NCP707BMX180TCG [ONSEMI]

Low Noise, Low Dropout Regulator;
NCP707BMX180TCG
型号: NCP707BMX180TCG
厂家: ONSEMI    ONSEMI
描述:

Low Noise, Low Dropout Regulator

光电二极管 输出元件 调节器
文件: 总19页 (文件大小:856K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP707  
200 mA, Very-Low  
Quiescent Current, IQ 25 mA,  
Low Noise, Low Dropout  
Regulator  
www.onsemi.com  
The NCP707 is 200 mA LDO that provides the engineer with a very  
stable, accurate voltage with very low noise suitable for space  
constrained, noise sensitive applications. In order to optimize  
performance for battery operated portable applications, the NCP707  
MARKING  
DIAGRAM  
1
employs the dynamic quiescent current adjustment for very low I  
consumption at no−load.  
Q
XDFN4  
MX SUFFIX  
CASE 711AJ  
XX M  
1
Features  
Operating Input Voltage Range: 1.8 V to 5.5 V  
XX = Specific Device Code  
= Date Code  
Available in Fixed Voltage Options: 1.5 V to 3.3 V  
M
Contact Factory for Other Voltage Options  
Very Low Quiescent Current of Typ. 25 mA  
PIN CONNECTIONS  
Very Low Noise: 22 mV  
from 100 Hz to 100 kHz  
RMS  
Very Low Dropout: 100 mV Typical at 200 mA  
2% Accuracy Over Load/Line/Temperature  
IN  
4
EN  
3
High Power Supply Ripple Rejection: 70 dB at 1 kHz  
Thermal Shutdown and Current Limit Protections  
Stable with a 1 mF Ceramic Output Capacitor  
Available in XDFN 1.0 x 1.0 mm Package  
EPAD  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
1
2
Compliant  
OUT  
GND  
(Top View)  
Typical Applicaitons  
PDAs, Mobile phones, GPS, Smartphones  
Wireless Handsets, Wireless LAN, Bluetooth®, Zigbee®  
Portable Medical Equipment  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 18 of this data sheet.  
Other Battery Powered Applications  
V
V
IN  
C
OUT  
IN  
OUT  
NCP707  
GND  
C
1 mF  
Ceramic  
IN  
OUT  
EN  
ON  
OFF  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
April, 2017 − Rev. 9  
NCP707/D  
NCP707  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
VOLTAGE  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT  
AUTO LOW  
POWER MODE  
ACTIVE  
DISCHARGE*  
EN  
GND  
*Active output discharge function is present only in NCP707AMXyyyTCG and NCP707CMXyyyTCG devices.  
yyy denotes the particular V option.  
OUT  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
OUT  
Regulated output voltage pin. A small ceramic capacitor with minimum value of 1 mF is needed from this  
pin to ground to assure stability.  
2
3
GND  
EN  
Power supply ground.  
Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown  
mode.  
4
IN  
Input pin. A small 1 mF capacitor is needed from this pin to ground to assure stability.  
EPAD  
Exposed pad should be connected directly to the GND pin. Soldered to a large ground copper plane allows  
for effective heat removal.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
VIN  
Value  
Unit  
V
Input Voltage (Note 1)  
−0.3 V to 6 V  
Output Voltage  
VOUT  
VEN  
−0.3 V to VIN + 0.3 V  
V
Enable Input  
−0.3 V to VIN + 0.3 V  
V
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
tSC  
150  
s
TJ(MAX)  
TSTG  
°C  
°C  
V
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22−A114  
ESD Machine Model tested per EIA/JESD22−A115  
Latchup Current Rating tested per JEDEC standard: JESD78  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN4 1x1 mm  
R
250  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air  
3. Single component mounted on 2 oz, FR4 PCB with 100 mm Cu area.  
2
www.onsemi.com  
2
 
NCP707  
ELECTRICAL CHARACTERISTICS  
−40°C T 125°C; V = V  
+ 0.5 V or 1.9 V, whichever is greater; I  
= 10 mA, C = C  
= 1 mF, unless otherwise noted.  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
V
EN  
= 0.9 V. Typical values are at T = +25°C. Min./Max. are for T = −40°C and T = +125°C respectively (Note 4).  
