NCP59763AMN080TBG [ONSEMI]

LDO Regulator, 3 A, High Accuracy (1%), Low Noise (4.3 VRMS), Low Dropout (70 mV);
NCP59763AMN080TBG
型号: NCP59763AMN080TBG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator, 3 A, High Accuracy (1%), Low Noise (4.3 VRMS), Low Dropout (70 mV)

文件: 总35页 (文件大小:6016K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LDO Regulator, 3 A, High  
Accuracy (1%), Low Noise  
(4.3 mVRMS), Low Dropout  
(70 mV)  
NCP59763  
www.onsemi.com  
The NCP59763 is a 3 A capable, low noise (4.3 μV  
), ultra low  
RMS  
dropout (70 mV max. at 3 A), fast load transient response linear  
regulator (LDO) equipped with an NMOS pass transistor without the  
need of external bias voltage. The device output voltage is adjustable  
from 0.5 V to 2.0 V through the use of an external resistor divider and  
also available in fixed output versions.  
1
The combination of high output current capability, ultra high PSRR  
across a wide frequency range and low noise makes this LDO ideal for  
powering noise sensitive high speed communication devices. Power  
sequencing application flexibility through enable pin, a user  
programmable softstart and a user programmable delayed power good  
circuit. Very low dropout voltage (70 mV) and high output voltage  
accuracy (1%) enables low input voltage and higher power efficiency.  
These set of features makes NCP59763 LDO an ideal solution for  
powering analog, digital and mixed signal high current demanding  
circuits like analogtodigital converters (ADCs), digitaltoanalog  
converters (DACs), high performance serializers and deserializers  
(SerDes), application specific integrated circuits (ASICs), field  
programmable gate arrays (FPGAs), digital signal processors (DSPs).  
DFN10, 3x3  
CASE 506EH  
MARKING DIAGRAM  
59763  
Pxxxy  
ALYWG  
G
59763P = Specific Device Code  
xxx  
y
A
= Output Voltage Version  
= Output Discharge Version  
= Assembly Location  
= Wafer Lot  
Features  
L
Y
= Year  
= Work Week  
= PbFree Package  
High Output Current 3 A  
W
G
High Accuracy 1% Including Line/Load Regulation and  
Temperature Variation  
(Note: Microdot may be in either location)  
Input Voltage Range: 1.1 V to 3.6 V  
Adjustable and Fixed Output Voltage Options Available  
Adj Voltage Range: 0.5 V to 2.0 V  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 33 of  
this data sheet.  
Fixed: 0.5 V, 0.8 V, 1.0 V, 1.2 V  
Dropout Voltage: 70 mV Typ. at 3 A  
Very Low Output Voltage Noise: 4.3 mV  
Typ. (10 Hz – 100 kHz)  
RMS  
Excellent Transient Response (20 mV Undershoot at 0.13 A Step)  
High PSRR: 70 dB  
Typical Applications  
High Speed Analog VCO, ADC, DAC  
FPGAs, DSPs, SerDes  
Imaging Sensors and ASICs  
Communications, Test, Measurement  
Programmable Soft Start  
Open Drain Power Good Output with Programmable Delay  
DFN10 3.0 x 3.0 mm with Enhanced Thermal Performance  
PbFree, Halogen Free/BFR Free and are RoHS Compliant  
C
10nF  
FF  
NCP59763  
1.1V3.6V  
IN  
0.5V2.0V / 3A  
R
ADJ1  
IN  
OUT  
OUT  
C
10uF  
C
OUT  
47uF  
IN  
EN  
FB  
CF  
R
PG  
100k  
C
10nF  
CF  
R
ADJ2  
NR/ SS  
DELAY  
C
NR/SS  
100nF  
PG  
PG  
GND  
C
DELAY  
2.2nF  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
June, 2021 Rev. 4  
NCP59763/D  
NCP59763  
Current  
Limit  
IN  
OUT  
Charge  
Pump  
Output  
discharge  
CF  
R
NR  
Progr.  
Voltage  
EA  
Reference  
I
SS  
FB  
NR/SS  
PG  
NR/SS  
Discharge  
90%  
of  
UVLO  
EN  
V
REF  
I
DELAY  
1.0V  
0.8V  
DELAY  
PG  
EN  
Logic  
&
0.8V  
Delays  
Thermal  
Shutdown  
Figure 2. Simplified Schematic Block Diagram  
1
2
3
4
5
10  
9
IN  
IN  
OUT  
OUT  
FB  
8
CF  
GND  
7
PG  
NR/SS  
EN  
6
DELAY  
(Top View)  
Figure 3. Pin Assignment  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1,2  
3
Name  
IN  
Description  
Input voltage supply pins.  
Internal supply filtering capacitor.  
PowerGood (PG) is an opendrain, activehigh output that indicates the status of V  
CF  
4
PG  
. When V  
OUT OUT  
OUT  
exceeds the PG trip threshold, the PG pin goes into a highimpedance state. When V  
is below this  
threshold the pin is driven to a lowimpedance state. A pullup resistor from 10 kW to 1 MW should be  
connected from this pin to a supply up to 3.6 V. The supply can be higher than the input voltage. Alter-  
natively, the PG pin can be left floating if output monitoring is not necessary.  
5
DELAY  
This pin is intended for adjusting the delay for signaling “V  
needs. Capacitor connected from this pin to GND with capacitance of 2.2 nF corresponds to 1 ms delay.  
The maximum delay applicable is 100 ms. If delay not necessary the DELAY pin can be left floating.  
is OK” according to the user application  
OUT  
6
7
EN  
Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shut-  
down mode. This pin must not be left floating.  
NR/SS  
Noisereduction and softstart pin. Connecting an external capacitor between this pin and ground  
reduces reference voltage noise and also enables the softstart function. Although not required, a  
10 nF or larger capacitor is recommended to be connected from NR/SS to GND (as close to the pin as  
possible) to maximize ac performance.  
8
FB  
This pin is the feedback connection to the center tap of an external resistor divider network that sets  
the output voltage. Connect this pin to OUT pin directly when output voltage adjustment is not needed  
(then the output voltage V  
will be equal to the nominal voltage V  
).  
OUT  
NOM  
9,10  
TAB  
OUT  
GND  
Regulated output voltage. It is recommended that the output capacitor effective capacitance ≥ 47 mF.  
Ground and thermal pad.  
www.onsemi.com  
2
NCP59763  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Value  
0.3 to +3.6  
Unit  
V
Input Voltage Range (Note 1)  
Enable Voltage Range  
V
IN  
EN  
PG  
PG  
V
V
0.3 to +3.6  
V
PowerGood Voltage Range  
PG Sink Current  
0.3 to +3.6  
V
I
0 to +5.0  
mA  
V
NR/SS Pin Voltage Range  
V
NR/SS  
Connecting to external voltage not allowed  
Connecting to external voltage not allowed  
Connecting to external voltage not allowed  
0.3 to +3.6  
CF Pin Voltage Range  
V
CF  
V
DELAY Pin Voltage Range  
V
DELAY  
V
FB Pin Voltage Range (Adjustable Devices)  
Output Voltage Range  
V
FB  
V
V
0.3 to (V + 0.3) 3.6  
V
OUT  
OUT  
IN  
Maximum Output Current  
I
Internally Limited  
Output Short Circuit Duration  
Continuous Total Power Dissipation  
Maximum Junction Temperature  
Storage Junction Temperature Range  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
Indefinite  
P
See Thermal Characteristics Table and Formula  
D
T
+150  
55 to +150  
2000  
°C  
°C  
V
JMAX  
T
STG  
ESD  
ESD  
HBM  
750  
V
CDM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection (except OUT pin) and is tested by the following methods:  
ESD Human Body Model tested per ANSI/ESDA/JEDEC JS001, EIA/JESD22A114  
ESD Charged Device Model tested per ANSI/ESDA/JEDEC JS002, EIA/JESD22C101  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
Table 3. THERMAL CHARACTERISTICS (Note 3)  
Rating  
Thermal Resistance, JunctiontoAmbient (Note 4)  
Thermal Resistance, JunctiontoCase (top)  
Thermal Resistance, JunctiontoCase (bottom) (Note 5)  
Thermal Resistance, JunctiontoBoard  
Symbol  
Value  
24  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
R
q
JA  
R
68  
q
JC(top)  
R
3.0  
3.3  
1.3  
3.3  
q
JC(bot)  
R
q
JB  
Characterization Parameter, JunctiontoTop  
Characterization Parameter, JunctiontoBoard  
y
JT  
y
JB  
3. Thermal data based on thermal simulation methodology specified in the JEDEC JESD51 series standards. The following assumptions are  
used in the simulations:  
These data were generated with only a single device at the center of a highK (2s2p) board with 3 in x 3 in copper area which follows the  
JEDEC51.7 guidelines. Top and bottom layer 2 oz. copper, inner planes 1 oz. copper.  
The GND pad connected to the PCB inner GND plane layer through a 3x5 thermal via array. All the vias are 0.3 mm diameter, plated.  
4. The junctiontoambient thermal resistance under natural convection is obtained in a simulation on a highK board, following the JEDEC51.7  
guidelines with assumptions as above, in an environment described in JESD512a.  
5. The junctiontocase (bottom) thermal resistance is obtained by simulating a cold plate test on the IC exposed pad. Test description can  
be found in the ANSI SEMI standard G3088.  
www.onsemi.com  
3
 
