in Legacy Startup  
400  
500  
600  
ms  
boot  
VID7/VR11/AMD/LEGACY INPUT  
VID Threshold  
450  
100  
200  
600  
770  
100  
300  
mV  
nA  
ns  
VR11 Input Bias Current  
Delay Before Latching VID Change (VID Deskewing)  
(Note 3)  
Measured from the Edge of the 1st  
VID Change  
AMD Upper Threshold  
Note: When above this threshold  
the controller will ramp directly to  
4.8  
V
V
VID without stopping at V  
boot  
AMD Lower Threshold  
3.33  
http://onsemi.com  
11  
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
ENABLE INPUT  
Enable High Input Leakage Current  
VR11.1 Threshold  
Pullup to 1.3 V  
450  
200  
770  
1.5  
nA  
mV  
V
600  
1.3  
1.1  
200  
3.5  
AMD Upper Threshold  
AMD Lower Threshold  
AMD Total Hysteresis  
Enable Delay Time  
0.9  
V
RisingFalling Threshold  
mV  
ms  
Measure time from Enable  
transitioning HI to when SS begins  
CURRENT LIMIT  
ILIM to VDRP Gain  
0.97  
1.00  
0.25  
0.333  
0.5  
0.1  
1.03  
V/V  
V/V  
V/V  
V/V  
mA  
ILIM to VRDP Gain in PSI 4 Phase  
ILIM to VDRP Gain in PSI 3 Phase  
ILIM to VDRP Gain in PSI 2 Phase  
ILIM Pin Input Bias Current  
ILIM Pin Working Voltage Range  
ILIM accuracy  
1.0  
2.0  
25  
0.1  
25  
V
Measured with respect to the ILIM  
setting  
mV  
Delay  
120  
ns  
OVERVOLTAGE PROTECTION  
VR11 Over Voltage Threshold  
DAC+  
160  
DAC+  
190  
DAC+  
210  
mV  
mV  
ns  
AMD Over Voltage Threshold  
DAC+  
210  
DAC+  
235  
DAC+  
260  
Delay  
100  
UNDERVOLTAGE PROTECTION  
V
CC  
V
CC  
V
CC  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
4.0  
3.8  
4.25  
4.05  
200  
4.5  
4.3  
V
V
150  
mV  
12VMON UVLO  
12VMON (High Threshold)  
12VMON (Low Threshold)  
DAC OUTPUT  
V
V
Valid  
Valid  
0.6  
0.5  
0.8  
v
v
CC  
0.4  
CC  
Output Source Current  
Output Sink Current  
VID INPUTS  
V
= 1.6 V  
= 0.3 V  
0
5.0  
16  
mA  
mA  
out  
V
out  
5.0  
Threshold  
450  
100  
10  
600  
770  
100  
25  
mV  
nA  
mA  
ns  
VR11 Mode Leakage  
AMD Mode Input Bias Current  
st  
Delay before Latching VID Change  
(VID Deskewing) (Note 3)  
Measured from the edge of the 1  
VID change  
200  
300  
http://onsemi.com  
12  
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL DAC SLEW RATE LIMITER  
Slew Rate Limit (Intel Mode)  
Slew Rate Limit (AMD Mode)  
SoftStart Slew Rate  
12.5  
3.125  
15  
3.75  
mV/ms  
mV/ms  
mV/ms  
0.84  
INPUT SUPPLY CURRENT  
V
CC  
Operating Current  
EN Low, No PWM  
20  
42  
mA  
V
SUPPLY VOLTAGE  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