J
J
J
Parameter  
Test Conditions  
Symbol  
Min  
1.8  
−2  
Typ  
Max  
5.5  
+2  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
V
IN  
VOUT + 0.5 V VIN 5.5 V, IOUT = 0 − 200 mA  
VOUT + 0.5 V VIN 5.5 V, IOUT = 10 mA  
IOUT = 0 mA to 200 mA  
V
OUT  
%
Reg  
400  
10  
mV/V  
mV/mA  
mV  
LINE  
LOAD  
LOAD  
Load Regulation  
Reg  
Load Transient  
I
= 1 mA to 200 mA or 200 mA to 1 mA in  
Tran  
75  
OUT  
1 ms, C  
= 1 mF  
OUT  
V
V
= 1.5 V  
= 1.8 V  
= 1.85 V  
= 2.5 V  
= 2.8 V  
= 2.85 V  
= 3.0 V  
= 3.1 V  
= 3.2 V  
= 3.3 V  
415  
221  
218  
135  
118  
114  
111  
107  
105  
100  
379  
25  
490  
380  
370  
225  
175  
170  
165  
160  
155  
150  
500  
35  
OUT  
OUT  
OUT  
V
V
OUT  
OUT  
OUT  
V
Dropout Voltage (Note 5)  
I
= 200 mA  
V
mV  
OUT  
DO  
V
V
OUT  
OUT  
OUT  
OUT  
V
V
V
Output Current Limit  
V
OUT  
= 90% V  
I
CL  
250  
mA  
mA  
mA  
mA  
mA  
V
OUT(nom)  
IOUT = 0 mA  
IOUT = 2 mA  
I
Q
I
I
105  
240  
0.01  
Ground Current  
GND  
GND  
IOUT = 200 mA  
VEN 0.4 V, VIN = 5.5 V  
Shutdown Current  
I
1
DIS  
EN Pin Threshold Voltage  
High Threshold  
Low Threshold  
V
Voltage increasing  
Voltage decreasing  
0.9  
EN  
EN_HI  
V
EN  
0.4  
EN Pin Input Current  
Turn−on Time  
VEN = 5.5 V  
I
180  
200  
500  
nA  
EN  
C
= 1.0 mF, From assertion of V to 98%  
t
ms  
OUT  
EN  
ON  
V
OUT(NOM)  
Power Supply Rejection Ratio  
Output Noise Voltage  
V
= 3.6 V, V  
= 3.1 V  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
PSRR  
58  
70  
55  
dB  
IN  
OUT  
I
= 150 mA  
OUT  
V
= 3.1 V, V = 3.6 V, I  
= 200 mA  
V
N
22  
mV  
rms  
OUT  
IN  
OUT  
f = 100 Hz to 100 kHz  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature increasing from T = +25°C  
T
160  
20  
°C  
J
SD  
Temperature falling from T  
T
SDH  
°C  
SD  
Active Output Discharge Resist-  
ance  
VEN < 0.4 V, Version A only  
VEN < 0.4 V, Version C only  
R
1.2  
120  
kW  
W
DIS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
5. Characterized when VOUT falls 100 mV below the regulated voltage at VIN = VOUT(NOM) + 0.5 V.  
www.onsemi.com  
3
 
NCP707  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.480  
1.860  
1.855  
1.850  
1.845  
1.840  
1.835  
1.830  
I
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
= 200 mA  
OUT  
I
OUT  
C
V
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
V
IN  
= 2.0 V  
V
= 2.35 V  
IN  
OUT(NOM)  
= 1.5 V  
V
= 1.85 V  
OUT(NOM)  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40 60  
80 100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature  
VOUT = 1.85 V  
V
OUT = 1.5 V  
2.870  
2.865  
2.860  
2.855  
2.850  
2.845  
2.840  
3.000  
2.995  
2.990  
2.985  
2.980  
2.975  
2.970  
C
= C  
= 1 mF  
IN  
OUT  
V
= 3.35 V  
IN  
OUT(NOM)  
V
= 2.85 V  
I
I
= 10 mA  
OUT  
= 200 mA  
OUT  
I
I
= 10 mA  
OUT  
= 200 mA  
OUT  
C
= C  
V
= 1 mF  
IN  
OUT  
= 3.5 V  
IN  
OUT(NOM)  
V
= 3.0 V  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40 60  
80 100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Temperature  
OUT = 2.85 V  
Figure 6. Output Voltage vs. Temperature  
VOUT = 3.0 V  
V
3.110  
3.105  
3.100  
3.095  
3.090  
3.085  
3.080  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
C
= C  
V
= 1 mF  
= 3.6 V  
IN  
OUT  
IN  
OUT(NOM)  
V
= 3.1 V  
I
I
= 10 mA  
OUT  
I
I
= 10 mA  
OUT  
= 200 mA  
OUT  
= 200 mA  
OUT  
C
= C  
V
= 1 mF  
= 3.8 V  
IN  
OUT  
IN  
OUT(NOM)  
V
= 3.3 V  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40 60  
80 100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Output Voltage vs. Temperature  
OUT = 3.1 V  
Figure 8. Output Voltage vs. Temperature  
VOUT = 3.3 V  
V
www.onsemi.com  
4