NCP59763  
Table 4. RECOMMENDED OPERATING CONDITIONS (Note 6)  
Rating  
Symbol  
Min  
1.1  
0.5  
0
Max  
3.6  
2.0  
3.6  
3.6  
125  
Unit  
V
Input Voltage  
V
IN  
Output Voltage  
V
OUT  
V
PowerGood Voltage  
Enable Voltage Range  
Junction Temperature  
V
V
PG  
EN  
V
0
V
T
J
40  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
Table 5. ELECTRICAL CHARACTERISTICS  
At V = 1.2 V or V = V  
+ 0.4 V whichever is greater, V = 1.1 V, FB connected to OUT, C = 10 nF, C  
= 100 nF, C  
NR/SS IN  
IN  
IN  
OUT(NOM)  
EN  
CF  
= 10 mF, C  
= 47 mF, I  
= 50 mA, T = 40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. (Note 7, 8, 9, 10)  
OUT  
O
U
T
J
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
OUT  
Output voltage range  
External resistor divider used  
V
OUT  
2.0  
V
(NOM)  
Output voltage accuracy  
(Note 11)  
V
V
0.8 V T = 40°C to 125°C 1.0  
1.0  
1.0  
1.0  
%
OUT(NOM)  
J
< 0.8 V T = 40°C to 100°C 1.0  
OUT(NOM)  
J
T = 100°C to 125°C 2.0  
J
ΔV  
/ΔV  
Line regulation  
V
1.2 V, V (V  
+ 0.4 V)  
0.05  
0.01  
70  
mV/V  
%/A  
mV  
OUT  
IN  
IN  
IN  
OUT(NOM)  
ΔV  
/ΔI  
Load regulation  
0 mA I  
3 A  
OUT OUT  
OUT  
V
INOUT dropout voltage  
I
= 3 A, V = 0 V, V = V  
,
130  
DO  
OUT  
FB  
IN  
OUT  
V
V
V
V
1.2 V  
IN  
I
Output current limit  
90% x V  
3.2  
4.0  
1.00  
0.1  
1.1  
1
5.2  
A
V
CL  
OUT  
OUT(NOM)  
V
Input voltage UVLO threshold  
Input voltage UVLO hysteresis  
Ground current  
rising  
0.85  
1.15  
UVLOTH  
IN  
IN  
V
falling  
V
UVLOHYS  
I
I
= 0 to 3 A  
1.8  
15  
mA  
mA  
nA  
dB  
GND  
OUT  
I
Shutdown supply current  
FB pin current  
V
V
I
0.4 V  
SHDN  
EN  
FB  
I
= V  
250  
10  
250  
FB  
OUT  
PSRR  
Noise  
Power supply rejection ratio  
= 1 A  
1 kHz  
70  
OUT  
10 kHz  
500 kHz  
50  
35  
Output noise voltage  
10 Hz to 100 kHz, l  
= 3 A  
4.3  
17  
mV  
RMS  
OUT  
dV  
OUT OUT  
/dI  
Output voltage load transient  
response  
I
= 50 mA to 3 A at 1 A/ms  
mV  
OUT  
t
Minimum startup time (Note 12)  
I
= 3 A, NR/SS = open  
200  
6.0  
ms  
START  
OUT  
I
SS  
Softstart charging current  
V
= 0 V  
V
0.9 V  
> 0.9 V  
mA  
NR/SS  
OUT(NOM)  
OUT(NOM)  
V
12.0  
160  
R
Softstart discharging resistance V = 2.4 V, V = 0.5 V  
W
V
SSDIS  
IN  
SS  
V
Enable input threshold  
Enable pin hysteresis  
Enable pin current  
PG trip threshold  
V
V
V
V
V
rising  
0.4  
0.9  
ENTH  
EN  
V
falling  
= 3.6 V  
50  
0.3  
90  
3
mV  
mA  
ENHYS  
EN  
I
1
EN  
EN  
V
falling  
rising  
86.5  
93.5  
%V  
%V  
PGTH  
OUT  
OUT  
OUT(NOM)  
V
PG trip hysteresis  
PGHYS  
OUT(NOM)  
V
PG output low voltage  
PG leakage current  
I
= 1 mA (sinking), V  
< V  
PGTH  
0.3  
1
V
PGLO  
PG  
OUT  
I
V
= 3.6 V, V  
> V  
PGTH  
0.01  
mA  
PGLK  
PG  
OUT  
www.onsemi.com  
4
 
NCP59763  
Table 5. ELECTRICAL CHARACTERISTICS  
At V = 1.2 V or V = V  
+ 0.4 V whichever is greater, V = 1.1 V, FB connected to OUT, C = 10 nF, C  
= 100 nF, C  
NR/SS IN  
IN  
IN  
OUT(NOM)  
EN  
CF  
= 10 mF, C  
= 47 mF, I  
= 50 mA, T = 40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. (Note 7, 8, 9, 10)  
OUT  
O
U
T
J
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
20  
Max  
Unit  
ms  
t
PG deglitch time  
PGDGL  
I
DELAY pin charging current  
DELAY trip threshold  
V
V
V
V
= 0 V  
1.8  
800  
30  
mA  
DELAY  
DELAY  
DELAY  
DELAY  
V
rising  
falling  
mV  
mV  
W
-
DELAY TH  
V
DELAY trip hysteresis  
-
DELAY HYS  
R
Output Active Discharge  
Resistance  
= 0 V, V = 3.3 V, V = 2.0 V  
OUT  
100  
AD  
EN  
IN  
TSD  
Thermal shutdown temperature Temperature rising  
threshold high  
165  
140  
°C  
Thermal shutdown temperature Temperature falling  
threshold low  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
8. V  
is the output voltage specified by OPN. It could be seen at the output pin when FB pin is connected to OUT pin directly (without  
OUT(NOM)  
resistor divider).  
9. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
10.The device is not tested under conditions where the power dissipation is higher than the maximum rating of the package.  
11. Additional test conditions: V 1.2 V and V (V  
+ 0.4 V), I  
= 50 mA to 3 A.  
IN  
IN  
OUT(NOM)  
OUT  
12.Minimum startup time is a time measured from EN rising edge to a point where V  
reaches 95% of V  
.
OUT  
NOM  
www.onsemi.com  
5
 