POR  
CCP  
V
V
V
V
8.2  
7.2  
1.0  
3.0  
9.0  
8.0  
9.5  
8.5  
V
V
V
CCP  
CCP  
CCP  
CCP  
Voltage at which the Driver OVP  
becomes active  
3.17  
BOOST PIN UVLO  
BOOST V UVLO Start Threshold  
3.45  
3.3  
50  
4.15  
3.85  
V
V
CC  
BOOST V UVLO Stop Threshold  
CC  
BOOST V UVLO Hysteresis  
200  
mV  
CC  
BOOST SUPPLY CURRENT  
I
I
I
I
Standby Current  
EN = V , V  
CCP  
= 12 V  
= 12 V  
= 12 V  
= 12 V  
2.5  
2.5  
2.5  
2.5  
mA  
mA  
mA  
mA  
VCCP_NORM  
CC  
Standby Current  
Standby Current  
Standby Current  
IN = V , V  
CCP CCP  
0.25  
0.25  
0.25  
BST1_SD  
BST2_SD  
BST3_SD  
IN = GND, V  
CCP  
IN = GND, V  
CCP  
st  
STARTUP HIGH SIDE SHORT TRIP (Active only during 1 power on)  
V
swx  
Output Overvoltage Trip Threshold at Startup  
Power Startup time, V > 9 V  
1.7  
2.03  
V
CC  
http://onsemi.com  
13  
NCP5395T  
ELECTRICAL CHARACTERISTICS  
0°C < T < 70°C; 0°C < T < 125°C; 4.75 < V < 5.25 V; All DAC Codes; C  
= 0.1 mF unless otherwise noted.  
A
J
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
HIGH SIDE DRIVER  
W
R
R
Output Resistance, Sourcing  
Output Resistance, Sinking  
Transition Time  
V
V
V  
V  
= 12 V  
= 12 V  
1.8  
1.0  
25  
20  
15  
5.0  
2.5  
H_TG  
H_TG  
BST  
SW  
BST  
SW  
Tr  
C
C
= 3 nF, V  
V  
V  
= 12 V  
= 12 V  
ns  
ns  
ns  
DRVH  
DRVH  
LOAD  
LOAD  
BST  
BST  
SW  
Tf  
Transition Time  
= 3 nF, V  
SW  
Tpdh  
Propagation Delay (Note 4)  
Driving High, C  
= 3 nF,  
DRVH  
LOAD  
V
CCP  
= 12 V  
LOW SIDE DRIVER  
R
R
Output Resistance, Sourcing  
Output Resistance, Sinking  
Transition Time  
SW = GND  
SW = V  
1.6  
1.0  
20  
20  
15  
5.0  
2.5  
W
W
H_BG  
L_BG  
CC  
Tr  
Tf  
C
C
= 3 nF  
= 3 nF  
ns  
ns  
ns  
DRVL  
LOAD  
LOAD  
Transition Time  
DRVL  
Tpdh  
Propagation Delay (Note 4)  
Driving High, C  
= 3 nF,  
DRVL  
LOAD  
V
CCP  
= 12 V  
V
NCDT  
Negative Current Detector Threshold (Note 3)  
1.0  
mV  
THERMAL SHUTDOWN  
Tsd Thermal Shutdown (Note 3)  
Tsdhys Thermal Shutdown Hysteresis (Note 3)  
VRM 11 DAC  
150  
170  
20  
°C  
°C  
System Voltage Accuracy  
1.0 V < DAC < 1.6 V  
0.8 V < DAC < 1.0 V  
0.5 V < DAC < 0.8 V  
0.5  
5.0  
8.0  
%
mV  
mV  
4. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram.  
IN  
tpdl  
tf  
DRVL  
DRVL  
DRVL  
90%  
90%  
2V  
10%  
tpdh  
10%  
th  
DRVH  
tpdl  
tf  
tr  
DRVL  
DRVH  
DRVH  
DRVH  
90%  
90%  
10%  
2V  
10%  
tpdh  
DRVHSW  
DRVL  
SW  
Figure 5. Timing Diagram  
http://onsemi.com  
14  
 