NCP707  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
T = 125°C  
T = 125°C  
A
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
C
V
= C  
= 1 mF  
C
= C  
= 1 mF  
= 0 mA  
IN  
I
OUT  
= 0 mA  
IN  
OUT  
I
OUT  
OUT  
= 1.8 V  
V
= 1.5 V  
OUT(NOM)  
OUT(NOM)  
0
0
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. Quiescent Current vs. Input Voltage  
OUT = 1.5 V  
Figure 10. Quiescent Current vs. Input Voltage  
VOUT = 1.8 V  
V
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
T = 125°C  
A
T = 125°C  
A
T = 25°C  
T = 25°C  
A
A
T = −40°C  
A
T = −40°C  
A
C
V
= C  
= 1 mF  
C
V
= C  
= 1 mF  
IN  
OUT  
= 0 mA  
IN  
OUT  
I
I
= 0 mA  
OUT  
OUT  
= 2.8 V  
= 3.0 V  
OUT(NOM)  
OUT(NOM)  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. Quiescent Current vs. Input Voltage  
OUT = 2.8 V  
Figure 12. Quiescent Current vs. Input Voltage  
VOUT = 3.0 V  
V
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
C
= C  
= 1 mF  
IN  
OUT  
I
= 0 mA  
OUT  
T = 125°C  
A
T = 125°C  
A
V
= 3.3 V  
OUT(NOM)  
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
C
= C  
= 1 mF  
IN  
OUT  
= 0 mA  
I
OUT  
V
= 3.1 V  
OUT(NOM)  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 13. Quiescent Current vs. Input Voltage  
OUT = 3.1 V  
Figure 14. Quiescent Current vs. Input Voltage  
VOUT = 3.3 V  
V
www.onsemi.com  
5
NCP707  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
C
= C  
= 1 mF  
= 0 mA  
IN  
I
OUT  
C
= C  
= 1 mF  
= 0 mA  
IN  
I
OUT  
T = −40°C  
A
OUT  
T = −40°C  
A
OUT  
V
= 1.8 V  
OUT(NOM)  
V
= 1.5 V  
OUT(NOM)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 15. Output Voltage vs. Input Voltage  
OUT = 1.5 V  
Figure 16. Output Voltage vs. Input Voltage  
VOUT = 1.8 V  
V
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
C
V
= C  
= 1 mF  
= 0 mA  
C
V
= C  
= 1 mF  
= 0 mA  
IN  
I
OUT  
IN  
I
OUT  
OUT  
OUT  
= 2.8 V  
= 3.0 V  
OUT(NOM)  
OUT(NOM)  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 17. Output Voltage vs. Input Voltage  
OUT = 2.8 V  
Figure 18. Output Voltage vs. Input Voltage  
VOUT = 3.0 V  
V
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
C
V
= C  
= 1 mF  
= 0 mA  
C
V
= C  
= 1 mF  
= 0 mA  
IN  
I
OUT  
IN  
I
OUT  
OUT  
OUT  
= 3.3 V  
= 3.1 V  
OUT(NOM)  
OUT(NOM)  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 19. Output Voltage vs. Input Voltage  
OUT = 3.1 V  
Figure 20. Output Voltage vs. Input Voltage  
VOUT = 3.3 V  
V
www.onsemi.com  
6
NCP707  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
C
V
= C  
= 1 mF  
= 1.5 V  
C
= C  
= 1 mF  
= 1.85 V  
IN  
OUT  
IN  
OUT  
V
OUT(NOM)  
OUT(NOM)  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0
0.04  
0.08  
0.12  
0.16  
0.2  
0
0.04  
0.08  
0.12  
0.16  
0.2  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 21. Dropout Voltage vs. Output Current  
OUT = 1.5 V  
Figure 22. Dropout Voltage vs. Output Current  
VOUT = 1.85 V  
V
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.000  
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.000  
C
V
= C  
= 1 mF  
= 2.8 V  
C
V
= C  
= 1 mF  
= 3.0 V  
IN  
OUT  
IN  
OUT  
OUT(NOM)  
OUT(NOM)  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0.04  
0.08  
0.12  
0.16  
0.2  
0
0.04  
0.08  
0.12  
0.16  
0.2  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 23. Dropout Voltage vs. Output Current  
OUT = 2.8 V  
Figure 24. Dropout Voltage vs. Output Current  
VOUT = 3.0 V  
V
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.000  
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.000  
C
V
= C  
= 1 mF  
= 3.1 V  
C
V
= C  
= 1 mF  
= 3.3 V  
IN  
OUT  
IN  
OUT  
OUT(NOM)  