NCP59763  
TYPICAL CHARACTERISTICS  
V
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C  
= 2.2 nF, C = 10 nF,  
IN  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
DELAY FF  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
2.0  
1.25  
V
IN  
V
IN  
= (V  
1.2 V  
+ 0.4 V) to 3.6 V,  
OUT_NOM  
1.00  
0.75  
0.50  
0.25  
0.00  
1.5  
1.0  
Hi Lim  
V
V
= (V  
1.2 V,  
= 50 mA to I  
+ 0.4 V) to 3.6 V,  
IN  
IN  
OUT_NOM  
I
OUT  
NOM  
0.5  
V
OUT  
0.0  
0.25  
0.50  
0.75  
0.5  
1.0  
Lo Lim  
1.5  
2.0  
1.00  
1.25  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. Output Voltage vs. Temperature  
Figure 5. Line Regulation vs. Temperature  
0.09  
0.06  
0.03  
0.00  
0.03  
140  
130  
120  
I
= 0 mA to 3 A  
OUT  
Hi Lim  
0.02  
0.01  
0.00  
110  
100  
90  
Vdo  
80  
70  
0.03  
0.06  
0.09  
0.01  
0.02  
0.03  
60  
50  
I
= 3 A  
OUT  
40  
30  
V
IN  
= V  
NOM  
40 20  
0
20 40 60 80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Load Regulation vs. Temperature  
Figure 7. Dropout Voltage vs. Temperature  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
70  
60  
50  
40  
30  
20  
I
V
= 3 A  
OUT  
V
IN  
= V  
NOM  
= V  
IN  
NOM  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9  
2
I , OUTPUT CURRENT (A)  
OUT  
V
NOM  
, NOMINAL OUTPUT VOLTAGE (V)  
Figure 8. Dropout Voltage vs. Output Current,  
All Voltage Versions  
Figure 9. Dropout Voltage vs. VNOM  
www.onsemi.com  
6
NCP59763  
TYPICAL CHARACTERISTICS  
V
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C  
= 2.2 nF, C = 10 nF,  
IN  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
DELAY FF  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
1.9  
1.8  
Hi Lim  
V
= 0.9 x V  
OUT_NOM  
I
= 0 mA  
Hi Lim  
OUT_FORCED  
OUT  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
I
CL  
I
Q
Lo Lim  
3.2  
3.0  
40 20  
0.8  
0.7  
40 20  
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 10. Current Limit vs. Temperature  
Figure 11. Quiescent Current vs. Temperature  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
V
= V  
= I  
+ 0.4 V,  
V
= 3.6 V,  
= I  
Hi Lim  
Hi Lim  
IN  
OUT_NOM  
IN  
I
I
OUT  
NOM  
OUT NOM  
I
GND2  
I
GND1  
0.8  
0.7  
40 20  
0.8  
0.7  
40 20  
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. Ground Current vs. Temperature  
Figure 13. Ground Current vs. Temperature  
300  
250  
200  
150  
100  
50  
16  
15  
14  
13  
12  
11  
10  
9
Hi Lim  
V
EN  
0.4 V  
Hi Lim  
I
FB  
8
0
7
50  
100  
150  
200  
6
5
4
3
Lo Lim  
2
1
0
I
250  
300  
SHDN  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 14. Shutdown Current vs. Temperature  
Figure 15. Feedback Current vs. Temperature  
www.onsemi.com  
7
NCP59763  
TYPICAL CHARACTERISTICS  
V
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C  
= 2.2 nF, C = 10 nF,  
IN  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
DELAY FF  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
160  
1.0  
V
EN  
rising  
V
EN  
falling  
140  
120  
100  
80  
0.9  
0.8  
0.7  
0.6  
0.5  
Hi Lim  
V
EN_TH  
60  
40  
Lo Lim  
0.4  
0.3  
20  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 16. Enable Threshold Voltage vs.  
Temperature  
Figure 17. Enable Hysteresis vs. Temperature  
600  
500  
400  
300  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
NR/SS pin open  
V
EN  
= 3.6 V  
Hi Lim  
I
EN  
200  
100  
0
0.1  
0.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 18. Enable Input Current vs.  
Temperature  
Figure 19. Minimum Startup Time vs.  
Temperature  
14  
12  
10  
8
250  
200  
150  
100  
V
SS  
= 0 V  
V
V
= 2.4 V  
= 0.5 V  
IN  
SS  
V
V
0.9 V  
OUT(NOM)  
> 0.9 V  
OUT(NOM)  
6
4
50  
0
2
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 20. SoftStart Charging Current vs.  
Figure 21. SoftStart Discharging Resistance  
Temperature  
vs. Temperature  
www.onsemi.com  
8
NCP59763  
TYPICAL CHARACTERISTICS  
V
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C  
= 2.2 nF, C = 10 nF,  
IN  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
DELAY FF  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.30  
V
IN  
rising  
V
IN  
falling  
0.25  
0.20  
0.15  
Hi Lim  
V
UVLO_TH  
0.10  
0.05  
0.00  
Lo Lim  
0.90  
0.85  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 22. UVLO Threshold Voltage vs.  
Temperature  
Figure 23. UVLO Hysteresis vs. Temperature  
94  
93  
92  
91  
90  
89  
88  
6
5
4
3
2
V
OUT  
rising  
V
OUT  
falling  
Hi Lim  
V
PG_TH  
1
0
Lo Lim  
87  
86  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 24. PG Trip Threshold Voltage vs.  
Temperature  
Figure 25. PG Trip Hysteresis vs. Temperature  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 3.6 V  
Hi Lim  
PG  
I
V
= 1 mA  
Hi Lim  
PG  
> V  
OUT  
PG_TH  
< V  
OUT  
PG_TH  
V
PG_LO  
V
PG_LK  
0.05  
0.00  
0.0  
0.1  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 26. PG Output Low Voltage vs.  
Temperature  
Figure 27. PG Leakage Current vs.  
Temperature  
www.onsemi.com  
9
NCP59763  
TYPICAL CHARACTERISTICS  
V
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C  
= 2.2 nF, C = 10 nF,  
IN  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
DELAY FF  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
820  
810  
800  
790  
780  
70  
V
DELAY  
rising  
V
DELAY  
falling  
60  
50  
40  
30  
770  
760  
750  
20  
10  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 28. DELAY Threshold Voltage vs.  
Temperature  
Figure 29. DELAY Hysteresis vs. Temperature  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
V
DELAY  
= 1.0 V  
V
DELAY  
= 1.0 V  
1.4  
1.2  
1.0  
1.1  
1.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. DELAY Discharging Resistance vs.  
Temperature  
Figure 31. DELAY Charging Current vs.  
Temperature  
110  
108  
106  
104  
102  
100  
98  
V
V
V
= 0 V,  
= 3.3 V,  
EN  
IN  
= 2.0 V  
OUT  
96  
94  
92  
90  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 32. Active Dischare Resistance vs.  
Temperature  
www.onsemi.com  
10  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
1
1
*1  
*2  
*1 *2  
ADJ V  
ADJ V  
FIX V  
= 1 V  
= 1 V  
= V  
V
V
= 0.5 V  
= 0.5 V  
C
FF  
C
FF  
C
FF  
= 0 nF  
10.9 20.7 mV  
OUT  
OUT  
NOM  
RMS  
RMS  
RMS  
V
NOM  
V
NOM  
V
NOM  
V
NOM  
V
NOM  
V
NOM  
= 0.5 V 4.4 9.5 mV  
= 0.8 V 4.1 8.9 mV  
= 1.0 V 4.3 9.3 mV  
= 1.2 V 4.6 9.7 mV  
= 1.8 V 4.4 9.9 mV  
= 2.0 V 5.3 9.8 mV  
RMS  
= 10 nF 4.8  
= NA 4.3  
9.7  
9.3  
mV  
mV  
NOM  
= 1.0 V  
RMS  
RMS  
RMS  
RMS  
RMS  
OUT  
NOM  
R
and R  
according to Table 6.  
set  
ADJ1  
ADJ2  
0.1  
0.1  
0.01  
0.01  
I = 1 A  
OUT  
I
= 1 A  
OUT  
V
IN  
= V  
+ 0.2 V & V 1.2 V  
V
IN  
= 1.2 V  
NOM  
IN  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
0.001  
10  
0.001  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Output Noise Spectral Density of  
ADJ (w/ and w/o CFF) and FIX Applications  
Figure 33. Output Noise Spectral Density vs. Device  
Voltage Version (VNOM), FIX Application  
1
1
*1 *2  
*1 *2  
V
IN  
V
IN  
V
IN  
= 1.2 V 4.3 9.3 mV  
= 1.5 V 4.5 9.7 mV  
= 1.8 V 4.9 10.1 mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 2.2 V 5.3 9.8 mV  
= 2.8 V 6.4 11.3 mV  
= 3.3 V 7.0 12.0 mV  
= 3.6 V 7.2 12.4 mV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