NCP5395T  
Table 2. VRM11 VID CODES  
V
ID7  
V
ID6  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
800 mV  
400 mV  
200 mV  
100 mV  
50 mV  
25 mV  
12.5 mV  
6.25 mV  
Voltage (V)  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
http://onsemi.com  
15  
 
NCP5395T  
Table 2. VRM11 VID CODES  
V
ID7  
V
ID6  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
800 mV  
400 mV  
200 mV  
100 mV  
50 mV  
25 mV  
12.5 mV  
6.25 mV  
Voltage (V)  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
HEX  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
http://onsemi.com  
16  
NCP5395T  
Table 2. VRM11 VID CODES  
V
ID7  
V
ID6  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
800 mV  
400 mV  
200 mV  
100 mV  
50 mV  
25 mV  
12.5 mV  
6.25 mV  
Voltage (V)  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
HEX  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
http://onsemi.com  
17  
NCP5395T  
Table 2. VRM11 VID CODES  
V
ID7  
V
ID6  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
800 mV  
400 mV  
200 mV  
100 mV  
50 mV  
25 mV  
12.5 mV  
6.25 mV  
Voltage (V)  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
HEX  
8A  
8B  
8C  
8D  
8E  
8F  
90  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
FE  
FF  
OFF  
http://onsemi.com  
18  
NCP5395T  
Parameter  
Test Condition  
MIN  
TYP  
MAX  
Units  
AMD DAC  
System Voltage Accuracy  
1.0 V < DAC < 1.55V  
0.6 V DAC < 1.0V  
0.375 V < DAC < 0.6V  
0.5  
1.0  
2.0, +3.0  
%
%
%
5. NOTE: Internal DAC voltage is centered 19 mV below the listed voltage for VR11.1. No DAC offset is implemented for AMD operation.  
DAC should be equal to the Nominal V shown in the table.  
out  
Table 3. AMD PROCESSOR 6BIT VID CODE  
(V ) Codes  
ID  
Nominal  
V
V
V
V
V
V
ID0  
V
Units  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
ID5  
ID4  
ID3  
ID2  
ID1  
out  
0
0
0
0
0
0
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.300  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
0.775  
0.7625  
0.7500  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
http://onsemi.com  
19  
 