OUT(NOM)  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0.04  
0.08  
0.12  
0.16  
0.2  
0
0.04  
0.08  
0.12  
0.16  
0.2  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 25. Dropout Voltage vs. Output Current  
OUT = 3.1 V  
Figure 26. Dropout Voltage vs. Output Current  
OUT = 3.3 V  
V
V
www.onsemi.com  
7
NCP707  
440  
420  
400  
380  
360  
340  
320  
300  
440  
420  
400  
380  
360  
340  
320  
300  
C
= C  
= 1 mF  
IN  
OUT  
V
IN  
= 2.0 V  
Short−Circuit Current:  
for V = 0 V  
V
= 1.5 V  
OUT(NOM)  
I
OUT  
OUT  
Short−Circuit Current:  
for V = 0 V  
I
OUT  
OUT  
Current Limit: I  
for  
OUT  
V
OUT  
= V  
− 0.1 V  
OUT(NOM)  
Current Limit: I  
for  
OUT  
V
OUT  
= V  
− 0.1 V  
OUT(NOM)  
C
= C  
= 1 mF  
IN  
OUT  
V
= 2.35 V  
IN  
OUT(NOM)  
V
= 1.85 V  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 27. Short−Circuit Limit vs. Temperature  
VOUT = 1.5 V  
Figure 28. Short−Circuit Limit vs. Temperature  
VOUT = 1.85 V  
440  
420  
400  
380  
360  
340  
320  
300  
440  
420  
400  
380  
360  
340  
320  
300  
Short−Circuit Current:  
Short−Circuit Current:  
I
for V  
= 0 V  
OUT  
OUT  
I
for V  
= 0 V  
OUT  
OUT  
Current Limit: I  
for  
− 0.1 V  
OUT  
Current Limit: I  
for  
OUT  
V
OUT  
= V  
OUT(NOM)  
V
OUT  
= V  
− 0.1 V  
OUT(NOM)  
C
= C  
= 1 mF  
C
= C  
V
= 1 mF  
= 3.5 V  
IN  
OUT  
IN  
OUT  
V
= 3.35 V  
IN  
OUT(NOM)  
IN  
OUT(NOM)  
V
= 2.85 V  
V
= 3.0 V  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 29. Short−Circuit Limit vs. Temperature  
OUT = 2.85 V  
Figure 30. Short−Circuit Limit vs. Temperature  
VOUT = 3.0 V  
V
460  
440  
460  
440  
C
= C  
= 1 mF  
IN  
OUT  
V
= 3.8 V  
IN  
OUT(NOM)  
Short−Circuit Current:  
for V = 0 V  
V
= 3.3 V  
I
OUT  
OUT  
420  
400  
380  
360  
340  
320  
420  
400  
380  
360  
340  
320  
Short−Circuit Current:  
I
for V  
= 0 V  
OUT  
OUT  
Current Limit: I  
for  
− 0.1 V  
OUT  
V
= V  
OUT  
OUT(NOM)  
Current Limit: I  
= V  
for  
OUT  
V
− 0.1 V  
C
= C  
= 1 mF  
OUT  
OUT(NOM)  
IN  
OUT  
V
IN  
= 3.6 V  
V
= 3.1 V  
OUT(NOM)  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 31. Short−Circuit Limit vs. Temperature  
VOUT = 3.1 V  
Figure 32. Short−Circuit Limit vs. Temperature  
VOUT = 3.3 V  
www.onsemi.com  
8
NCP707  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
C
= C  
= 1 mF  
IN  
OUT  
C
= C  
= 1 mF  
IN  
OUT  
V
IN  
= 2.0 V to 5.5 V  
V
IN  
= 2.35 V to 5.5 V  
V
= 1.5 V  
OUT(NOM)  
V
= 1.85 V  
OUT(NOM)  
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
Line Regulation from V = 2 V to 5.5 V  
IN  
Line Regulation from V = 2.35 V to 5.5 V  
IN  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 33. Line Regulation vs. Temperature  
OUT = 1.5 V  
Figure 34. Line Regulation vs. Temperature  
VOUT = 1.85 V  
V
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
C
= C  
= 1 mF  
IN  
OUT  
C
= C  
= 1 mF  
IN  
OUT  
V
IN  
= 3.5 V to 5.5 V  
= 3.0 V  
V
IN  
= 3.35 V to 5.5 V  
V
OUT(NOM)  
V
= 2.85 V  
OUT(NOM)  
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
Line Regulation from V = 3.5 V to 5.5 V  
Line Regulation from V = 3.35 V to 5.5 V  
IN  
IN  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 35. Line Regulation vs. Temperature  
OUT = 2.85 V  
Figure 36. Line Regulation vs. Temperature  
VOUT = 3.0 V  
V
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
V
IN  
= 3.8 V to 5.5 V  
= 3.3 V  
V
IN  
= 3.6 V to 5.5 V  
= 3.1 V  
V
V
OUT(NOM)  
OUT(NOM)  
I
= 10 mA  
I
= 10 mA  
OUT  
OUT  
Line Regulation from V = 3.8 V to 5.5 V  
IN  
Line Regulation from V = 3.6 V to 5.5 V  
IN  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 37. Line Regulation vs. Temperature  