0.1  
0.01  
0.1  
0.01  
I = 1 A  
OUT  
I = 1 A  
OUT  
V
OUT  
= V  
= 1.0 V (FIX appl)  
V
OUT  
= V  
= 2.0 V (FIX appl)  
NOM  
NOM  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. Output Noise Spectral Density vs. Input  
Voltage (VIN), FIX Application  
Figure 36. Output Noise Spectral Density vs. Input  
Voltage (VIN), FIX Application  
1
1
*1  
*2  
*1 *2  
C
C
C
C
C
= 0 nF  
= 1 nF  
25.1 26.5 mV  
11.9 14.6 mV  
NR  
NR  
NR  
NR  
NR  
RMS  
I
I
I
= 1 A 4.0 10.3 mV  
= 2 A 4.1 11.1 mV  
= 3 A 4.3 11.5 mV  
OUT  
OUT  
OUT  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
= 10 nF 6.1  
= 100 nF 4.6  
= 300 nF 4.4  
10.5 mV  
9.7  
9.6  
mV  
mV  
0.1  
0.01  
0.1  
0.01  
I
V
= 1 A  
V
V
= V  
= 1.2 V  
= 0.8 V (FIX appl)  
OUT  
OUT  
NOM  
= V  
= 1.2 V (FIX appl)  
OUT  
NOM  
IN  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Output Noise Spectral Density vs.  
Noise Reduction Capacitor (CNR), FIX Application  
Figure 38. Output Noise Spectral Density vs.  
Load Current, VNOM = 0.8 V, FIX Application  
www.onsemi.com  
11  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
1
1
*1  
= 0.01 A 5.7  
= 0.1 A 5.9  
= 0.5 A 4.5  
*2  
*1 *2  
I
I
I
I
I
I
5.9  
8.0  
8.9  
9.7  
10.2 mV  
10.4 mV  
mV  
mV  
mV  
mV  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
RMS  
V
V
V
V
= 0.5 V (FIX) 4.3 9.3 mV  
= 1.0 V (ADJ) 4.7 9.4 mV  
= 1.2 V (ADJ) 5.0 9.7 mV  
= 1.8 V (ADJ) 5.6 10.4 mV  
OUT  
OUT  
OUT  
OUT  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
= 1 A  
= 2 A  
= 3 A  
4.6  
4.7  
4.9  
0.1  
0.1  
0.01  
R
and R  
set  
ADJ1  
ADJ2  
according to Table 6.  
V
V
= V  
NOM  
+ 0.2 V & V 1.2 V  
= 0.5 V (FIX & ADJ apps)  
0.01  
IN  
IN  
V
V
= V  
= 1.4 V  
= 1.2 V (FIX appl)  
OUT  
NOM  
NOM  
IN  
I
= 1 A  
OUT  
*1: Integral noise 10 Hz 100 kHz  
*2: Integral noise 10 Hz 1 MHz  
*1: 10 Hz 100 kHz  
*2: 10 Hz 1 MHz  
0.001  
10  
0.001  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. Output Noise Spectral Density vs.  
Load Current, VNOM = 1.2 V, FIX Application  
Figure 40. Output Noise Spectral Density vs. VOUT,  
V
NOM = 0.5 V, FIX & ADJ Applications  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
*1 *2  
= 0.5 V 5.6 10.4 mV  
Vin = 1.1 V  
V
V
Vin = 1.2 V  
Vin = 1.4 V  
Vin = 2.6 V  
Vin = 3.0 V  
NOM  
NOM  
RM  
= 1.2 V 5.0 10.3 mV  
RMS  
V
V
= V  
+ 0.2 V  
IN  
OUT  
= 1.8 V (ADJ apps)  
= 1 A  
*1: 10 Hz 100 kHz  
*2: 10 Hz 1 MHz  
OUT  
0.1  
0.01  
I
OUT  
FIX application  
V
OUT  
= V  
= 0.5 V  
NOM  
R
and R  
set  
ADJ1  
ADJ2  
I
= 1 A  
OUT  
according to Table 6.  
C
= None  
IN  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. Output Noise Spectral Density vs.  
VNOM, VOUT = 1.8 V, ADJ Application  
Figure 42. PSRR vs. Frequency and VIN,  
V
NOM = 0.5V, FIX Application  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Cff = 0 n  
Cff = 1 n  
Cff = 10 n  
ADJ application  
Vin = 1.2 V  
Vin = 1.4 V  
V
V
V
= 0.5 V  
= 1.0 V  
= 1.4 V  
NOM  
OUT  
FIX application  
IN  
V
I
C
= V  
= 1.0 V  
OUT  
NOM  
I
= 1 A  
OUT  
= 1 A  
= None  
OUT  
C
= None  
IN  
IN  
R
and R  
set  
ADJ1  
ADJ2  
according to Table 6.  
100k 1M  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 43. PSRR vs. Frequency and CFF,  
NOM = 0.5 V, ADJ Application  
Figure 44. PSRR vs. Frequency and VIN,  
NOM = 1.0 V, FIX Application  
V
V
www.onsemi.com  
12  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
Io=10 mA  
Vin = 1.4 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Io = 0.1 A  
Io = 0.2 A  
Io = 0.5 A  
Io = 1 A  
Vin = 1.6 V  
Vin = 1.8 V  
Vin = 2.2 V  
Vin = 3.2 V  
Io = 2 A  
FIX application  
FIX application  
V
V
C
= V  
= 1.6 V  
= None  
= 1.2 V  
V
I
= V  
= 1 A  
= 1.2 V  
OUT  
NOM  
OUT  
NOM  
IN  
OUT  
C
= None  
IN  
IN  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. PSRR vs. Frequency and VIN,  
Figure 46. PSRR vs. Frequency and IOUT  
,
V
NOM = 1.2 V, FIX Application  
VNOM = 1.2 V, FIX Application  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Co = 47 m + 10 m + 100 n  
Co = 100 m + 47 m + 10 m + 100 n  
Co = 1000 m + 47 m + 10 m + 100 n  
Cnr = 0 n  
Cnr = 1 n  
Cnr = 10 n  
Cnr = 100 n  
FIX application  
= V = 1.2 V  
V
OUT  
NOM  
I
= 1 A  
= None  
OUT  
C
IN  
FIX application  
V
V
= V  
= 1.6 V  
= 1.2 V  
OUT  
NOM  
IN  
I
= 1 A  
OUT  
C
= None  
IN  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. PSRR vs. Frequency and COUT  
,
Figure 48. PSRR vs. Frequency and CNR/SS  
,
V
NOM = 1.2 V, FIX Application  
V
NOM = 1.2 V, FIX Application  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vnom = 0.5 V (ADJ)  
Vnom = 1.0 V (FIX)  
Vin = 2.2 V  
Vin = 2.3 V  
Vin = 2.4 V  
Vin = 3.0 V  
Vin = 3.4 V  
R
and R  
set  
ADJ1  
ADJ2  
according to Table 6.  
R
and R  
set  
ADJ1  
ADJ2  
according to Table 6.  
ADJ vs. FIX app  
V
V
I
= 1.0 V  
= 1.4 V  
= 1 A  
FIX application  
OUT  
V
I
= V  
= 2.0 V  
1k  
IN  
OUT  
NOM  
= 1 A  
= None  
OUT  
OUT  
C
= None  
C
IN  
IN  
10  
100  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. PSRR vs. Frequency and VIN,  
NOM = 2.0 V, FIX Application  
Figure 50. PSRR vs. Frequency of FIX (1.0 V) and  
ADJ (0.5 V set to 1.0 V) Applications  
V
www.onsemi.com  
13  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Figure 51. Load Transient Response, FIX0.5V  
Figure 52. Load Transient Response, FIX0.5V  
Figure 53. Load Transient Response, FIX0.5V  
Figure 54. Load Transient Response, FIX0.5V  
Note A  
Figure 55. Load Transient Response, FIX0.5V  
Figure 56. Load Transient Response, FIX0.5V  
Note A: The V  
cycling after transient going from high to idle (low) load current is not a feedback loop oscillation, it is just a combination of two different actions: small overshoot  
OUT  
above V  
(caused by limited error amp speed and light load condition at once) what is LDO related and slow C  
discharging by the light load current, what is related to  
OUT  
OUTNOM  
C
and idle I  
only. Bigger C  
capacitor value and lower idle state load current makes the cycling amplitude and count higher.  
OUT  
OUT  
OUT  
www.onsemi.com  
14  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Note A  
Figure 57. Load Transient Response, FIX0.5V  
Figure 58. Load Transient Response, FIX0.5V  
Figure 59. Load Transient Response, FIX1.2V  
Figure 60. Load Transient Response, FIX1.2V  
Figure 61. Load Transient Response, FIX1.2V  
Figure 62. Load Transient Response, FIX1.2V  
Note A: The V  
cycling after transient going from high to idle (low) load current is not a feedback loop oscillation, it is just a combination of two different actions: small overshoot  
OUT  
above V  
(caused by limited error amp speed and light load condition at once) what is LDO related and slow C  
discharging by the light load current, what is related to  
OUT  
OUTNOM  
C
and idle I  
only. Bigger C  
capacitor value and lower idle state load current makes the cycling amplitude and count higher.  
OUT  
OUT  
OUT  
www.onsemi.com  
15  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Note A  
Note A  
Figure 63. Load Transient Response, FIX1.2V  
Figure 64. Load Transient Response, FIX1.2V  
Note A  
Note A  
Figure 65. Load Transient Response,  
Figure 66. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Note A  