NCP5395T  
Table 3. AMD PROCESSOR 6BIT VID CODE  
(V ) Codes  
ID  
Nominal  
V
V
V
V
V
V
ID0  
V
Units  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
ID5  
ID4  
ID3  
ID2  
ID1  
out  
1
0
0
0
1
0
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
http://onsemi.com  
20  
NCP5395T  
FUNCTIONAL DESCRIPTIONS  
General  
sums the remote output voltage with a 1.3 V reference. The  
resulting voltage at the output of the remote sense amplifier is:  
The NCP5395T dual edge modulated multiphase PWM  
controller is specifically designed with the necessary  
features for a high current CPU system. The IC consists of  
the following blocks: Precision Flexible DAC, Differential  
Remote Voltage Sense Amplifier, High Performance  
Voltage Error Amplifier, Differential Current Feedback  
Amplifiers, Precision Oscillator and Sawtooth Generator,  
and PWM Comparators with Hysteresis. The controller also  
supports power saving mode as per Intel VR11.1 by  
accurately monitoring the current and switching between  
multiphase and single phase operations as requested by the  
microprocessor system. Protection features include:  
Undervoltage Lockout, SoftStart, Overcurrent Protection,  
Overvoltage Protection, and Power Good Monitor.  
VDiffout + Vout ) 1.3 V * Vdac * Voutreturn  
This signal then goes through a standard compensation  
circuit and into the inverting input of the error amplifier. The  
noninverting input of the error amplifier is also connected  
to the 1.3 V reference. The 1.3 V reference then is subtracted  
out and the error signal at the comp pin of the error amplifier  
is as normally expected:  
V
comp + Vdac * Vout  
The noninverting input of the remote sense amplifier is  
pulled low through a small current sink during a fault condition  
to prevent accidental charging of the regulator output.  
2/3/4 Phase Operation  
Precision Programmable DAC  
The part can be configured to 2, 3, or 4phase mode. In  
2or 3phase mode, the internal drivers will be used. In  
4phase mode, an external driver must be used to drive  
phase 4. The NCP5359 driver is suggested to be used with  
the controller. The input to G4 pin will decide which phase  
mode the system is in operation. Please refer to the  
Application Schematics for more information.  
A precision flexible DAC is provided. The DAC will  
conform to 2 different specifications: AMD or VR11.1. The  
VID7/AMD pin is provided to determine which DAC  
specification will be used and which softstart mode the part  
will use for power up. There are two softstart modes. If  
VID7/AMD is above it’s threshold the device will softstart  
and ramp directly to the DAC code present on the VID  
inputs. The following truth table describes the functionality:  
High Performance Voltage Error Amplifier  
A high performance voltage error amplifier is provided.  
The error amplifier’s inverting input is VFB and its output  
is COMP. A standard type 3 compensation circuit is used  
compensate the system. This involves a 3 pole, 2 zero  
compensation network. The comp pin is pulled to ground  
before softstart for smooth start up.  
VID7/AMD Pin  
VID7  
Not active  
Active  
Enable Pin  
Mode  
SoftStart  
Mode  
Above AMD  
Threshold  
AMD  
Thresholds  
Ramp to  
VID  
Below AMD  
Threshold  
VR11.1  
Thresholds  
Ramp to  
Vboot  
Differential Current Sense  
Four differential amplifiers are provided to sense the  
output current of each phase. These current sense amplifiers  
sense the current through the corresponding phase. A  
voltage is generated across a current sense element such as  
an inductor or sense resistor. The sense element should be  
between 0.3 mW and 1.5 mW. It is possible to sense both  
negative and positive going current. The information is used  
to create the signal CSSUM and provide feedback for  
current sharing.  
VID Inputs  
VID0VID7 control the target regulation voltage during  
normal operation. In AMD mode the VID capture is enabled  
just before softstart. In VR11 mode the VID capture is  
enabled at the end of the V  
is valid the DAC will track to it. If an invalid VID occurs it  
waiting period. If the VID  
BOOT  
will be ignored for 10 ms before the controller shuts down.  
Remote Sense Amplifier  
A high performance differential amplifier is provided to  
accurately sense the output voltage of the regulator. The  
noninverting input should be connected to the regulator’s  
output voltage. The inverting input should be connected to  
the return line of the regulator. Both connection points are  
intended to be at a remote point so that the most accurate  
reading of the output voltage can be obtained. The amplifier  
is configured in a very unique way. First, the gain of the  
amplifier is internally set to unity. Second, both the inverting  
and noninverting inputs of the amplifier are summing  