VOUT = 3.1 V  
Figure 38. Line Regulation vs. Temperature  
VOUT = 3.3 V  
www.onsemi.com  
9
NCP707  
10  
9
8
7
6
5
4
3
2
1
0
200  
C
= C  
= 1 mF  
+ 0.5 V  
C
= C  
= 1 mF  
+ 0.5 V  
IN  
OUT  
OUT(NOM)  
IN  
OUT  
OUT(NOM)  
180  
160  
140  
120  
100  
80  
V
= V  
V
I
= V  
IN  
IN  
= 0 mA to 200 mA  
OUT  
T = 125°C  
A
V
= 1.5 V  
OUT(NOM)  
T = 25°C  
A
T = −40°C  
A
60  
V
= 1.8 V  
OUT(NOM)  
40  
20  
V
= 3.3 V  
OUT(NOM)  
0
−40 −20  
0
20  
40  
60  
80 100  
120 140  
0
1
2
3
4
5
6
7
8
9
10  
JUNCTION TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 39. Load Regulation vs. Temperature  
Figure 40. Ground Current vs. Output Current  
100  
10  
300  
280  
260  
240  
220  
200  
C
= C  
= 1 mF  
+ 0.5 V  
IN  
OUT  
V
V
= 1.5 V  
= 3.3 V  
OUT  
OUT  
V
= V  
I
IN  
OUT(NOM)  
= 200 mA  
OUT  
UNSTABLE OPERATION  
STABLE OPERATION  
V
= 1.5 V  
OUT(NOM)  
1
V
= 1.85 V  
OUT(NOM)  
0.1  
0.01  
V
= 3.3 V  
OUT(NOM)  
V
= 2.85 V  
OUT(NOM)  
0
100  
200  
300  
−40 −20  
0
20  
40  
60  
80 100  
120 140  
JUNCTION TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 41. Ground Current vs. Temperature  
Figure 42. Stability vs. Output Capacitor ESR  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1 mA  
I
= 150 mA  
OUT  
OUT  
I
= 1 mA  
OUT  
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
C
C
= 1 mF  
= none,  
C
C
= 1 mF  
= none,  
= 2.35 V 50 mV  
AC  
OUT  
OUT  
IN  
IN  
V
= 2.0 V 50 mV  
AC  
I
= 150 mA  
V
IN  
V
OUT  
IN  
V
= 1.5 V  
= 1.85 V  
OUT(NOM)  
OUT(NOM)  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. PSRR vs. Frequency  
VOUT = 1.5 V  
Figure 44. PSRR vs. Frequency  
VOUT = 1.85 V  
www.onsemi.com  
10  
NCP707  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 150 mA  
OUT  
I
= 150 mA  
I
= 1 mA  
OUT  
OUT  
I
= 1 mA  
OUT  
C
= 1 mF  
OUT  
C
C
= 1 mF  
OUT  
C
= none,  
IN  
= none,  
= 3.5 V 50 mV  
AC  
IN  
I
= 10 mA  
OUT  
V
IN  
= 3.6 V 50 mV  
AC  
V
IN  
V
I
= 10 mA  
OUT  
V
= 3.1 V  
OUT(NOM)  
= 3.0 V  
OUT(NOM)  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. PSRR vs. Frequency  
VOUT = 3.0 V  
Figure 46. PSRR vs. Frequency  
VOUT = 3.1 V  
C
V
= C  
= 3.6 V  
= 1 mF  
C
V
= C  
= 2.0 V  
= 1 mF  
IN  
OUT  
IN  
OUT  
IN  
IN  
V
= 3.1 V  
V
= 1.5 V  
OUT  
OUT  
1.000  
0.100  
0.010  
0.001  
1.000  
0.100  
0.010  
0.001  
MLCC, X7R  
1206 size  
MLCC, X7R  
1206 size  
I
= 10 mA  
I
= 10 mA  
OUT  
OUT  
I
= 200 mA  
OUT  
I
= 200 mA  
10k  
OUT  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. Output Noise Density vs. Frequency  
OUT = 1.5 V  
Figure 48. Output Noise Density vs. Frequency  
VOUT = 3.1 V  
V
0.35  
0.3  
0.9  
0.85  
0.8  
V
= C  
= 2 V  
IN  
T = 125°C  
A
C
V
= 1 mF  
IN  
OUT  
= 1.5 V  
OUT(NOM)  
0.25  
0.2  
V
EN  
= Low to High  
0.75  
0.7  
T = 25°C  
A
0.15  
0.1  
V
EN  
= High to Low  
0.65  
0.6  
T = −40°C  
A
C
= C  
V
= 1 mF  
= 2 V  
IN  
OUT  
0.05  
0
0.55  
IN  
OUT(NOM)  
V
= 1.5 V  
0.5  
−40 −20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
20  
40  
60  
80  
100 120 140  
ENABLE VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
Figure 49. Enable Input Current vs. Enable  
Voltage  
Figure 50. Enable Threshold Voltage vs.  
Temperature  
www.onsemi.com  
11  
NCP707  
0.2  
0.16  
0.12  
0.08  
0.04  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
C
= C  
= 1 mF  
IN  
OUT  
+ 0.5 V  
OUT(NOM)  
V
= V  
IN  
V
EN  
= 0 V  
V
= 3.3 V  
OUT  
V
C
= 1.5 V  
OUT  
= C  
= 1 mF  
IN  
OUT  
V
IN  
= V  
+ 0.5 V  
OUT(NOM)  
V
EN  
= Step from 0 V to 1 V / 1 ms  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 51. Shutdown Current vs. Temperature  
Figure 52. VOUT Turn−on Time vs.  