Figure 67. Load Transient Response,  
ADJ0.5V set to 1.2V  
Note A: The V  
cycling after transient going from high to idle (low) load current is not a feedback loop oscillation, it is just a combination of two different actions: small overshoot  
OUT  
above V  
(caused by limited error amp speed and light load condition at once) what is LDO related and slow C  
discharging by the light load current, what is related to  
OUT  
OUTNOM  
C
and idle I  
only. Bigger C  
capacitor value and lower idle state load current makes the cycling amplitude and count higher.  
OUT  
OUT  
OUT  
www.onsemi.com  
16  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Figure 68. Load Transient Response,  
Figure 69. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 70. Load Transient Response,  
ADJ0.5V set to 1.2V  
www.onsemi.com  
17  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Figure 71. Load Transient Response,  
Figure 72. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 73. Load Transient Response,  
Figure 74. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 75. Load Transient Response,  
ADJ0.5V set to 1.2V  
www.onsemi.com  
18  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Figure 76. Load Transient Response,  
Figure 77. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 78. Load Transient Response,  
Figure 79. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
www.onsemi.com  
19  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
Figure 80. Load Transient Response,  
Figure 81. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 82. Load Transient Response,  
Figure 83. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
Figure 84. Load Transient Response,  
Figure 85. Load Transient Response,  
ADJ0.5V set to 1.2V  
ADJ0.5V set to 1.2V  
www.onsemi.com  
20  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C = 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT J  
Figure 86. Load Transient Response,  
ADJ0.5V set to 1.2V  
www.onsemi.com  
21  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
VOUT =1.2V (ADJ), VNOM=0.5V, IOUT=100mA  
VOUT =1.2V (ADJ), VNOM=0.5V, IOUT=100mA  
tPGDELAY  
(by CDELAY  
VENTH  
)
VENTH  
C1: V  
200mV/div  
200mV/div  
200mV/div  
200mV/div  
2ms/div  
C1: V  
200mV/div  
200mV/div  
200mV/div  
200mV/div  
2ms/div  
IN  
IN  
C2: VOUT  
C3: VEN  
C4: VPG  
C2: VOUT  
C3: VEN  
C4: VPG  
Figure 87. ENpin Startup, Fast Ramp Up  
Figure 88. ENpin Startup, Slow Ramp Up  
VOUT=1.2V (ADJ),VNOM=0.5V, IOUT=100mA  
VOUT=1.2V (ADJ),VNOM=0.5V,  
OUT=100mA  
CNR/SS=1nF CNR/SS=10nF  
I
C =1nF  
FF  
VUVLOTH  
CNR/SS=33nF  
C =10nF  
FF  
CFF=33nF  
CNR/SS=100nF  
C1: V =VEN 200mV/div  
2ms/div  
C1: V =VEN 200mV/div  
500μs/div  
IN  
IN  
C2: VOUT  
200mV/div  
C2: VOUT  
C3: VFB  
200mV/div  
200mV/div  
Figure 90. INpin Startup for Different CFF,  
Figure 89. Npin Startup for Different CNR/SS  
,
ADJ Application  
ADJ Application  
VOUT=1.2V (FIX), VNOM=1.2V,  
OUT=100mA  
=100kΩ  
VOUT=1.2V (ADJ),VNOM=0.5V, IOUT=100mA, RPG  
CNR/SS=1nF CNR/SS=10nF  
I
VPGTH  
VUVLOTH  
VUVLOTH  
CNR/SS=33nF  
VDELAYTH  
CNR/SS=100nF  
C1: V =VEN 200mV/div  
2ms/div  
C1: V =VEN 200mV/div  
2ms/div  
IN  
IN  
C2: VOUT  
200mV/div  
C2: VOUT  
C3: VDELAY  
C4: VPG  
200mV/div  
200mV/div  
200mV/div  
Figure 91. INpin Startup for Different CNR/SS,  
Figure 92. Startup DELAY and PG Behavior  
FIX Application  
www.onsemi.com  
22  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C = 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT J  
=100kΩ  
V
OUT=1.2V (FIX), VNOM=1.2V, IOUT=100mA  
VOUT=1.2V (FIX), VNOM=1.2V, IOUT=100mA, RPG  
VPGTH + VPGTH  
VPGTH+VPGHYS  
VPGTH  
< tPGDGL  
tPGDGL  
VDELAYTH  
No DELAY &PG  
reaction  
CDELAY =0nF  
CDELAY =2.2nF  
CDELAY =10nF  
CDELAY=330pF  
=100kW  
RPG  
C1: V =VEN 200mV/div  
5ms/div  
C1: V =VEN 200mV/div  
100μs/div  
IN  
IN  
C2: VOUT  
C4: VPG  
200mV/div  
200mV/div  
C2: VOUT  
C3: VDELAY  
C4: VPG  
200mV/div  
200mV/div  
200mV/div  
Figure 93. Startup PG Behavior for Different CDELAY  
Figure 94. DELAY and PG Signals Behavior During  
OUT Drops  
V
EN = IN  
ADJ1 =12.7k  
ADJ2 =9k1  
100mA (load resitance 12Ohm)  
R
R
V
C
is delayed to V and rounded because of  
FB  
IIN  
OUT  
(info in appl. section). But V is at 90% of  
FF  
FB  
V
what triggers C  
charging  
DELAY  
NOM  
V
IN  
= 1.4 V  
CIN discharging by power supply (sink)  
V
OUT  
= 1.2 V  
V
IN  
= V  
UVLOTH  
VPG  
V
IN  
= V  
V  
=> turnoff  
UVLOTH  
UVLOHY  
V
DLY  
= V  
DLYTH  
V
NR/SS  
= V  
= 0.5 V  
REF  
All=0V  
VIN =200mV/div VOUT =200mV/div VPG=200mV/div VNR/SS=200mV/div VDLY=200mV/div IIN =100mA/div  
1ms/div  
Figure 95. Startup and Shutdown by VIN Voltage, ADJ Application, VNOM = 0.5 V, VOUT = 1.2 V  
www.onsemi.com  
23  
NCP59763  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.4 V and V 1.2 V, V = 1.1 V, FB = OUT, I  
= 50 mA, C = 10 nF, C  
= 100 nF, C = 2.2 nF, C = 10 nF,  
DELAY FF  
OUTNOM  
IN  
EN  
OUT  
CF  
NR/SS  
C
IN  
= 1 mF (polymer) + 100 mF (C1210) + 10 mF + 100 nF, C  
= 47 mF (C1210) + 10 mF + 100 nF, T = 25°C, unless otherwise noted.  
OUT  
J
28  
3,5  
5
R
= 24°C/W  
R
= 24°C/W  
q
q
JA  
JA  
27  
26  
25  
24  
23  
22  
21  
20  
4,8  
4,6  
4,4  
4,2  
4
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
Vout = 0.6 V  
Vout = 0.8 V  
Vout = 1.0 V  
Vout = 1.2 V  
Vout = 1.8 V  
3,8  
3,6  
3,4  
1
1,5  
2
2,5  
3
3,5  
0
200  
400  
600  
800  
2
V
IN  
, INPUT VOLTAGE (V)  
Copper Heat Spreader Area (mm )  
ThetaJA Curve With PCB Copper Thick: 1 oz  
ThetaJA Curve With PCB Copper Thick: 2 oz  
Power Curve With PCB Copper Thick: 1 oz  
Power Curve With PCB Copper Thick: 2 oz  
Figure 97. Max. Allowable Output Current vs. VIN,  
FIX & ADJ Applications, TA = 255C  
Figure 96. RqJA and PDIS(MAX) vs. Copper Area  
3,5  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
3,5  
R
= 24°C/W  
R
= 24°C/W  
q
q
JA  
JA  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
Vout = 0.6 V  
Vout = 0.8 V  
Vout = 1.0 V  
Vout = 1.2 V  
Vout = 1.8 V  
Vout = 0.6 V  
Vout = 0.8 V  
Vout = 1.0 V  
Vout = 1.2 V  
Vout = 1.8 V  
1
1,5  
2
2,5  
3
3,5  
1
1,5  
2
2,5  
3
3,5  
V
IN  
, INPUT VOLTAGE (V)  
V
IN  
, INPUT VOLTAGE (V)  
Figure 99. Max. Allowable Output Current vs. VIN,  
Figure 98. Max. Allowable Output Current vs. VIN,  
FIX & ADJ Applications, TA = 755C  
FIX & ADJ Applications, TA = 505C  
Additional Information to Figures on this Page  
Thermal data are based on thermal simulation  
methodology specified in the JEDEC JESD51 series  
standards. The following assumptions are used in the  
simulations:  
These data were generated with only a single device at the  
center of a highK (2s2p) board which follows the  
JEDEC51.7 guidelines. Top and bottom layer 2 oz. copper,  
inner planes 1 oz. copper. The GND pad connected to the  
PCB inner GND plane layer through a 3x5 thermal via array.  
All the vias are 0.3 mm diameter, plated.  
The junctiontoambient thermal resistance under  
natural convection is obtained in a simulation on a highK  
board, following the JEDEC51.7 guidelines with  
assumptions as above, in an environment described in  
JESD512a.  
TA = 25°C, TJ = TJ(MAX) = 125°C, unless otherwise noted.  
www.onsemi.com  
24  
 