nodes. The inverting input sums the output voltage return  
voltage with the DAC voltage. The noninverting input  
Precision Oscillator  
A programmable precision oscillator is provided. This  
oscillator is programmed by the summed resistance of an  
oscillator resistor and a current limit resistor. The output  
voltage of this pin is 2V used as the reference for the current  
limit. The oscillator frequency range is 125 KHz/phase to  
1000 KHz/phase. The oscillator frequency is proportional to  
the current drawn out of the OSC pin. Connecting a resistor  
(R ) from OSC pin to the ground will set the target  
osc  
oscillator frequency. The relation between the R and F  
osc  
sw  
can be described as below:  
http://onsemi.com  
21  
NCP5395T  
Over Voltage Protection  
R
osc  
= 15530 x F ^(-1.111)  
sw  
The output voltage is monitored at the input of the  
differential amplifier. During normal operation, if the output  
voltage exceeds the DAC voltage by 185 mV, or 285 mV if  
in AMD mode, the VR_RDY flag will transition low the  
high side gate drivers set to low, and the low side gate drivers  
are all brought to high until the voltage falls below the OVP  
threshold. If the over voltage trip 8 times the output voltage  
will shut down. The OVP will not shut down the controller  
if it occurs during softstart. This is to allow the controller  
to pull the output down to the DAC voltage and start up into  
a precharged output.  
PWM Comparators  
Four PWM comparators are incorporated within the IC.  
The noninverting input of the comparators is connected to  
the output of the error amplifier. The inverting input is  
connected to a summed output of the phase current and the  
oscillator ramp voltage with an offset. The output of the  
comparator generates the PWM control signals.  
During steady state operation, the duty cycle will center  
on the valley of the sawtooth waveform. During a transient  
event, the controller will operate somewhat hysteretic, with  
the duty cycle climbing along either the down ramp, up  
ramp, or both.  
VCCP Power ON Reset OVP  
The V  
power on reset OVP feature is used to protect  
CCP  
the CPU during start up. When V  
is higher than 3.2 V, the  
SoftStart  
CCP  
Softstart is implemented internally. A digital counter  
steps the DAC up from zero to the target voltage based on the  
predetermined rate in the spec table. There are 2 possible  
soft start modes: VR11 and AMD. AMD mode simply ramps  
gate driver will monitor the switching node SW pin. If  
SWNx pin higher than 1.9 V, the bottom gate will be forced  
to high for discharge of the output capacitor. This works best  
if the 5 volt standby is diode OR’ed into V  
with the 12 V  
CCP  
V
core  
from 0 V directly to the DAC setting. The VR11 mode  
rail. The fault mode will be latched and the DRVON pin will  
ramps DAC to 1.1 V, pauses for 500 ms, reads the DAC  
be forced to low, unless V  
is reduced below the UVLO  
CCP  
setting, then ramps to the final DAC setting.  
threshold.  
Power Saving Mode  
Digital Slew Rate Limiter / SoftStart Block  
The controller is designed to allow power saving  
operation to maintain a maximum efficiency. When a low  
PSI signal from microcontroller is received, the controller  
will keep one phase operating while shedding other phases.  
The active one phase will operate in diode emulation mode,  
minimizing power losses in light load. The device also  
maintains an RPM operation in power saving mode. The  
12VMON input will be used for two purposes: feedforward  
input supply information for RPM mode and secondary  
power input voltage UVLO. When the low PSI signal is  
deasserted, the dropped phases will be pulled back in to be  
ready for heavy load and the device will be back to regular  
PWM mode.  
The slew rate limiter and the softstart block are to be  
implemented with a digital up/down counter controlled by  
an oscillator that is synchronized to VID line changes.  
During softstart the DAC will ramp at the softstart rate,  
after soft start is complete the ramp rate will follow either the  
Intel or the AMD slew rate depending on the mode.  
Under Voltage Lockouts  
An under voltage circuit senses the V input of the  
CC  
controller and the V  
input of the driver. During power up  
CCP  
the input voltage to the controller is monitored. The PWM  
outputs and the soft start circuit are disabled until the input  
voltage exceeds the threshold voltage of the comparators.  
Hysteresis is incorporated within the comparators.  
Adaptive Nonoverlap  
The DRVON is held low until V  
reaches the start  
CCP  
The nonoverlap dead time control is used to avoid shoot  
through damage to the power MOSFETs. When the PWM  
signal pull high, DRVL will go low after a propagation  
delay, the controller monitors the switching node (SWN) pin  