Temperature  
www.onsemi.com  
12  
NCP707  
V
V
= 3.6 V  
V
V
= 3.6 V  
IN  
IN  
200 mA  
200 mA  
= 3.1 V  
= 3.1 V  
OUT(nom)  
OUT(nom)  
C
= C  
= 1 mF  
C
= C = 4.7 mF  
OUT  
IN  
OUT  
IN  
1 mA  
1 mA  
I
I
OUT  
OUT  
V
OUT  
V
OUT  
20 ms / div  
20 ms / div  
Figure 53. Load Transient Response  
OUT = 1 mA to 200 mA, COUT = 1 mF  
Figure 54. Load Transient Response  
IOUT = 1 mA to 200 mA, COUT = 4.7 mF  
I
V
V
= 3.6 V  
IN  
V
V
= 3.6 V  
IN  
= 3.1 V  
200 mA  
OUT(nom)  
200 mA  
= 3.1 V  
OUT(nom)  
C
= C  
= 1 mF  
IN  
OUT  
C
= C  
= 4.7 mF  
IN  
OUT  
10 mA  
10 mA  
I
I
OUT  
OUT  
V
OUT  
V
OUT  
10 ms / div  
20 ms / div  
Figure 55. Load Transient Response  
Figure 56. Load Transient Response  
IOUT = 10 mA to 200 mA, COUT = 1 mF  
IOUT = 10 mA to 200 mA, COUT = 4.7 mF  
V
V
= 2.3 V  
IN  
R = 1.8 kW  
L
= 1.8 V  
V
OUT  
= 1.8 V  
V
OUT  
= 1.8 V  
OUT(nom)  
C
= C  
= 1 mF  
IN  
OUT  
R = 180 kW  
L
V
OUT  
= 0 V  
V
OUT  
= 0 V  
I
IN  
= 1 mA  
I
IN  
V
EN  
= 1 V  
V
V
= 2.3 V  
IN  
= 1.8 V  
OUT(nom)  
V
EN  
= 1 V  
C
= C  
= 1 mF  
IN  
OUT  
V
EN  
= 0 V  
V
EN  
= 0 V  
500 ms / div  
500 ms / div  
Figure 57. Enable Turn−On Response  
OUT = 1.8 V, COUT = 1 mF  
Figure 58. Enable Turn−Off Response  
OUT = 1.8 V, COUT = 1 mF (A Version)  
V
V
www.onsemi.com  
13  
NCP707  
V
V
= 3.8 V  
V
V
= 3.8 V  
IN  
IN  
R = 1.8 kW  
L
V
OUT  
= 1.8 V  
V
OUT  
= 1.8 V  
= 3.3 V  
= 1 mF  
= 3.3 V  
= 1 mF  
OUT  
OUT(nom)  
OUT(nom)  
C
= C  
C
= C  
IN  
OUT  
IN  
R = 180 kW  
L
V
OUT  
= 0 V  
V
OUT  
= 0 V  
I
IN  
I
IN  
= 1 mA  
V
EN  
= 1 V  
V
EN  
= 1 V  
V
EN  
= 0 V  
V
EN  
= 0 V  
50 ms / div  
500 ms / div  
Figure 59. Enable Turn−On Response  
OUT = 3.3 V, COUT = 1 mF  
Figure 60. Enable Turn−Off Response  
V
V
OUT = 3.3 V, COUT = 1 mF (A Version)  
V
V
= 3.8 V  
V
V
= 3.8 V  
IN  
IN  
= 3.3 V  
= 3.3 V  
OUT(nom)  
OUT(nom)  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
V
= 2.3 V  
= 1.8 V  
V
= 2.3 V  
= 1.8 V  
IN  
IN  
V
OUT  
V
OUT  
V
= 0 V  
IN  
V
= 0 V  
IN  
V
OUT  
= 0 V  
V
OUT  
= 0 V  
I
IN  
= 1 mA  
500 ms / div  
2 ms / div  
Figure 61. Enable Turn−On Response  
OUT = 1.8 V, COUT = 1 mF  
Figure 62. Enable Turn−Off Response  
V
V
OUT = 1.8 V, COUT = 1 mF (A Version)  
V
V
= 3.8 V  
IN  
= 3.3 V  
= 1 mF  
V
IN  
= 3.8 V  
OUT(nom)  
C
= C  
OUT  
IN  
V
= 3.3 V  
OUT  
V
= 3.8 V  
= 3.3 V  
IN  
V
= 0 V  
= 0 V  
IN  
V
V
= 3.8 V  
IN  
V
OUT  
V
OUT  
= 3.3 V  
OUT(nom)  
C
= C  
= 1 mF  
IN  
OUT  
V
IN  
= 0 V  
V
OUT  
= 0 V  
I
IN  
= 1 mA  
Figure 63. Enable Turn−On Response  
OUT = 3.3 V, COUT = 1 mF  
Figure 64. Enable Turn−Off Response  
OUT = 3.3 V, COUT = 1 mF (A Version)  
V
V
www.onsemi.com  
14  
NCP707  
V
OUT  
= 3.3 V  
Output Short−Circuit  
= 0 V  
Output Short−Circuit  
V
OUT  
= 1.5 V  
V
OUT  
V
OUT  
= 0 V  
V
V
= 5.5 V  
IN  
V
= 5.5 V  
IN  
= 3.3 V  
= 1 mF  
OUT(nom)  
V
= 1.5 V  
OUT(nom)  
C
= C  
OUT  
IN  
C
= C  
= 1 mF  
IN  
OUT  
I
= 402 mA  
I
= 398 mA  
OUT  
OUT  
I
= 1 mA  
OUT  
200 ms / div  
200 ms / div  
Figure 65. Short−Circuit Response  
OUT = 1.5 V, COUT = 1 mF  
Figure 66. Short−Circuit Response  
OUT = 1.5 V, COUT = 1 mF  
V
V
V
IN  
= 2.0 V  
V
= 1.5 V  
OUT(nom)  
V
OUT  
= 1.5 V  
C
= C  
= 1 mF  
IN  
OUT  
V
OUT  
= 0 V  
Thermal Shutdown  
I
= 398 mA  
OUT  
I
= 1 mA  
OUT  
5 ms / div  
Figure 67. Short−Circuit Response  
V
OUT = 1.5 V, COUT = 1 mF  
www.onsemi.com  
15  
NCP707  
APPLICATIONS INFORMATION  
The NCP707 is a high performance, small package size,  
to GND through a 1.2 kW resistor for A options or 120 W  
200 mA LDO voltage regulator. This device delivers very  
good noise and dynamic performance. Thanks to its adaptive  
ground current feature the device consumes only 25 mA of  
quiescent current at no−load condition. The regulator  
features very*low noise of 22 mVRMS, PSRR of typ. 70dB  
at 1kHz and very good load/line transient response. The  
device is an ideal choice for space constrained portable  
applications.  