NCP59763  
APPLICATIONS INFORMATION  
Input Capacitor Selection (CIN)  
When adjustment of output voltage is not needed then  
simply connect the FB pin to OUT pin and the output voltage  
will be equal to the nominal output voltage specified by  
Input capacitor connected as close as possible is necessary  
to ensure device stability. The ceramic X7R or X5R  
capacitor should be used for reliable performance over  
temperature range. The value of the input capacitor should  
be at least 10 mF, recommended value is parallel  
combination of 47 mF + 100 nF. Maximum value is not  
limited and the higher means better for the LDO, as this  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto the input voltage. There  
is no requirement for the ESR of the input capacitor but it is  
recommended to use ceramic capacitor for its low ESR and  
ESL. A good input capacitor will limit the influence of input  
trace inductance and source resistance during load current  
changes. When a large load transients (like 10 mA to 3 A)  
happens in the application the input power source of the  
LDO needs to provide enough power and the input voltage  
must not go below the level defined by this equation:  
OPN: V  
= V . If the adjustment is important,  
NOM  
OUT  
connect the output voltage resistor divider between OUT,  
FB and GND pins. Then the output voltage can be computed  
by the following equation:  
RADJ1  
ǒ1 ) Ǔ  
VOUT + VNOM  
 
) IFB   RADJ1  
(eq. 1)  
RADJ2  
Where:  
V
OUT  
is output voltage of the circuit with resistor divider  
(adjustable application).  
V
NOM  
is the LDO’s nominal output voltage given by  
OPN.  
I
is the LDO’s FB pin input current.  
FB  
R
R
is the upper resistor in resistor divider.  
is the lower resistor in resistor divider.  
ADJ1  
V
IN  
= V + V otherwise the output voltage drop  
OUTNOM DO  
ADJ2  
will be significantly higher (because LDO will enter the  
dropout state). In cases when LDO’s input power supply has  
a poor load transient response or when there is a long  
connection between LDO and its power source then the  
input capacitor needs to be significantly bigger (in range of  
hundreds of mF).  
Recommended values of R  
and R  
are in range  
ADJ2  
ADJ1  
from 1 kW to about 300 kW.  
Both circuits of FIX (nonadjustable) and ADJ  
(adjustable) applications are shown at the following figures.  
CFF  
10 nF  
NCP 59763  
1.1 V 3.6 V  
IN  
0.5 V 2.0 V/3 A  
RADJ1  
Output Capacitor Selection (COUT  
)
IN  
OUT  
FB  
OUT  
COUT  
47 mF +  
10 mF +  
The LDO requires the output capacitor connected as close  
as possible to the output and ground pins. The LDO is  
designed to remain stable with output capacitor’s effective  
capacitance in range from 40 mF to 1000 mF and ESR from  
1 mW to 50 mW. The ceramic X5R or better type is  
recommended due to its low capacitance variations over the  
specified temperature range and low ESR. When selecting  
the output capacitor the value change with temperature and  
DC bias voltage needs to be taken into account. Especially  
for small package size capacitors such as 0805 or smaller the  
effective capacitance drops rapidly with the applied DC bias  
voltage (refer the capacitor’s datasheet for details).  
Recommended is parallel combination of ceramic  
capacitors 47 mF (1210 package) + 10 mF (0805 package) +  
100 nF (any small package like 0603, 0402 etc.).  
CIN  
10 mF  
EN  
100 nF  
RPG  
100 kW  
CF  
CCF  
10 nF  
R
ADJ2  
NR / SS  
DELAY  
Optional  
CNR/SS  
100 nF  
PG  
PG  
GND  
CDE LAY  
2.2 nF  
Optional  
Figure 100. ADJ (Adjustable) Application Schematic  
NCP 59763  
1.1 V 3.6 V  
0.5 V 2.0 V/3 A  
IN  
OUT  
FB  
IN  
OUT  
COUT  
47 mF +  
10 mF +  
100 nF  
CIN  
EN  
10 mF  
CF  
RPG  
Larger capacitance and lower capacitor ESR improves the  
load transient response, PSRR and output voltage noise.  
CCF  
10 nF  
100 kW  
Optional  
NR / SS  
DELAY  
CNR/SS  
100 nF  
PG  
PG  
GND  
Internal Supply Bypass Capacitor (CCF  
)
CDE LAY  
2.2 nF  
Optional  
This capacitor is needed to stabilize the internal power rail  
generated by the onchip high frequency charge pump. This  
charge pump generates a minimal amount of noise but is  
suppressed to almost zero with additional onchip isolation  
and circuits.  
Figure 101. FIX (Nonadjustable) Application Schematic  
At the ADJ application, the external resistor divider with  
input FB pin capacity and FB pin PCB trace capacity to  
GND makes a low pass filter what negatively affects the  
dynamic behavior of the LDO. This unwanted dynamic  
performance degradation could be compensated by adding  
Output Voltage  
NCP59763 part is available in several output voltage  
options (see OPNs table). All of these options could be used  
in fixed (nonadjustable) or adjustable application circuit.  
www.onsemi.com  
25  
NCP59763  
of feedforward capacitor C  
across R  
resistor.  
ADJ1  
FF  
Table 6. RECOMMENDED FEEDBACK PART VALUES  
Recommended value is 10 nF and its influence to several  
parameters is shown at figures in Typical characteristics  
section.  
V
Part  
V
R R V  
Diff  
[%]  
OUT  
NOM ADJ1 ADJ2 OUT2  
[V]  
0.5  
0.6  
0.7  
0.8  
(OPN)  
[V] [kW] [kW] [V]  
NCP59763AMN050  
NCP59763AMN050  
NCP59763AMN050  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN120  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN120  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN120  
NCP59763AMN050  
NCP59763AMN080  
NCP59763AMN100  
NCP59763AMN120  
0.5 Short None 0.500 0.0  
The C capacitor on one hand improves dynamic  
FF  
behavior of LDO in ADJ application but on the other hand  
0.5  
0.5  
0.5  
15  
12  
12  
75 0.600 0.0  
30 0.700 0.0  
20 0.800 0.0  
it rounds and delays the V  
voltage at the startup. Next  
OUT  
picture shows V  
voltage for three different C  
OUT  
FF  
capacitors. It can be seen that for none C capacitor the  
FF  
0.8 Short None 0.800 0.0  
V
OUT  
perfectly follows the V voltage while with C  
FB FF  
0.9  
1.0  
0.5  
0.8  
0.5  
0.8  
12  
15  
10  
7.5  
15 0.900 0.0  
120 0.900 0.0  
10 1.000 0.0  
30 1.000 0.0  
capacitor it doesn’t. The different shape and small delay is  
probably not an issue. But when the PG is needed in the  
application, then this phenomenon causes troubles with  
timing. Because the internal PG comparator checks FB  
voltage (not OUT voltage) and compares it to the internal  
1.0 Short None 1.000 0.0  
thresholds then the PG rises during startup when V  
FB  
1.1  
1.2  
0.5  
0.8  
1.0  
0.5  
0.8  
1.0  
12  
9.1  
10  
51  
10  
15  
10 1.100 0.0  
24 1.103 0.3  
100 1.100 0.0  
36 1.208 0.7  
20 1.200 0.0  
75 1.200 0.0  
reaches 93% of V  
(typ). Without C the V  
rises the  
. But  
OUT  
NOM  
FF  
OUT  
same as V so PG indicates also 93% of the V  
FB  
when C is used, V  
is delayed to V which reaches the  
FF  
OUT  
FB  
threshold sooner than V . This results too early rise of the  
OUT  
PG signal and it looks like the threshold related to V  
is  
OUT  
false (but it is just the effect of the V  
delay). It is needed  
OUT  
to be told that such behavior is common for all ADJ LDOs  
with PG, not just for NCP59763.  
1.2 Short None 1.200 0.0  
To overcome this C delay issue we can simply tune the  
FF  
1.5  
1.8  
2.0  
0.5  
0.8  
1.0  
1.2  
0.5  
0.8  
1.0  
1.2  
0.5  
0.8  
1.0  