voltage and the gate voltage of the MOSFET to know the  
status of the MOSFET. When the low side MOSFET status  
is off an internal timer will delay turn on of the high–side  
MOSFET. When the PWM pull low, gate DRVH will go low  
after the propagation delay (tpdDRVH). The time to turn off  
the high side MOSFET is depending on the total gate charge  
of the highside MOSFET. A timer will be triggered once  
the high side MOSFET is turn off to delay the turn on the  
lowside MOSFET.  
threshold during startup. If V  
decreases below the stop  
CCP  
threshold, the output gate will be forced low unit input  
voltage V rises above the startup threshold.  
CCP  
Over Current Latch  
A programmable over current latch is incorporated within  
the IC. The oscillator pin provides the reference voltage for  
this pin. A resistor divider from the OSC pin generates the  
ILIM voltage. The latch is set when the current information  
on V  
exceeds the programmed voltage plus a 1.3 V  
droop  
offset. DRVON is immediately set low. To recover the part  
must be reset by the EN pin or by cycling V  
.
CC  
UVLO Monitor  
Layout Guidelines  
Layout is very important thing for design a DCDC  
If the output voltage falls greater than 300 mV below the  
DAC voltage for more than 5 ms the UVLO comparator will  
trip sending the VR_RDY signal low.  
converter. Bootstrap capacitor and V capacitor are most  
in  
http://onsemi.com  
22  
NCP5395T  
critical items, it should be placed as close as to the controller  
MOSFET source pin. Also, the gate drive trace should be  
considered. The gate drives has a high di/dt when switching,  
therefore a minimized gate drives trace can reduce the di/dv,  
raise and fall time for reduce the switching loss.  
IC. Another item is using a GND plane. Ground plane can  
provide a good return path for gate drives for reducing the  
ground noise. Therefore GND pin should be directly  
connected to the ground plane and close to the lowside  
1.25 V  
ENABLE  
VID Captured  
VID Valid  
1.25 V  
VID Not Valid  
1 ms 20 ms  
Rise Time  
5 V  
12 V  
12 V  
1 ms 20 ms  
Rise Time  
5 and 12 Good  
VR11 Softstart  
Mode Latched  
3.5 ms  
Calibration Time  
DRVON  
Softstart  
Slew Rate  
DAC Setting  
1.10 V  
Softstart  
Slew Rate  
500 ms  
VOUT/DAC  
VR_RDY  
500 ms  
Figure 6. VR11.1 Start Up Timing Diagram  
http://onsemi.com  
23  
NCP5395T  
ENABLE  
5 V  
VID7/AMD  
1 ms 20 ms  
Rise Time  
5 V  
1 ms 20 ms  
Rise Time  
V
CC  
12 V  
9.5 V  
V
CCP  
V
CC  
and V  
CCP  
AMD/Legacy Soft Start  
Mode Latched  
UVLO  
3.5 ms  
Calibration Time  
DRVON  
DAC Setting  
SS Slew  
Rate  
VOUT/DAC  
VR_RDY  
500 ms  
Figure 7. AMD / Legacy Start Up Timing Diagram  
http://onsemi.com  
24  
NCP5395T  
PACKAGE DIMENSIONS  
QFN48, 7x7, 0.5P  
CASE 485AJ01  
ISSUE O  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO THE PLATED  
TERMINAL AND IS MEASURED ABETWEEN  
0.15 AND 0.30 MM FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
LOCATION  
MILLIMETERS  
E
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
2X  
L
A3  
b
0.20 REF  
0.15  
C
0.20  
0.30  
D
7.00 BSC  
5.20  
7.00 BSC  
DETAIL A  
OPTIONAL CONSTRUCTION  
2X SCALE  
D2 5.00  
E
E2 5.00  
2X  
0.15  
C
C
5.20  
TOP VIEW  
e
K
L
0.50 BSC  
0.20  
0.30  
−−−  
0.50  
(A3)  
0.05  
0.08  
A
C
SOLDERING FOOTPRINT*  
A1  
2X  
5.20  
NOTE 4  
SEATING  
PLANE  
C
SIDE VIEW  
D2  
DETAIL A  
1
K
13  
25  
12  
2X  
7.30  
48X  
0.63  
E2  
48X  
0.30  
1
36  
0.50 PITCH  
48  
37  
DIMENSIONS: MILLIMETERS  
48X  
b
0.10 C A B  
e
48X  
L
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
e/2  
NOTE 3  
C
0.05  
BOTTOM VIEW  
The products described herein (NCP5395T), may be covered by one or more of the following U.S. patents; US07057381.There may be other patents pending.  
Devices are ESD sensitive, handling precaution recommended.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP5395T/D  

相关型号:

NCP5395TMNR2G

2/3/4-Phase Controller with On Board Gate Drivers for CPU Applications
ONSEMI

NCP5422

AC-DC Offline Switching Controllers/Regulators
ONSEMI

NCP5422A

Dual Out-of-Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5422A/D

Dual Out-of-Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5422ADR2

Dual Out-of-Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5422ADR2G

Dual Out−of−Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5422A_06

Dual Out−of−Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5423

Dual Out−of−Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5423DR2G

Dual Out−of−Phase Synchronous Buck Controller with Current Limit
ONSEMI

NCP5424

Dual Synchronous Buck Controller with Input Current Sharing
ONSEMI

NCP5424/D

Dual Synchronous Buck Controller with Input Current Sharing
ONSEMI

NCP5424A

Dual Synchronous Buck Controller
ONSEMI