A logic EN input provides ON/OFF control of the output  
voltage. When the EN is low the device consumes as low as  
typ. 10 nA from the IN pin.  
The device is fully protected in case of output overload,  
output short circuit condition and overheating, assuring a  
very robust design.  
resistor for C options. In the disable state the device  
consumes as low as typ. 10 nA from the V . If the EN pin  
IN  
voltage > 0.9 V the device is guaranteed to be enabled. The  
NCP707 regulates the output voltage and the active  
discharge transistor is turned*off. The EN pin has an  
internal pull−down current source with typ. value of 180 nA  
which assures that the device is turned−off when the EN pin  
is not connected. A build in 56 mV of hysteresis and deglitch  
time in the EN block prevents from periodic on/off  
oscillations that can occur due to noise on EN line. In the  
case that the EN function isn’t required the EN pin should be  
tied directly to IN.  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V  
> V .  
Input Capacitor Selection (CIN)  
OUT  
IN  
Due to this fact in cases where the extended reverse current  
condition is anticipated the device may require additional  
external protection.  
It is recommended to connect a minimum of 1 μF Ceramic  
X5R or X7R capacitor close to the IN pin of the device.  
Larger input capacitors may be necessary if fast and large  
load transients are encountered in the application. There is  
no requirement for the min./max. ESR of the input capacitor  
but it is recommended to use ceramic capacitors for their low  
ESR and ESL.  
Output Current Limit  
Output Current is internally limited within the IC to a  
typical 379 mA. The NCP707 will source this amount of  
current measured with the output voltage 100 mV lower  
than the nominal V  
shorted to ground (V  
will limit the output current to 390 mA (typ). The current  
limit and short circuit protection will work properly up to  
. If the Output Voltage is directly  
= 0 V), the short circuit protection  
Output Capacitor Selection (COUT  
)
OUT  
The NCP707 is designed to be stable with small 1.0 mF and  
larger ceramic capacitors on the output. The minimum  
effective output capacitance for which the LDO remains  
stable is 100 nF. The safety margin is provided to account for  
capacitance variations due to DC bias voltage, temperature,  
initial tolerance. There is no requirement for the minimum  
OUT  
V
=5.5 V at T = 25°C. There is no limitation for the short  
IN  
A
circuit duration.  
Thermal Shutdown  
value of Equivalent Series Resistance (ESR) for the C  
OUT  
When the die temperature exceeds the Thermal Shutdown  
threshold (TSD * 160°C typical), Thermal Shutdown event  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (TSDU − 140°C  
typical). Once the IC temperature falls below the 140°C the  
LDO is enabled again. The thermal shutdown feature  
provides protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
but the maximum value of ESR should be less than 700 mΩ.  
Larger output capacitors could be used to improve the load  
transient response or high frequency PSRR characteristics.  
It is not recommended to use tantalum capacitors on the  
output due to their large ESR. The equivalent series  
resistance of tantalum capacitors is also strongly dependent  
on the temperature, increasing at low temperature. The  
tantalum capacitors are generally more costly than ceramic  
capacitors.  
No−load Operation  
Power Dissipation  
The regulator remains stable and regulates the output  
voltage properly within the 2% tolerance limits even with  
no external load applied to the output.  
As power dissipated in the NCP707 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part. The maximum power dissipation the  
NCP707 can handle is given by:  
Enable Operation  
The NCP707 uses the EN pin to enable/disable its output  
and to control the active discharge function. If the EN pin  
voltage is < 0.4 V the device is guaranteed to be disabled.  
The pass transistor is turned*off so that there is virtually no  
current flow between the IN and OUT. In case of the option  
equipped with active discharge − the active discharge  
ƪ
ƫ
125 * TA  
(eq. 1)  
PD(MAX)  
+
qJA  
transistor is turned−on and the output voltage V  
is pulled  
OUT  
www.onsemi.com  
16  
NCP707  
For reliable operation junction temperature should be  
limited to +125°C.  
The power dissipated by the NCP707 for given  
application conditions can be calculated as follows:  
point of load can easily approach 100 mW which will cause  
a 20 mV voltage drop at full load current, deteriorating the  
excellent load regulation.  
Line Regulation  
The IC features very good line regulation of 0.4 mV/V  
ǒ
Ǔ
(eq. 2)  
PD(MAX) + VINIGND ) IOUT VIN * VOUT  
measured from V = V  
+ 0.5 V to 5.5 V.  
IN  
OUT  
Figure 68 shows the typical values of θ vs. heat  
JA  
spreading area.  