1.2  
20  
16  
10  
9.1  
39  
15  
12  
11  
30  
15  
10  
10  
10 1.500 0.0  
18 1.511 0.7  
20 1.500 0.0  
36 1.503 0.2  
15 1.800 0.0  
12 1.800 0.0  
15 1.800 0.0  
22 1.800 0.0  
10 2.000 0.0  
10 2.000 0.0  
10 2.000 0.0  
15 2.000 0.0  
value of the C  
capacitor and postpone the PG reaction  
DELAY  
for the same or longer delay time. This is shown at the next  
picture as V curves.  
PG  
Of course this situation needs care only at the ADJ  
application when C is used (as C is not applicable at FIX  
FF  
FF  
application).  
VOUT without CFF perfectly tracks VFB multiplied by  
R
ADJ1 / RADJ2, but with CFF the signal is rounded and  
delayed (as CFF with RADJ1/2 creates a OUTtoFB filter)  
1.4 V  
1.2 V  
VIN=VEN  
VOUT  
CFF=0 nF  
VUVLOTH  
CFF=10 nF  
The PG reacts sooner, not at the 93% of VOUT, because PG  
is related to VFB not VOUT, which is delayed by CFF. We can  
overcome this by using CDELAY and postpone PG reaction.  
CFF=33 nF  
0.5 V  
VFB=VSS/NR  
VPG  
93% of VFB (= VPGTH + VPGHYS  
)
VPG without CDELAY  
PG delay by CDELAY  
VPG with CDELAY  
Where:  
Time  
V
V
V
[V] is desired output voltage.  
OUT  
[V] is selected part nominal voltage.  
[V] is calculated output voltage.  
NOM  
OUT2  
Figure 102. PG Reaction Influenced by CFF Capacitor,  
ADJ Application, VNOM = 0.5 V, VOUT = 1.2 V  
Diff [%] is difference between desired and calculated  
output voltage.  
Next table shows recommended feedback part values  
(R  
, R  
and C ) selected from E24 (resistors) and E6  
AD1 AD2 FF  
Of course the table above is just an example and other  
values of output voltage divider parts are possible.  
(capacitor) series. Higher output voltages can be created by  
several combinations of OPN and divider. It is  
recommended to select the part with the nearest nominal  
voltage do desired output voltage for the best dynamic  
performance. For example, the part with V  
= 0.5 V set  
NOM  
to V  
= 1.8 V has slightly worse output voltage noise than  
OUT  
part with V  
= 1.2 V, set to the same V  
= 1.8 V, see  
NOM  
OUT  
Typical characteristics section for details.  
www.onsemi.com  
26  
NCP59763  
Startup and Shutdown  
In the NCP59763 device there are two main internal  
signals which triggers the startup process, the undervoltage  
lockout (UVLO) signal and enable signal. The first one  
comes from UVLO comparator, which monitors if the IN  
pin voltages is high enough, while the second one comes  
from EN pin comparator. Both comparators have embedded  
hysteresis to be insensitive to input noise.  
VUVLOTH  
VIN=VEN  
VUVLOTH –VUVLOHYS  
VENTH  
VENTH –VENHYS  
VOUTNOM  
95% of VOUTNOM  
Time  
VOUT  
tSS  
tSTART  
tPD  
Current  
Limit  
IN  
OUT  
Figure 106. IN & EN Pins Initiated Startup/Shutdown  
Charge  
Pump  
Output  
discharge  
Where:  
CF  
RNR  
t
t
t
is the softstart time (described below)  
Progr.  
Voltage  
Reference  
SS  
EA  
is the overall startup time  
START  
ISS  
is the internal propagation delay (170 ms typ.)  
FB  
PD  
NR/SS  
PG  
NR/SS  
Discharge  
PG Output  
90%  
of VREF  
NCP59763 device contains PG circuit for the output  
voltage level monitoring. Internally it is combined from PG  
comparator, DELAY comparator, logic block with deglitch  
timer, DELAY pin current source and discharge NMOS  
transistor and PG output NMOS transistor (all highlighted  
by red color at the following picture). The PG comparator  
UVLO  
EN  
1.0 V  
0.8 V  
IDELAY  
EN  
DELAY  
PG  
Logic  
&
0.8 V  
Delays  
Thermal  
Shutdown  
compares internal feedback signal voltage (V ) with the  
FB  
Figure 103. Internal Block Diagram  
(UVLO and EN Blocks Highlighted)  
90% of V  
voltage what means that the V  
drop below  
REF  
OUT  
90% is detected. Output signal from this comparator is  
blanked by deglitch timer (typ. 20 ms) to filter out possible  
short spikes at the output voltage. This means that only  
pulses longer than about 20 ms and lower than 90% of set  
Next figures show three startup/shutdown cases, initiated  
by input, enable or both signals assertion.  
V
OUT  
are detected. When the PG comparator output signal  
passes through this deglitch timer it turns ON the DELAY  
pin discharge NMOS which discharges external delay  
VUVLOTH  
VIN  
VEN  
VUVLOTH – VUVLOHYS  
capacitor (C  
NMOS.  
) and also turns ON the PG output  
DELAY  
VENTH  
VENTH – VENHYS  
For proper operation the PG output needs external pullup  
resistor which defines the voltage level at the nonfault time.  
Recommended values range is from 3.9 kW to 100 kW.  
When the output drop event disappears, the DELAY pin  
discharge NMOS is turned back OFF and the external delay  
VOUTNOM  
95% of VOUTNOM  
Time  
VOUT  
tSS  
capacitor is charged by internal I  
current source.  
tSTART  
DELAY  
tPD  
When the DELAY voltage reaches 0.8 V (typ.), what is the  
internal DELAY comparator threshold voltage, the PG  
output NMOS transistor is turned OFF to indicate normal  
condition. This DELAY capacitor charging time is in fact a  
Figure 104. EN Pin Initiated Startup/Shutdown  
VUVLOTH  
VUVLOTH – VUVLOHYS  
C
DELAY  
capacitor programmable delay time, what could be  
VIN  
VEN  
needed by external monitoring circuit (for example MCU  
connected to PG). In case very short delay is acceptable for  
VENTH  
VENTH – VENHYS  
the application the C  
capacitor could be omitted.  
DELAY  
Then the delay between rising edges of PG to V  
30 ms.  
is about  
OUT  
VOUTNOM  
95% of VOUTNOM  
Time  
VOUT  
tSS  
tSTART  
tPD  
Figure 105. IN Pin Initiated Startup/Shutdown  
www.onsemi.com  
27  
NCP59763  
At adjustable application when C capacitor is used, the  
output voltage settling time could be several times longer  
current flowing into this capacitor, given by the following  
equation:  
FF  
than FB voltage settling time (caused by C with R  
and  
FF  
ADJ1  
dVC(t)  
IC(t) + C   
R
ADJ2  
). And because the PG comparator monitors the FB  
(eq. 3)  
dt  
voltage, it could indicate “power ok” state based on settled  
FB voltage at a time when output voltage is still too low. At  
The dV (t)/dt is the slope of capacitor voltage change.  
C
The higher V voltage change or the higher capacitor value,  
C
such case the PG delay must be set by C  
capacitor to  
DELAY  
the bigger capacitor charge current.  
In LDO application, there are two capacitors used, C  
, and both of them are charged during powerup  
what could generate very high input current, which is caller  
inrush current.  
a longer value than output voltage settling time is.  
When the overall PG function is not needed than both  
IN  
and C  
OUT  
C
DELAY  
capacitor and R resistor could be omitted.  
PG  
OUT  
Current  
Inrush current of LDO application consist of the sum of:  
Limit  
C charge current (can’t be influenced by the LDO,  
IN  
could be influenced by previous power stage only by  
EA  
Output  
discharge  
setting of LDO’s V slope)  
IN  
C  
charge current (influenced by the LDO)  
OUT  
FB  
LDO’s ground current (negligible)  
LDO’s load current I (t)  
PG  
RPG  
10 kW  
Optional  
LOAD  
90%  
of VREF  
DELAY  
PG  
This relations could be written in equation:  
CDE LAY  
2.2 nF  
Optional  
IINRUSH(t) + ICIN(t) ) ICOUT(t) ) ILOAD(t)  
IDE LAY  
(eq. 4)  
DELAY  
Logic  
&
dVOUT(t)  
dt  
dVIN(t)  
dt  
IINRUSH(t) + CIN  
 