Power Supply Rejection Ratio  
At low frequencies the PSRR is mainly determined by the  
feedback open−loop gain. At higher frequencies in the range  
Load Regulation  
The NCP707 features very good load regulation of typical  
2 mV in the 0 mA to 200 mA range. In order to achieve this  
very good load regulation a special attention to PCB design  
is necessary. The trace resistance from the OUT pin to the  
100 kHz – 10 MHz it can be tuned by the selection of C  
capacitor and proper PCB layout.  
OUT  
500  
0,9  
Theta JA curve with PCB cu thk 1,0 oz  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0,8  
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
Theta JA curve with PCB cu thk 2,0 oz  
Power curve with PCB cu thk 2,0 oz  
Power curve with PCB cu thk 1,0 oz  
0
100  
200  
300  
400  
500  
600  
2
COPPER AREA (mm)  
Figure 68. Thermal Parameters vs. Copper Area  
Output Noise  
voltage overshoots and assures monotonic ramp−up of the  
output voltage.  
The IC is designed for very−low output voltage noise. The  
typical noise performance of 22 mV makes the device  
suitable for noise sensitive applications.  
RMS  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
Internal Soft Start  
characteristics place C and C  
capacitors close to the  
IN  
OUT  
The Internal Soft*Start circuitry will limit the inrush  
current during the LDO turn−on phase. Please refer to  
typical characteristics section for typical inrush current  
values. The soft*start function prevents from any output  
device pins and make the PCB traces wide. In order to  
minimize the solution size use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated by the formula given in Equation 2.  
www.onsemi.com  
17  
 
NCP707  
ORDERING INFORMATION  
Voltage  
Option  
Marking  
Rotation  
Device  
Marking  
Option  
Package  
Shipping  
NCP707AMX150TCG  
NCP707AMX180TCG  
NCP707AMX185TCG  
NCP707AMX250TCG  
NCP707AMX280TCG  
NCP707AMX285TCG  
NCP707AMX300TCG  
NCP707AMX310TCG  
NCP707AMX330TCG  
NCP707BMX150TCG  
NCP707BMX180TCG  
NCP707BMX185TCG  
NCP707BMX250TCG  
NCP707BMX280TCG  
NCP707BMX285TCG  
NCP707BMX300TCG  
NCP707BMX310TCG  
NCP707BMX330TCG  
NCP707CMX150TCG  
NCP707CMX180TBG  
NCP707CMX180TCG  
NCP707CMX185TCG  
NCP707CMX250TCG  
NCP707CMX280TCG  
NCP707CMX285TCG  
NCP707CMX300TBG  
NCP707CMX300TCG  
NCP707CMX310TCG  
NCP707CMX320TCG  
NCP707CMX330TBG  
NCP707CMX330TCG  
1.5 V  
1.8 V  
1.85 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.1 V  
3.3 V  
1.5 V  
1.8 V  
1.85 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.1 V  
3.3 V  
1.5 V  
1.8 V  
1.8 V  
1.85 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.3 V  
A
D
E
K
F
J
0°  
0°  
0°  
180°  
0°  
With active output  
discharge function  
(R  
= 1.2 kW)  
DIS  
0°  
K
L
0°  
0°  
P
A
D
E
K
F
J
0°  
90°  
90°  
90°  
270°  
90°  
Without active output  
discharge function  
90°  
XDFN4  
(Pb-Free)  
K
L
90°  
3000 / Tape & Reel  
90°  
P
L
90°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
180°  
P
P
Q
V
Y
2
With active output  
discharge function  
(R  
= 120 W)  
DIS  
3
3
4
5
6
6
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
18  
NCP707  
PACKAGE DIMENSIONS  
XDFN4 1.0x1.0, 0.65P  
CASE 711AJ  
ISSUE A  
4X L2  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
4X b2  
2X  
0.05  
C
MILLIMETERS  
DETAIL A  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
0.05  
C
2X  
A
TOP VIEW  
A3  
b
b2 0.02  
0.10 REF  
0.15  
0.25  
0.12  
(A3)  
0.05  
0.05  
C
D
1.00 BSC  
D2 0.43  
0.53  
1.00 BSC  
0.65 BSC  
A
E
e
L
C
0.20  
0.30  
0.17  
SEATING  
PLANE  
NOTE 4  
A1  
L2 0.07  
C
SIDE VIEW  
e
e/2  
RECOMMENDED  
MOUNTING FOOTPRINT*  
DETAIL A  
4X L  
D2  
1
4
2
2X  
0.52  
0.65  
PITCH  
PACKAGE  
D2  
OUTLINE  
455  
3
4X  
0.39  
4X  
0.11  
1.20  
4X b  
M
0.05  
C A B  
NOTE 3  
BOTTOM VIEW  
4X  
4X  
0.26  
0.24  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Bluetooth is a registered trademark of Bluetooth SIG.  
ZigBee is a registered trademark of ZigBee Alliance.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP707/D  

相关型号:

NCP707BMX185TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX250TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX280TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX285TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX300TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX310TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707BMX330TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707CMX150TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707CMX180TBG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707CMX180TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707CMX185TCG

Low Noise, Low Dropout Regulator
ONSEMI

NCP707CMX250TCG

Low Noise, Low Dropout Regulator
ONSEMI