) COUT  
 
) ILOAD(t)  
(eq. 5)  
0.8 V  
Delays  
PG  
Where:  
dV (t)/dt is the slope of V ramp  
IN  
IN  
Figure 107. Internal Block Diagram  
(PG Circuit Highlighted)  
dV  
(t)/dt is the slope of V  
ramp  
OUT  
OUT  
From the equation above we can see that in reel  
application we need to care about both C and C  
Delay time could be computed by the following equation:  
IN  
OUT  
VDELAY*TH  
capacitor values and about both V and V  
voltage  
IN  
OUT  
tDELAY + tDELAY*MIN  
)
  CDELAY +  
slopes. Only the V  
slope is influenced by the LDO while  
IDELAY  
OUT  
the V slope is influenced by previous power stage (defined  
by its softstart time). The last part of the equation, the  
IN  
0.8  
+ 30 m )  
  CDELAY + 30 ) 444   CDELAY [ms; nF]  
1.8 m  
I
(t) current, could be dependent to the immediate value  
LOAD  
(eq. 2)  
of rising V  
voltage and generally it could vary in time.  
OUT  
Where:  
Because it is part of the inrush current, the LDO should care  
about it as well and it does by load current limiting during  
t
is minimum delay time without capacitor  
is DELAY pin threshold voltage  
DELAYMIN  
startup by the current limit feature to I  
level (see  
(about 30 ms)  
CL  
Electrical characteristics table).  
V
DELAYTH  
Back to the softstart feature, the externally connected  
capacitor is charged by internal current source I  
I
is DELAY capacitor charging current  
DELAY  
C
NR/SS  
.
SS  
The C  
the V  
value and size of the I current together define  
NR/SS  
SS  
Softstart and Noise Reduction  
The NR/SS pin has two functions – program LDO’s  
output voltage rise time and reduce the output voltage  
noise both by the same externally connected C  
capacitor.  
Startup situation very often needs a special care, because  
the charge currents of capacitors connected to power rails  
could cause used power supplies overcurrent events.  
Generally, any capacitor voltage change generates charge  
voltage rise time. The voltage at the C  
OUT  
NR/SS  
capacitor rises linearly in time and is followed by the LDO’s  
output voltage.  
When the NR/SS pin voltages reaches the internal voltage  
NR/SS  
reference value the I current source is turned OFF and the  
SS  
C
NR/SS  
capacitor in combination with internal R resistor  
NR  
behaves as an internal reference filter. The bigger C  
value the lower LDO’s output voltage noise.  
NR/SS  
www.onsemi.com  
28  
NCP59763  
Active Output Discharge  
Recommended range of C  
capacitor is from 10 nF to  
NR/SS  
Active output discharge function discharges the output  
capacitor when the LDO is disabled by EN pin.  
100 nF. See the Typical characteristics section for C  
capacitor influence to output voltage noise and startup time  
as well.  
NR/SS  
Current  
Limit  
IN  
OUT  
Current  
IN  
OUT  
Charge  
Pump.  
Limit  
Charge  
Pump  
Output  
CF  
discharge  
Output  
discharge  
CF  
RNR  
Progr  
Voltage  
Reference  
RNR  
Progr.  
Voltage  
EA  
EA  
Reference  
ISS  
ISS  
FB  
NR/SS  
NR/SS  
FB  
PG  
NR/SS  
CNR/SS  
100 nF  
PG  
NR/SS  
Discharge  
Discharge  
90%  
of VREF  
90%  
of VREF  
UVLO  
EN  
UVLO  
EN  
1.0 V  
0.8 V  
IDELAY  
1.0 V  
0.8 V  
IDELAY  
EN  
DELAY  
PG  
Logic  
Logic  
EN  
DELAY  
PG  
&
&
0.8 V  
Delays  
0.8 V  
Delays  
Thermal  
Shutdown  
Thermal  
Shutdown  
Figure 109. Internal Block Diagram  
(Output Discharge Related Blocks Highlighted)  
Figure 108. Internal Block Diagram  
(Startup Circuit Highlighted)  
When EN pin is turned to low state (when V is still  
Softstart time (t ) represents the length of the output  
IN  
SS  
present), the output voltage is discharged continuously for  
the whole EN pin low level period. The slope and shape of  
discharged output voltage is given by resistance of internal  
discharge NMOS transistor, load resistance and total output  
capacitance.  
voltage rise time at the startup (not the overall startup time  
from UVLO or EN assertion). It could be computed by the  
following equation:  
VNOM  
tSS + tSS*MIN  
)
  CNRńSS  
(eq. 6)  
ISS  
Output voltage during the discharge period could be  
described by:  
Where:  
VOUT(t) + VNOM   e*tńt  
t
is minimum softstart time without C  
NR/SS  
SSMIN  
(eq. 7)  
capacitor (about 50 ms)  
t + (RACT ) RLOAD)   COUT  
V
is nominal LDO’s output voltage  
(eq. 8)  
NOM  
I
is softstart capacitor charging current  
SS  
Where:  
V
V
(t) is immediate voltage at desired time point  
Note that the t  
characteristics table is not the same time as t  
mentioned here. t  
measured from EN rising edge to a point where V  
parameter listed in the Electrical  
OUT  
START  
SSMIN  
is the nominal output voltage  
NOM  
is overall minimum startup time  
START  
t is the desired time  
OUT  
τ is the RC time constant  
reaches 95% of V  
while t  
time is just an output  
NOM  
SSMIN  
R
R
is resistance of int. active discharge NMOS  
voltage rise time (it means it is a part of t  
).  
ACT  
START  
is load resistance  
LOAD  
From time perspective, we can say that after one RC time  
constant (τ), the output voltage is discharged to 36.6%, after  
two τ to 13.5%, after four τ to 1.8% etc.  
www.onsemi.com  
29  
NCP59763  
Next picture shows waveforms for discussed situation.  
decreases by the thermal shutdown hysteresis value. Then  
the LDO is back enabled.  
The thermal shutdown feature provides the protection  
against overheating due to application failure and it is not  
intended to be used as a normal working function.  
VUVLOTH  
VUVLOTH – VUVLOHYS  
VIN  
VENTH  
VENTH – VENHYS  
Power Dissipation  
VEN  
Power dissipation caused by voltage drop across the LDO  
and by the output current flowing through the device needs  
to be dissipated out from the chip. The maximum power  
dissipation is dependent on the PCB layout, number of used  
Cu layers, Cu layers thickness and the ambient temperature.  
The maximum power dissipation can be computed by one of  
the following equations:  
ON  
Active  
output  
discharge  
OFF  
VOUTNOM  
VOUT(t) = VNOM * exp (t / ((RACT + RLOAD) * COUT))  
VOUT  
Time  
TJ * TA  
Figure 110. Active Output Discharge Activated by  
EN Pin  
PDIS  
+
[W]  
(eq. 9)  
RqJA  
Or  
It is important to mention a different situation, when LDO  
is not disabled by EN pin, but turned off by input voltage  
TJ * TB  
PDIS  
+
[W]  
(eq. 10)  
(EN pin held high or connected to IN pin and V is forced  
RqJB  
IN  
low). At this case the output discharge function is also  
activated but just for a short period of time, starting when  
input voltage falls below the low UVLO threshold  
(0.9 V typ.) and ending when falls below the minimum  
Where:  
T is the desired junction temperature  
J
T is the ambient temperature  
A
discharge block operational level (V  
, 0.8 V typ.).  
AODMIN  
T is the board temperature (on the trace within 1 mm of  
B
We can see that there is a small input voltage window where  
the discharge function is active (0.9 V – to – 0.8 V). Based  
on this fact the proper output voltage discharge to 0V is not  
possible. Simply, LDO’s active output discharge block can’t  
be functional because the LDO’s power supply is turned off.  
The situation is shown at the next picture.  
the package body)  
R
qJA  
R
qJB  
is junction to ambient thermal resistance  
is junction to board thermal resistance  
If we enter the maximum junction temperature value  
(125°C) as a T , we obtain a maximum allowable power  
J
dissipation P  
dissipation  
. Then, when applying higher power  
DIS(MAX)  
to  
this  
max.  
power  
dissipation  
0.9V typ.  
0.8V typ.  
VUVLOTH – VUVLOHYS  
VENTH – VENHYS  
VAODMIN  
(P > P  
), the device will be overheated  
DIS(MAX)  
DIS  
VIN=VEN  
(T > T  
J
).  
J(MAX)  
We can substitute for the power dissipation the following  
equation:  
ON  
Active  
output  
PDIS + (VIN * VOUT)   IOUT  
(eq. 11)  
discharge  
OFF  
To obtain equation for the output current:  
VOUTNOM  
VOUT is not discharged  
VOUT  
PDIS  
TJ * TX  
IOUT  
+
+
Time  
VIN * VOUT  
RqJX   (VIN * VOUT)  
(eq. 12)  
Figure 111. Active Output Discharge Activated by  
Falling VIN  
Where:  
T is T resp. T  
X
A
B
At a situation of the high falling input voltage slope, it  
could happen that the activated output discharge function  
theoretical time window is shorter than internal delays,  
resulting the discharge function will not be activated (fast  
R
is R  
resp. R  
qJX  
qJA qJB  
And similarly, if we enter the maximum junction  
temperature value (125°C) as a T , we obtain a maximum  
allowable load current I  
J
. Then, when applying  
OUT(MAX)  
falling V slope means no output discharge).  
IN  
higher load current to this max. load current  
(I > I ), the device will be overheated  
Thermal protection  
OUT  
OUT(MAX)  
When the LDO’s die temperature exceeds the thermal  
shutdown threshold value, the device is internally disabled.  
The IC will remain in disabled state until the die temperature  
(T > T  
).  
J
J(MAX)  
Maximum power dissipation and maximum allowable  
output currant charts are shown at figures 96 to 99.  
www.onsemi.com  
30  
NCP59763  
PCB Layout Recommendations  
To obtain good LDO’s stability and the best transient,  
PSRR and output voltage noise performance, place both C  
current transients (note that this is different situation to  
normal application where the distance of the LDO to its  
power source is short so it need special care). In such case  
it is recommended to assemble low ESR electrolytic input  
capacitor to the spare place (C4) on the evaluation board  
(recommended is aluminum organic polymer capacitor  
560 mF to 2.2 mF for 6.3V or higher with ESR about  
10 30 mW, 10 mm of diameter, throughhole with 5 mm  
pin pitch to fit the PCB, for example Kemet  
A750MV108M1EAAE014).  
IN  
and C  
capacitors as close as possible to the device pins,  
OUT  
make the PCB traces wide and short and place capacitors to  
the same PCB Cu layer as the LDO is (avoid connections  
through vias). The same rules should be applied to the  
connections between C  
and the load – the less parasitic  
OUT  
impedance the better dynamic performance at the point of  
load.  
Regarding high impedance ADJ pin, prevent capacitive  
coupling of this trace to any switching signals in the  
circuitry.  
The same applies to high impedance NR/SS pin, which is  
very sensitive to coupled noise. Therefore make the trace to  
Besides the main LDO application circuit, evaluation  
board includes some supporting staff:  
Two positions for optional throughhole SMB connectors  
for IN and OUT signals, mainly for line/load transients,  
PSRR and noise testing (recommended connectors are  
Molex 731000258 or compatible).  
C
NR/SS  
as short as possible.  
When routing the trance to C capacitor, use also as short  
CF  
Edge connector where all these signal leads to (the  
as possible connection.  
Other traces like PG, DELAY and EN don’t need any  
special care.  
appropriate  
receptacle  
type  
is  
SAMTEC  
MECF2001LDVWT).  
Three diodes as temperature sensors.  
Demo Board Quick Overview  
First it should be noted that more detailed evaluation  
board information are provided in separate documents on  
company web pages.  
Below are schematic and board pictures of the  
NCP59763AMN050TBGEVB evaluation board. The board  
has been used during product evaluation to capture the data  
shown in this datasheet (transients, PSRR, noise, startups  
etc.).  
By the solder jumper JP6 (label FIX) the application  
circuit could be changed from the default adjustable type  
(trimmer resistor RT1 sets the V  
) to fixed. By default the  
OUT  
Figure 112. NCP59763AMN050TBGEVB Schematic  
(Edge Connector Pinout)  
board is supplied with LDO NCP59763AMN050  
(V = 0.5 V) but it can handle any other OPN (on  
NOM  
request).  
There is also a picture showing the layout in detail, which  
could be taken as a recommended layout.  
Generally, when testing LDOs dynamic performance on  
evaluation board connected to laboratory power supply  
typically by long cables, the device would need additional  
input capacitor. This capacitor will cover voltage drops  
created at the long connection cables impedance by the load  
Figure 113. NCP59763AMN050TBGEVB Schematic  
(Three Diodes as Temperature Sensors)  
www.onsemi.com  
31  
NCP59763  
Figure 114. NCP59763AMN050TBGEVB Schematic (Main Part)  
Figure 115. NCP59763AMN050TBGEVB Board  
Figure 116. NCP59763AMN050TBGEVB Board Center Detail  
www.onsemi.com  
32  
NCP59763  
ORDERING INFORMATION  
Device  
Output Voltage (V  
)
Marking  
Package  
Shipping†  
NOM  
NCP59763AMN050TBG  
0.5 V  
0.8 V  
1.0 V  
1.2 V  
59763  
P050A  
NCP59763AMN080TBG  
NCP59763AMN100TBG  
NCP59763AMN120TBG  
59763  
P080A  
DFN10 3x3, 0.5P  
3000  
Tape & Reel  
(PbFree)  
59763  
P100A  
59763  
P120A  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
33  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DFN10 3x3, 0.5P  
CASE 506EH  
ISSUE O  
DATE 24 JUL 2018  
1
GENERIC  
MARKING DIAGRAM*  
A
L
= Assembly Location  
= Wafer Lot  
*This information is generic. Please refer to  
XXXXXX  
XXXXXX  
ALYWG  
G
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
device data sheet for actual part marking.  
Pb−Free indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
(Note: Microdot may be in either location)  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON94098G  
DFN10 3x3, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  

相关型号:

NCP59763AMN100TBG

LDO Regulator, 3 A, High Accuracy (1%), Low Noise (4.3 VRMS), Low Dropout (70 mV)
ONSEMI

NCP59763AMN120TBG

LDO Regulator, 3 A, High Accuracy (1%), Low Noise (4.3 VRMS), Low Dropout (70 mV)
ONSEMI

NCP59800

1 A Low Noise, RF LDO Voltage Regulator
ONSEMI

NCP59800BMNADJTAG

1 A Low Noise, RF LDO Voltage Regulator
ONSEMI

NCP59800BMNADJTBG

1 A Low Noise, RF LDO Voltage Regulator
ONSEMI

NCP59800_17

1 A Low Noise, RF LDO Voltage Regulator
ONSEMI

NCP600

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN150T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN180T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN280T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN300T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN330T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI