NCP81566MNTXG [ONSEMI]

8 + 1 Phase Output Controller with SVID Interface for Computer CPU Applications;
NCP81566MNTXG
型号: NCP81566MNTXG
厂家: ONSEMI    ONSEMI
描述:

8 + 1 Phase Output Controller with SVID Interface for Computer CPU Applications

文件: 总21页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
8 + 1 Phase Output  
Controller with SVID  
Interface for Computer CPU  
Applications  
1
52  
QFN52 6x6, 0.4P  
CASE 485BE  
NCP81566  
MARKING DIAGRAM  
The NCP81566 is a dual rail, eight plus one phase buck solution  
optimized for Intel’s IMVP9.2 CPUs. The multiphase rail control  
system is based on DualEdge pulsewidth modulation (PWM)  
combined with DCR current sensing. This provides an ultrafast  
initial response to dynamic load events and reduced system cost. The  
NCP81566 has an ultralow offset current monitor amplifier with  
programmable offset compensation for high accuracy current  
monitoring.  
NCP81566  
AWLYYWWG  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
Features  
Vin Range 4.5 V to 21 V  
Startup into PreCharged Loads While Avoiding False OVP  
Digital Soft Start Ramp  
ORDERING INFORMATION  
Adjustable Vboot  
Device  
NCP81566MNTXG  
Package  
Shipping  
High Impedance Differential Output Voltage Amplifier  
Dual VID Table Support to Be Compatible with IMVP9.2  
Support High Current Extensions  
Dynamic Reference Injection  
QFN52  
(PbFree)  
2500 / Tape &  
Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Programmable Output Voltage Slew Rates  
Dynamic VID FeedForward  
Differential Current Sense Amplifiers for Each Phase  
Programmable Adaptive Voltage Positioning (AVP)  
Adjustable Switching Frequency Range  
Digitally Stabilized Switching Frequency  
UltraSonic Operation  
Supports Acoustic Noise Mitigation Function  
PSYS Input Monitor  
Support for VCCIN_AUX IMON Input  
Meets Intel’s IMVP9.2 Specifications  
Current Mode Dual Edge Modulation for Fast Initial Response to  
Transient Loading  
This is a PbFree Device  
Typical Applications  
Computers  
© Semiconductor Components Industries, LLC, 2023  
1
Publication Order Number:  
May, 2023 Rev. 0  
NCP81566/D  
NCP81566  
TSENSE  
TSENSEA  
VR_HOT#  
Thermal  
Monitor  
UVLO  
&
VSPA  
VSNA  
ENABLE  
DACA  
GND  
DIFFAMP  
VSP  
VSN  
DAC  
GND  
CSREFA  
DIFFAMP  
ENABLE  
VSP  
VSN  
DAC  
VSPA  
VSNA  
DACA  
CSREF  
VR Ready  
DIFFA  
Comparator  
ERROR  
AMP  
DIFF  
FBA  
ERROR  
AMP  
COMPA  
FB  
VSP  
VSN  
OVP  
OVP  
Current  
Measurement &  
Limit  
ILIMA  
COMP  
VSPA  
VSNA  
IOUTA  
OVPA  
OVPA  
Current  
Measurement &  
Limit  
ILIM  
IOUT  
CSSUMA  
CSREFA  
CSAMP  
CSSUM  
CSREF  
CSAMP  
CSCOMPA  
ICC*2_MAIN_RAIL  
CSCOMP  
VSP‐VSN  
VSPA‐VSNA  
TSENSE  
TSENSEA  
IOUT  
IOUTA  
ROSC  
ROSCA  
VBOOT  
SV_ADDR_SR  
SDIO  
ALERT#  
SCLK  
Data  
SVID  
ADC  
Registers  
Interface  
MUX  
DAC  
DAC  
DAC  
DACA  
PSYS  
ICCMAX_AUXIN  
AUX_IN  
PH_CONFIG  
RAMP8  
IPH8  
IPH7  
IPH6  
CSP8  
CSP7  
CSP6  
CSP5  
CSP4  
CSP3  
CSP2  
CSP1  
RAMP7  
RAMP6  
IPH5  
RAMP5  
PWM  
Current  
Balance  
Ramp  
IPH4  
IPH3  
IPH2  
RAMP4  
RAMP3  
RAMP2  
Generators  
Generators  
PWM  
Current  
Balance  
IPH1A  
RAMP1A  
CSP1A  
Generators  
IPH1  
RAMP1  
Power State  
Stage  
Power State Stage  
Figure 1. Internal Block Diagram  
www.onsemi.com  
2
NCP81566  
APPLICATIONS INFORMATION  
VIN  
VCC  
EN  
+5V  
VRMP  
VIN  
VCC  
BST  
VCC  
DRVH  
SW  
SW1  
VR_EN  
DRON  
DRON  
VCCCORE  
EN  
Driver  
PWM  
PWM1/SV_ADDR_SR  
DRVL  
VCCIO  
VCCIO  
CSP1  
CSREF  
SDIO  
ALERT  
SCLK  
CSREF  
CPU_SDIO  
CPU_ALERT  
CPU_SCLK  
SDIO  
VIN  
VCC  
ALERT#  
SCLK  
BST  
VCC  
DRVH  
SW  
SW2  
EN  
DRON  
Driver  
PWM  
DRVL  
PWM2/VBOOT  
VPULL-UP  
CSP2  
CSREF  
VR_HOT#  
VR_RDY  
VR_HOT#  
VR_RDY  
VIN  
VCC  
BST  
VCC  
DRVH  
SW  
SW3  
EN  
DRON  
PSYS  
PSYS  
Driver  
(BATTERY CHARGER)  
PWM  
DRVL  
PWM3/ICCMAX  
AUX_IN  
AUX_OUT  
CSP3  
(AUX Power)  
CSREF  
VIN  
VCC  
BST  
VCC  
DRVH  
SW  
SW4  
EN  
DRON  
Driver  
VCCCORE  
PWM  
PWM4/ROSC  
DRVL  
VCCCORE_SENSE  
VSP  
VSN  
CSP4  
VSSCORE_SENSE  
GND  
CSREF  
VIN  
VCC  
DIFF  
FB  
BST  
VCC  
DRVH  
SW  
SW5  
EN  
DRON  
Driver  
PWM  
DRVL  
PWM5/ROSCA  
COMP  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
SW8  
CSSUM  
CSP5  
CSREF  
VIN  
VCC  
NTC  
BST  
VCC  
CSCOMP  
ILIM  
DRVH  
SW  
SW6  
EN  
DRON  
Driver  
PWM  
DRVL  
PWM6/ICCMAX_AUXIN  
IOUT  
CSP6  
TSENSE  
CSREF  
VIN  
NTC  
VCC  
VCCGT  
BST  
VCC  
DRVH  
SW  
SW7  
VCCGT_SENSE  
VSPA  
VSNA  
EN  
DRON  
Driver  
PWM7/  
PWM  
VSSGT_SENSE  
GND  
DRVL  
ICC*2_MAIN_RAIL  
CSP7  
DIFFA  
FBA  
CSREF  
VIN  
VCC  
BST  
VCC  
DRVH  
SW  
COMPA  
SW8  
EN  
DRON  
Driver  
SW1A  
CSSUMA  
PWM  
PWM8  
DRVL  
CSP8  
CSREF  
NTC  
CSCOMPA  
ILIMA  
VIN  
VCC  
BST  
VCC  
DRVH  
SW  
SW1A  
IOUTA  
TSENSEA  
GND  
VCCGT  
EN  
DRON  
Driver  
PWM  
PWM1A/ICCMAXA  
DRVL  
NTC  
CSP1A  
CSREFA  
CSREFA  
Figure 2. Typical Application Circuit  
www.onsemi.com  
3
NCP81566  
Figure 3. Pinout  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
IOUT  
Description  
1
2
3
4
5
6
7
8
9
Total output current monitor for regulator 1  
Enable. High enables both rails  
Serial VID data interface  
Serial VID ALERT#  
EN  
SDIO  
ALERT#  
SCLK  
Serial VID clock  
VR_RDY  
VCC  
VR_RDY indicates both rails are ready to accept SVID commands  
Power for the internal control circuits. A decoupling capacitor is connected from this pin to ground  
System power signal input. A resistor to ground scales this signal.  
PSYS  
VRMP  
Feedforward input of Vin for the rampslope compensation. The current fed into this pin is used to  
control the ramp of the PWM slopes  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VR_HOT#  
AUX_IN  
NC  
OD output. Indicates high VR temperature.  
AUX IMON Input. A resistor to ground scales this signal.  
Reserved.  
IOUTA  
Total output current monitor for regulator 2  
VSNA  
Differential output voltage negative sense for regulator 2  
Differential output voltage positive sense for regulator 2  
Output of the regulator 2’s differential remote sense amplifier  
Error amplifier voltage feedback for regulator 2  
VSPA  
DIFFA  
FBA  
COMPA  
CSCOMPA  
ILIMA  
Output of the error amplifier and the inverting inputs of the PWM comparators for regulator 2  
Output of totalcurrentsense amplifier for regulator 2  
Overcurrent threshold setting – programmed with a resistor to CSCOMPA for regulator 2  
Inverting input of totalcurrentsense amplifier for regulator 2  
Totalcurrentsense amplifier reference voltage input for regulator 2  
Noninverting input to currentbalance amplifier for Phase 1 of regulator 2  
Temperature sense input for regulator 2  
CSSUMA  
CSREFA  
CSP1A  
TSENSEA  
PWM1A / ICCMAXA PWM1 output for regulator 2. Pulldown on this pin programs ICCMAX for regulator 2 during startup  
www.onsemi.com  
4
 
NCP81566  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
26  
Pin Name  
DRON  
Description  
External FET driver enable for discrete driver or onsemi DrMOS  
PWM8 output for regulator 1  
27  
PWM8  
28  
PWM7 /  
ICC*2_MAIN_RAIL  
PWM7 output for regulator 1 / Pulldown on this pin programs ICCMAX on main rail from 255 to 511A  
29  
PWM6 /  
ICCMAX_AUXIN  
PWM6 output for regulator 1 / Pulldown resistor on this pin programs ICCMAX for the AUX_IN  
monitoring rail  
30  
31  
32  
33  
34  
PWM5 / ROSCA  
PWM4 / ROSC  
PWM3 / ICCMAX  
PWM2 / VBOOT  
PWM5 output for regulator 1 / Pulldown on this pin programs RoscA value for regulator 2  
PWM4 output for regulator 1 / Pulldown on this pin programs Rosc value for regulator 1  
PWM3 output for regulator 1 / Pulldown on this pin programs ICCMAX for regulator 1 during startup  
PWM2 output for regulator 1 / Pinprogram for regulator 1 and regulator 2 Vboot.  
PWM1 /  
SV_ADDR_SR  
PWM1 output for regulator 1 / Pulldown on this pin configures SVID address, slew rate and Intel  
Proprietary Current Protection Feature  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
TSENSE  
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
CSP7  
CSP8  
CSREF  
CSSUM  
ILIM  
Temperature sense input for regulator 1  
Differential current sense positive for Phase 1 of regulator 1  
Differential current sense positive for Phase 2 of regulator 1  
Differential current sense positive for Phase 3 of regulator 1  
Differential current sense positive for Phase 4 of regulator 1  
Differential current sense positive for Phase 5 of regulator 1  
Differential current sense positive for Phase 6 of regulator 1  
Differential current sense positive for Phase 7 of regulator 1  
Differential current sense positive for Phase 8 of regulator 1  
Totalcurrentsense amplifier reference voltage input for regulator 1  
Inverting input of totalcurrentsense amplifier for regulator 1  
Overcurrent threshold setting – programmed with a resistor to CSCOMP for regulator 1  
Output of totalcurrentsense amplifier for regulator 1  
Output of the error amplifier and the inverting inputs of the PWM comparators for regulator 1  
Error amplifier voltage feedback for regulator 1  
CSCOMP  
COMP  
FB  
DIFF  
Output of the regulator 1’s differential remote sense amplifier  
Differential output voltage sense positive for regulator 1  
Differential output voltage sense negative for regulator 1  
GND  
VSP  
VSN  
Flag  
1. “Regulator 1” is referred to as “Main” rail throughout the datasheet. “Main” is the primary rail with the highest phase count.  
2. “Regulator 2” is referred to as “A” rail throughout the datasheet.  
www.onsemi.com  
5
NCP81566  
Table 2. MAXIMUM RATINGS (Note 3)  
Pin Symbol  
COMP, COMPA  
CSCOMP, CSCOMPA  
PWMX  
V
V
I
I
SINK  
MAX  
MIN  
SOURCE  
VCC + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
GND + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
6.0 V  
0.3 V  
0.3 V  
2 mA  
2 mA  
2 mA  
1 mA  
2 mA  
2 mA  
2 mA  
0.3 V  
VSN, VSNA  
DIFF, DIFFA  
VR_RDY  
GND – 0.3 V  
0.3 V  
1 mA  
2 mA  
2 mA  
0.3 V  
VCC  
0.3 V  
VRMP  
VCC + 0.3 V  
3.6 V  
0.3 V  
SCLK, SDIO  
All Other Pins  
0.3 V  
VCC + 0.3 V  
0.3 V  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. All signals referenced to GND unless noted otherwise  
Table 3. ESD CAPABILITY  
Description  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Charged Device Model (Note 4)  
Symbol  
Typ  
2000  
750  
Unit  
V
ESD  
ESD  
HBM  
CDM  
V
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Charge Device Model tested per AECQ100011 (EIA/JESD22C101)  
Latchup Current Maximum Rating: 200 mA per JEDEC standard: JESD78.  
Table 4. RECOMMENDED OPERATING CONDITIONS  
Description  
Symbol  
VCC  
TJ  
Min  
4.75  
40  
40  
Max  
5.25  
125  
100  
Unit  
V
VCC Voltage Range  
Operating Junction Temperature Range (Note 5)  
Operating Ambient Temperature Range  
°C  
°C  
TA  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. JEDEC JESD 517 with 0 LFM.  
Table 5. THERMAL CHARACTERISTICS  
Description  
Thermal Characteristic QFN Package  
Symbol  
Value  
Unit  
°C/W  
°C  
R
68  
JA  
Maximum Storage Temperature Range  
T
STG  
40 to +150  
Moisture Sensitivity Level QFN Package  
MSL  
1
Soldering Temperature  
260  
30  
°C  
JunctiontoAmbient, Thermal Resistance (Note 6)  
JunctiontoCase (Top), Thermal Resistance (Note 6)  
JunctiontoBoard Heat Spreader, Thermal Resistance (Note 6)  
JunctiontoCase (Top), Measurement Reference (Note 6)  
6. JEDEC JESD 517 with 0 LFM  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
18  
JC(TOP)  
1.0  
1.1  
JB  
JCT  
www.onsemi.com  
6
 
NCP81566  
Table 6. ELECTRICAL CHARACTERISTICS (40°C < T < 100°C; 4.75 V < V < 5.25 V; C  
= 0.1 F unless otherwise noted)  
A
CC  
VCC  
Parameter  
BIAS SUPPLY  
Test Conditions  
Min  
Typ  
Max  
Unit  
VCC Voltage Range  
Quiescent Current  
4.75  
29  
25  
21  
14  
5.25  
V
PS0  
mA  
mA  
mA  
mA  
A  
A  
V
PS1  
PS2  
PS3  
PS4  
79  
64  
4.5  
Enable Low  
VCC Rising  
VCC Falling  
UVLO Threshold  
4.1  
V
VCC UVLO Hysteresis  
100  
mV  
VRMP  
VIN Supply Range  
VRMP range prior to external voltage divider  
resistor network with 1/12 ratio  
4.5  
21  
V
UVLO Threshold  
VRMP Rising  
VRMP Falling  
0.355  
V
V
0.250  
ENABLE INPUT  
Upper Threshold  
Activation Level  
0.8  
V
V
Lower Threshold  
Deactivation Level  
0.3  
PHASE DETECTION  
CSP Pin Threshold Voltage  
Phase Detect Timer  
VCC 0.4  
V
1.5  
ms  
IMVP9.2 DAC (PROTOCOL 0Eh)  
System Voltage Accuracy  
0.25 V < DAC < 0.495 V (at 25°C only)  
0.5 V < DAC < 0.745 V (at 25°C only)  
0.75 V < DAC < 1.52 V (at 25°C only)  
10  
8  
10  
8
mV  
mV  
%
0.5  
0.5  
DAC SLEW RATE  
Soft Start Slew Rate  
Slew Rate Slow  
Slew Rate Fast  
DRON  
1/2 fast  
1/2 fast  
>10  
mV/s  
mV/s  
mV/s  
Resistor Selectable (See Table 9)  
Output High Voltage  
Output Low Voltage  
TSENSE  
Sourcing 1 mA  
Sinking 1 mA  
3
V
V
0.1  
TSENSE Bias Current  
Alert#  
115.5  
120  
556  
595  
517  
556  
124.5  
A  
mV  
mV  
mV  
mV  
Assert Threshold  
DeAssert Threshold  
Assert Threshold  
VR_HOT  
DeAssert Threshold  
www.onsemi.com  
7
 
NCP81566  
Table 6. ELECTRICAL CHARACTERISTICS (40°C < T < 100°C; 4.75 V < V < 5.25 V; C  
= 0.1 F unless otherwise noted)  
A
CC  
VCC  
Parameter  
VR_RDY OUTPUT  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Low Saturation Voltage  
VR_RDY Rise Time  
VR_RDY Fall Time  
ALERT#  
I
= 4 mA  
0.1  
110  
20  
0.3  
150  
150  
V
VR_RDY  
1 kpullup to 3.3 V  
= 45 pF  
ns  
ns  
C
TOT  
VOL (Output Low)  
0.3  
V
OVP AND UVP  
Absolute Over Voltage Threshold  
10 mV DAC step  
3.3  
2.8  
3.44  
2.9  
3.6  
3.05  
475  
V
V
During Soft Start CSREF Rising  
5 mV DAC step  
During Soft Start CSREF Rising  
Over Voltage Threshold Above DAC  
Over Voltage Delay  
VSPVSNVID Rising  
350  
400  
50  
mV  
ns  
VSPVSN Rising to PWM Low  
VSPVSNVID Falling  
Under Voltage Threshold Below  
DACDROOP (VUVM)  
440  
400  
360  
mV  
Under Voltage Delay  
PWM OUTPUT  
5
s  
Output High Voltage  
Output Mid Voltage  
Output Low Voltage  
DIFFERENTIAL AMPLIFIER  
Input Bias Current  
3 dB Bandwidth  
Closed Loop DC Gain  
ERROR AMPLIFIER  
Input Bias Current  
DC Gain  
Sourcing 500 A  
Vcc 0.2  
1.8  
V
V
V
No Load, Power State 2  
Sinking 500 A  
1.7  
1.9  
0.7  
VSP = 1.3 V  
300  
22.5  
1
600  
nA  
MHz  
V/V  
CL = 20 pF, RL = 10 kꢃ  
VSP VSN = 0.5 V to 1.3 V  
Input = 1.3 V  
400  
80  
20  
5
400  
nA  
dB  
CL = 20 pF, RL = 10 kꢃ  
CL = 20 pF, RL = 10 kꢃ  
Vin = 100 mV, G = 10 V/V,  
3 dB Bandwidth  
Slew Rate  
MHz  
V/s  
V
o
u
t
=
1
.
5
V
t
o
2
.
5
V
,
C
L
=
2
0
p
F
,
R
L
=
1
0
k
OVERCURRENT PROTECTION (ILIM)  
ILim Threshold Current  
PS0  
8.5  
10  
10/N*  
15  
11.5  
A  
A  
A  
A  
s  
(Delayed OCP shutdown)  
PS1, PS2, PS3  
PS0  
ILim Threshold Current  
(Immediate OCP shutdown)  
13.5  
16.5  
PS1, PS2, PS3  
Immediate  
Delayed  
15/N*  
1.3  
Shutdown Delay  
50  
s
IOUT OUTPUT  
Current Gain  
IOUT/ILIM  
9.5  
10  
10.5  
A/A  
(RLIM = 20 k, RIOUT = 5 k, Vout = 0.8 V,  
1.25 V, 1.52 V)  
PWM GENERATOR  
PWM Minimum Pulse Width  
0% Duty Cycle  
40  
ns  
V
Comp Voltage for PWM Held Low  
1.3  
www.onsemi.com  
8
NCP81566  
Table 6. ELECTRICAL CHARACTERISTICS (40°C < T < 100°C; 4.75 V < V < 5.25 V; C  
= 0.1 F unless otherwise noted)  
A
CC  
VCC  
Parameter  
100% Duty Cycle  
100% Duty Cycle  
Test Conditions  
Min  
Typ  
1.75  
3.4  
Max  
Unit  
V
Comp Voltage for PWM Held High VIN at 4.5 V  
Comp Voltage for PWM Held High VIN at 21 V  
V
CURRENT SUMMING AMPLIFIER (CSAMP)  
Offset Voltage  
500  
10  
500  
10  
V  
A  
Input Bias Current  
CSSUM = CSREF = 1.0 V  
Open Loop Gain  
80  
10  
dB  
Open Loop Unity Gain Bandwidth  
CURRENT BALANCE AMPLIFIER  
CL = 20 pF to GND, RL = 10 kto GND  
MHz  
Differential Mode Input Voltage Range CSREF = 1.2 V  
100  
100  
mV  
PSYS  
Full Scale Input Voltage  
Disable Threshold  
2.5  
V
V
VCC 0.4  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
*N is the phase configuration number in PS0.  
Start Up  
Following the rise of VCC above the UVLO threshold,  
externally programmed configuration data is collected, and  
all PWM outputs are set to Midlevel to prepare the gate  
drivers of the power stages for activation. When the  
controller is enabled, DRON is asserted (high) to activate the  
external gate drivers. A digital counter steps the DAC up  
from zero to the target boot voltage based on the Soft Start  
Slew Rate in the spec table. As the DAC ramps, the PWM  
outputs of each rail will change from Midlevel to high  
when the first PWM pulse for that rail is produced. When the  
controller is disabled, the PWM signals return to Midlevel.  
The VR_RDY signal is asserted when the controller is ready  
to accept the first SVID command.  
www.onsemi.com  
9
NCP81566  
DEVICE CONFIGURATION  
ICCMAX  
Phase and Rail Configuration  
During startup, the number of operational phases of the  
multiphase rail is determined by the internal circuitry  
monitoring the CSP inputs. If a reduced phase count is  
required, the appropriate CSP pins should be externally  
pulled to VCC with a resistor during startup. When used  
with the NCP81568 controller, the PSYS input needs to be  
connected to VCC so that it does not respond to any calls on  
the SVID bus. PSYS functionality is enabled on the  
NCP81568 only.  
The SVID interface provides the platform ICCMAX  
values at register 21h. Resistors to ground on the  
PWM3/ICCMAX,  
PWM1A/ICCMAXA  
and  
PWM6/ICCMAX_AUXIN pins programs these registers on  
power up. 10 A is sourced from this pin to generate a  
voltage on the program resistor. The value of the register is  
set by the equation below. The resistor value should be no  
less than 10 k.  
R @ 10 A @ 255 A  
(eq. 1)  
ICCMAX  
+
2.5 V  
21h  
Basic Configuration  
The controller has four basic configuration features. On  
power up a 10 A current is sourced from these pins through  
a resistor connected to this pin and the resulting voltage is  
measured. The following features will be programmed:  
ICCMAX Additional Capability  
IMVP9.2 adds an option to extend the current range of the  
main rail by scaling the LSB size of register ICCMAX by  
21h  
ICCMAX_ADD [1:0]  
50h  
2
amps (See Table 7). On the  
NCP81566, these register bits can be configured to 2 A per  
bit by enabling ICC*2_MAIN_RAIL mode. See Table 11  
for details on how to enable this mode.  
SVID Address  
Slew Rate  
V  
BOOT  
Output Voltage Step  
Table 7. ICCMAX CAPABILITY SCALING  
SVID address and slew rate options are shown in Table 9.  
ICCMAX_ADD [4:0]  
50h  
Power  
V
BOOT  
and output voltage step options are shown in  
Power [4:2]  
010  
011  
Current [1:0]  
00  
01  
Scaling  
ICC Scaling  
1 A / bit  
Table 10.  
4 W / bit  
8 W / bit  
Intel Proprietary Current Protection Feature  
VR_HOT assertion for Intel Proprietary Current  
Protection Feature on/off selection as shown in Table 9.  
2 A / bit  
When ICC*2_MAIN_RAIL mode is enabled, the bits  
ICCMAX_ADD [1:0] are set to 01b to indicate a scaling  
50h  
Switching Frequency  
of 2 A per bit. This scaling applies to both the ICCMAX  
21h  
Switching frequencies between 180 kHz and 1.17 MHz  
are programmed at power up with pulldown resistors on  
Rosc and RoscA pin. Switching frequency options are  
shown in Table 12. IA rail follows phase configuration  
number in PS0. GT rail follows 1phase switching  
frequency settings.  
and the IOUT_H  
SVID registers. The bits  
15h  
ICCMAX_ADD [4:2] are also set to 011b to indicate that  
50h  
the POUT_H18h register value is scaled to 8 W per bit.  
Table  
8
shows the rail configurations when  
ICC*2_MAIN_RAIL mode is enabled and disabled.  
www.onsemi.com  
10  
 
NCP81566  
Table 8. RAIL SETTINGS FOR ICC*2_MAIN_RAIL MODE  
ICC*2_MAIN_RAIL  
Disabled  
Enabled  
2A  
ICCMAX  
LSB Size  
1A  
1A  
21h  
IOUT  
LSB Size  
LSB Size  
2A  
15h  
POUT  
4 W  
00  
8 W  
18h  
Main Rail  
HIGHPOWER_ICCMAX_ADD [1:0]  
01  
50h  
HIGHPOWER_ICCMAX_ADD [4:2]  
010  
011  
50h  
Loadline Weighting  
93.75%  
187.5%  
ICCMAX  
LSB Size  
1A  
1A  
21h  
IOUT  
LSB Size  
LSB Size  
15h  
POUT  
4 W  
00  
18h  
A Rail  
HIGHPOWER_ICCMAX_ADD [1:0]  
50h  
HIGHPOWER_ICCMAX_ADD [4:2]  
010  
93.75%  
1A  
50h  
Loadline Weighting  
ICCMAX  
LSB Size  
21h  
IOUT  
LSB Size  
LSB Size  
1A  
15h  
POUT  
4 W  
00  
VCCIN_AUX  
18h  
HIGHPOWER_ICCMAX_ADD [1:0]  
50h  
HIGHPOWER_ICCMAX_ADD [4:2]  
010  
50h  
Ultrasonic Mode  
Table 9. NCP81566 SVID ADDRESS, SLEW RATE AND  
FAST V MODE  
The switching frequency of a rail in DCM will decrease  
at very light loads. Ultrasonic Mode forces the switching  
frequency to stay above the audible range.  
Intel  
Proprietary  
Current  
Protection  
Feature  
Main Rail  
SVID  
Address  
A Rail  
SVID  
Address  
CCM/DCM Operation  
Resistor  
(kW)  
SR  
(mV/ms)  
In PS0, all rails operate in Continuous Conduction Mode  
(CCM) which uses the dualedge control methodology.  
However, if PS0 is configured as onephase instead of  
multiphase, the control methodology changes to RPM  
operation. RPM has great transient performance in  
onephase CCM operation. The RPM frequency average  
DC value is targeted to be similar to the PS0 Dual Edge  
frequency. However, the switching frequency of RPM  
depends on input voltage, output voltage, load current,  
inductor value, and output capacitor value. In PS1, all rails  
operate in onephase CCM RPM. In PS2 and PS3, all rails  
operate in either CCM or Discontinuous Conduction Mode  
(DCM). It depends on load current in order to prevent loss  
of efficiency from negative inductor current.  
10  
10  
30  
48  
10  
30  
48  
10  
30  
48  
10  
30  
48  
00  
00  
00  
01  
01  
01  
00  
00  
00  
01  
01  
01  
01  
01  
01  
00  
00  
00  
02  
02  
02  
02  
02  
02  
ON  
ON  
14  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
ON  
OFF  
OFF  
OFF  
ON  
ON  
71.5  
86.6  
105  
127  
ON  
OFF  
OFF  
OFF  
www.onsemi.com  
11  
NCP81566  
monitoring of the total platform system power. For more  
information regarding PSYS please contact Intel, inc.  
Table 10. VBOOT AND OUTPUT VOLTAGE STEP  
Resistor  
(kW)  
V
(V)  
V
BOOT  
(V)  
Output Voltage  
Step  
BOOT  
Main Rail  
A Rail  
0 V  
AUX_IN  
10  
0 V  
Both rail  
5 mV/step  
The AUX_IMON current monitor input is a means of  
measuring the VCCIN_AUX platform VR output current  
using the IMVP9.2 ADC.  
14  
0 V  
1.05 V  
0 V  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
1.05 V  
1.05 V  
0 V  
Programming Pin  
1.05 V  
0 V  
This is a multifunction select pin used to set the operation  
of multiple features and the combination of these features  
enabled/disabled. Items programmed on this pin are  
ICC*2_MAIN_RAIL which allows the user to select if the  
ICCMAX and IOUT reporting for the main rail is a 1 A or  
2 A LSB step size. When off, the resolution is 1 A per LSB.  
When on, the resolution is set to 2 A per LSB which allows  
reporting of over 255 A on the main rail only.  
Automatic Power Management is used to add or remove  
phases based on real time load current requirements sensed  
by the controller. The phase configuration levels are defined  
as:  
Both rail  
10 mV/step  
0 V  
1.8 V  
0 V  
1.8 V  
1.8 V  
0 V  
1.8 V  
0 V  
71.5  
86.6  
105  
127  
154  
187  
221  
280  
Main rail  
5 mV/step.  
A rail  
0 V  
1.8 V  
0 V  
10 mV/step.  
1.05 V  
1.05 V  
0 V  
1.8 V  
0 V  
Main rail  
10 mV/step.  
A rail  
1.8 V  
0 V  
0 V  
<5A = DCM  
<15A = CCM 1phase  
<25A = CCM 2phase  
>25A = CCM All phases on  
5 mV/step.  
1.05 V  
1.05 V  
1.8 V  
The other options include dithering and acoustic noise  
solution.  
PSYS  
The PSYS pin is an analog input to the VR controller.  
PSYS is a system input power monitor that facilitates the  
www.onsemi.com  
12  
NCP81566  
Table 11. PIN OF ICC*2_MAIN_RAIL CONFIGURATION  
Automatic Power  
Management  
Resistor (kW)  
10  
ICCMAX*2 Main Rail  
Acoustic Noise Solution  
Spread Spectrum  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
14  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
OFF  
ON  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
71.5  
86.6  
105  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
ON  
OFF  
ON  
127  
ON  
ON  
154  
ON  
OFF  
OFF  
ON  
OFF  
ON  
187  
ON  
ON  
221  
ON  
ON  
OFF  
ON  
280  
ON  
ON  
ON  
Table 12. SWITCHING FREQUENCY  
Switching Frequency (kHz)  
1 Phase~6 Phase  
7 Phase  
180  
215  
250  
285  
320  
355  
390  
425  
460  
495  
530  
600  
700  
800  
900  
1000  
8 Phase  
180  
210  
240  
270  
300  
330  
360  
390  
420  
450  
480  
510  
540  
600  
700  
800  
Control by Pin Resistor (kW)  
10  
180  
225  
270  
315  
360  
405  
450  
495  
540  
630  
720  
810  
900  
990  
1080  
1170  
14  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
71.5  
86.6  
105  
127  
154  
187  
221  
280  
www.onsemi.com  
13  
NCP81566  
THEORY OF OPERATION  
Input Voltage FeedForward (VRMP Pin)  
signals are summed with the COMP or ramp signals at their  
respective PWM comparator inputs in order to balance  
phase currents via a current mode control approach.  
Ramp generator circuits are provided for the dualedge  
modulator. The ramp generators implement input voltage  
feedforward control by varying the ramp slopes  
proportional to the VRMP pin voltage. The VRMP pin also  
has a UVLO function, which is active only after the  
controller is enabled. The VRMP pin is high impedance  
input when the controller is disabled. For multiphase  
operation, the dualedge PWM ramp amplitude is changed  
according to the following:  
LPHASE  
RCSN  
+
(eq. 3)  
CCSN   DCR  
DCR  
SWx  
L
PHASE  
VOUT  
C
CSN  
R
CSN  
VRMPPP + 0.1   VVRMP  
(eq. 2)  
CSPx  
Figure 6. Per Phase Current Sense Network  
Total Current Sense Amplifier  
The multiphase rail uses a patented approach to sum the  
phase currents into a single, temperature compensated, total  
current signal. This signal is then used to generate the output  
voltage droop, total current limit, and the output current  
monitoring functions. The Rref(n) resistors average the  
voltages at the output terminals of the inductors to create a  
low impedance reference voltage at CSREF. The Rph  
resistors sum currents from the switch nodes to the virtual  
CSREF potential created at the CSSUM pin by the amplifier.  
The total current signal is the difference between the  
CSCOMP and CSREF voltages.  
The amplifier filters, and amplifies, the voltage across the  
inductors in order to extract only the voltage across the  
inductor series resistances (DCR). An NTC thermistor (Rth)  
in the feedback network placed near the Phase 1 inductor  
senses the inductor temperature, and compensates both the  
DC gain and the filter time constant for the change in DCR  
with temperature. The Phase 1 inductor is chosen for the  
thermistor location so that the temperature of the inductor  
providing current in the PS1 power mode.  
Figure 4. Ramp Feed Forward  
An external voltage divider is required on this VRMP pin  
in order to scale the voltage seen on the VRMP pin the  
voltage divider on the pin needs to be setup to maintain a  
ratio of 1/12. Typical resistor values may include 1 MOhm  
Rup / 90.9 KOhm Rdown or 1.1 MOhm Rup / 100 KOhm  
Rdown. UVLO on VRMP is inactive in PS4 power state and  
PS3 when a VID to 0 V is received.  
Input Voltage  
Feed Forward  
Control  
Rup  
VRMP  
VIN  
Rdown  
Figure 5. Ramp Feed Forward Circuit  
The DC gain equation for the DC total current signal is:  
RCS1 Rth  
Differential Current Feedback Amplifiers  
RCS2  
)
R
CS1)Rth  
Each phase of the rail has a low offset, differential  
amplifier to sense the current of that phase in order to  
balance current. The CSREF and CSPx pins are high  
impedance inputs, but it is recommended that any external  
filter resistor RCSN does not exceed 10 kto avoid offset  
due to leakage current.  
It is also recommended that the voltage sense element be  
no less than 0.5 mfor best current balance.  
The external filter RCSN and CCSN time constant should  
match the inductor L/DCR time constant, but fine tuning of  
this time constant is generally not required. Phase current  
V
CSCOMP * VCSREF + *  
  DCR   IOUT  
(eq. 4)  
Rph  
Set the DC gain by adjusting the value of the Rph resistors  
in order to make the ratio of total current signal to output  
current equal the desired loadline. The values of Rcs1 and  
Rcs2 are set based on the effect of temperature on both the  
thermistor and inductor, and may need to be adjusted to  
eliminate output voltage temperature drift with the final  
product enclosure and cooling.  
www.onsemi.com  
14  
NCP81566  
Loadline Programming (VDROOP  
)
An output loadline is a power supply characteristic  
wherein the regulated (DC) output voltage decreases  
proportional to load current. This characteristic can reduce  
the output capacitance required to maintain output voltage  
within limits during load transients faster than those to  
which the regulation loop can respond.  
Rcs1  
Rcs2  
Ccs2  
Ccs1  
SWN1  
SWNX  
Rph1  
Rphx  
CSSUM  
CSREF  
cscomp  
CSN1  
CSNX  
Rref1  
Rrefx  
Rilim  
A load line is produced by adding a signal proportional to  
To remote sense  
Cref  
amplier  
output load current (V ) to the output voltage feedback  
DROOP  
buffer  
signal – thereby satisfying the voltage regulator at an output  
voltage reduced proportional to load current. The load line  
is programmed by setting the gain of the Total Current Sense  
Amplifier such that the total current signal is equal to the  
desired output voltage droop.  
ilim  
Current Limit Current  
Comparator Mirror  
Ciout  
Riout  
RCS1 Rth  
RCS2  
)
R
CS1)Rth  
VDROOP  
+
  DCR   IOUT  
Rph  
(eq. 8)  
Figure 7. Total Current Sense Amplifier  
For the main rail, loadline programming is dependent on its  
programmed ICCMAX value.  
The pole frequency of the CSCOMP filter should be set  
equal to the zero of the output inductor. This causes the total  
current signal to contain only the component of inductor  
voltage caused by the DCR voltage, and therefore to be  
proportional to inductor current. Connecting Ccs2 in  
parallel with Ccs1 allows fine tuning of the pole frequency  
using commonly available capacitor values. It is best to  
perform fine tuning during transient testing.  
Rcs  
Loadline + DCR   
  Weighting  
(eq. 9)  
Rph  
For ICC*2_MAIN_RAIL configuration enabled, weighting  
= 87.50%.  
For ICC*2_MAIN_RAIL configuration disabled,  
weighting = 43.75%.  
For the A rail, load line weighting = 93.75%.  
DCR25°C  
FZ  
+
(eq. 5)  
Rail Remote Sense Amplifier  
2  LPhase  
A
high performance high input impedance true  
1
FP  
+
differential amplifier is provided to accurately sense  
regulator output voltage. The VSP and VSN inputs should  
be connected to the regulator’s output voltage sense points.  
The remote sense amplifier takes the difference of the output  
voltage with the DAC voltage and adds the droop voltage.  
RCS1 Rth  
ǒ
Ǔ
2  RCS2  
)
  (CCS1 ) CCS2)  
R
CS1)Rth  
(eq. 6)  
This signal then goes through a standard error  
compensation network and into the inverting input of the  
error amplifier.  
VDIFFOUT + (VVSP * VVSN) ) (1.3 V * vDAC  
)
The value of the CREF capacitor (in nF) on the CSREF pin  
should be:  
(eq. 10)  
) (VDROOP * VCSREF  
)
Programming the Current Limit  
0.02   Rph  
Cref +  
The current limit thresholds are programmed with a  
resistor between the ILIM and CSCOMP pins. The  
multiphase rails generates a replica of the CSREF pin  
voltage at the ILIM pin, and compares ILIM pin current to  
ICL0 and ICLM0 (ICL1 and ICLM1 in PS1, PS2 and PS3).  
The controller latches off if ILIM pin current exceeds ICL0  
(eq. 7)  
Rref  
High Performance Voltage Error Amplifier  
The Remote Sense Amplifier output feeds a Type III  
compensation network formed by the Error Amplifier and  
external tuning components. The noninverting input of the  
error amplifier is connected to the same reference voltage  
used to bias the Remote Sense Amplifier output.  
(ICL1 for PS1, PS2, and PS3) for t  
, and latches  
OCP_DELAY  
off immediately if ILIM pin current exceeds ICLM0  
(ICLM1 for PS1, PS2 and PS3). Set the value of the current  
limit resistor RLIMIT according to the desired current limit  
Iout LIMIT.  
C2  
C3  
R3  
C1  
R2  
RCS1 Rth  
RCS2  
)
R1  
R
CS1)Rth  
DIFFOUT  
FB  
Vref  
COMP  
  DCR   IOUT  
LIM  
EA  
Rph  
+
RLIMIT  
+
10 ꢂ  
(eq. 11)  
Figure 8. Error Amplifier  
www.onsemi.com  
15  
NCP81566  
Programming IOUT  
TSENSE Network  
The IOUT pin sources a current proportional to the ILIM  
current. The voltage on the IOUT pin is monitored by the  
internal A/D converter and should be scaled with an external  
resistor to ground such that a load equal to ICCMAX  
generates a 2.5 V signal on IOUT.  
A temperature sense input is provided for each rail. A  
precision current is sourced from the output of the TSENSE  
pin to generate a voltage on the temperature sense networks.  
The voltages on the temperature sense inputs are sampled by  
the internal A/D converter. A 100k NTC similar to the  
Murata NCP15WF104E03RC should be used. Rcomp1 in  
the following Figure is optional, and can be used to slightly  
change the hysteresis. See the specification table for the  
thermal sensing voltage thresholds and source current.  
2.5 V   RLIMIT  
RIOUT  
+
RCS1 Rth  
RCS2  
)
R
CS1)Rth  
Rph  
10   
  DCR   ICCMAX  
(eq. 12)  
TSENSE  
Programming DAC FeedForward Filter  
The multiphase rail outputs a pulse of current from the  
VSN pin upon each increment of the internal DAC  
following a DVID UP command. A parallel RC network  
inserted into the path from VSN to the output voltage return  
sense point, VSS_SENSE, causes these current pulses to  
temporarily decrease the voltage between VSP and VSN.  
This causes the output voltage during DVID to be regulated  
slightly higher, in order to compensate for the response of  
the DROOP function to current flowing into the charging  
R
COMP1  
C
FILTER  
R
NTC  
R
COMP2  
Figure 10. TSENSE Network  
PWM Comparators  
output capacitors. In the following equations, C  
total output capacitance of the system.  
is the  
OUT  
The noninverting input of each comparator (one for each  
phase) is connected to the summation of the error amplifier  
output (COMP) and each phase current (IL x DCR x Phase  
Balance Gain Factor). The inverting input is connected to  
the triangle ramp voltage of that phase. The output of the  
comparator generates the PWM output. During steady state  
PS0 operation, the main rail PWM pulses are centered on the  
valley of the triangle ramp waveforms and both edges of the  
PWM signals are modulated. During a transient event, the  
duty cycle can increase rapidly as the error amp signal  
increases with respect to the ramps, to provide a highly  
linear and proportional response to the step load.  
RFF + Cout   LL   453.6   106  
(eq. 13)  
(eq. 14)  
LL   Cout  
CFF  
+
RFF  
Figure 9. DAC Feed Forward  
www.onsemi.com  
16  
NCP81566  
Table 13. PHASE CONFIGURATION  
Phase  
Configuration  
Programming Pin in CSPx  
Unused Pin  
8 + 1  
All CSP pins are connected normally  
No unused Pin  
Float PWM8.  
7 + 1  
CSP1 to CSP7 and CSP1A pins connected normally.  
CSP8 connected to VCC through a 2 kresistor.  
6 + 1  
5 + 1  
CSP1 to CSP6 and CSP1A pins connected normally.  
Float PWM8 and CSP8.  
CSP7 connected to VCC through a 2 kresistor.  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
CSP1 to CSP5 and CSP1A pins connected normally.  
CSP6 connected to VCC through a 2 kresistor.  
Float PWM8, CSP7, and CSP8.  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
Use PWM6 for programming ICCMAX_AUXIN only.  
8 + 0  
4 + 1  
CSP1 to CSP8 pins connected normally.  
Float PWM1A.  
CSP1A connected to VCC through a 2 kresistor.  
CSP1 to CSP4 and CSP1A pins connected normally.  
CSP5 connected to VCC through a 2 kresistor.  
Float PWM8, CSP6, CSP7, and CSP8.  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
Use PWM6 for programming ICCMAX_AUXIN only.  
Use PWM5 for programming ROSCA only.  
3 + 1  
2 + 1  
CSP1 to CSP3 and CSP1A pins connected normally.  
Float PWM8, CSP5, CSP6, CSP7, and CSP8.  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
Use PWM6 for programming ICCMAX_AUXIN only.  
Use PWM5 for programming ROSCA only.  
CSP4 connected to VCC through a 2 kresistor.  
Use PWM4 for programming ROSC only.  
CSP1 to CSP2 and CSP1A pins connected normally.  
CSP3 connected to VCC through a 2 kresistor.  
Float PWM8, CSP4, CSP5, CSP6, CSP7, and CSP8.  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
Use PWM6 for programming ICCMAX_AUXIN only.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
Use PWM3 for programming ICCMAX only.  
1 + 1  
CSP1 and CSP1A pins connected normally.  
CSP2 connected to VCC through a 2 kresistor.  
Float PWM8, CSP3, CSP4, CSP5, CSP6, CSP7, and  
CSP8  
Use PWM7 for programming ICC*2_MAIN_RAIL only.  
Use PWM6 for programming ICCMAX_AUXIN only.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
Use PWM3 for programming ICCMAX only.  
Use PWM2 for programming VBOOT only.  
www.onsemi.com  
17  
NCP81566  
FAULT PROTECTION  
Over Current Protection (OCP)  
multiphasephase rail output falls more than VUVM2  
below the DACDROOP voltage, the UVM comparator  
will trip – sending the VR_RDY signal low.  
A programmable total phase current limit is provided that  
is decreased when not operating in PS0 mode. This limit is  
programmed with a resistor between the CSCOMP and  
ILIM pins. The current from the ILIM pin to this resistor is  
compared to the ILIM Threshold Currents (ICL0, ICLM0,  
ICL1, and ICLM1). When the A rail is operating in PS0, if  
the ILIM pin current exceeds ICL0, an internal latchoff  
timer starts.  
If the fault is not removed, the controller shuts down when  
the timer expires. If the current into the pin exceeds ICLM0,  
the controller shuts down immediately. When operating in  
PS1, PS2, or PS3, the ILIM pin current limits are ICL1 and  
ICLM1. To recover from an OCP fault, the EN pin or VCC  
voltage must be cycled low.  
Output Over Voltage Protection  
The multiphase phase output voltage is monitored for  
OVP at the VSP pin. During normal operation, if an output  
voltage exceeds the DAC voltage by VOVP, the VR_RDY  
flag goes low, and the DAC voltage of the overvoltage rail  
will be slowly ramped down to 0 V to avoid producing a  
negative output voltage. At the same time, the PWM outputs  
of the overvoltage rail are sent low. The PWM output will  
pulse to midlevel during the DAC ramp down period if the  
output decreases below the DAC + OVP threshold as DAC  
decreases. When the DAC gets to zero, the PWMs will be  
held low, and the VR will stay in this mode until the VCC  
voltage or EN is toggled.  
Input Undervoltage Lockouts (UVLO)  
The VR monitors the 5 V VCC supply as well as the  
VRMP pin voltage. Hysteresis is incorporated within these  
monitors.  
Absolute OVP  
During start up, the OVP threshold is set to the absolute  
over voltage threshold. This allows the controller to start up  
without false triggering OVP.  
Output Under Voltage Monitor  
The multiphase phase rail output voltage is monitored for  
under voltage at the output of the differential amplifier. If the  
Figure 11. OVP Threshold Behavior  
www.onsemi.com  
18  
NCP81566  
Figure 12. OVP Behavior at Startup  
Figure 13. OVP During Normal Operation Mode  
Serial VID Interface (SVID)  
For Intel proprietary interface communication details  
please contact Intel, inc.  
www.onsemi.com  
19  
NCP81566  
PACKAGE DIMENSIONS  
QFN52 6x6, 0.4P  
CASE 485BE  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
D
A B  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM TERMINAL TIP  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
L1  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.10  
C
EXPOSED Cu  
MOLD CMPD  
0.15  
0.25  
D
D2  
E
6.00 BSC  
4.60  
4.80  
TOP VIEW  
0.10  
C
6.00 BSC  
E2  
e
K
L
L1  
L2  
4.60  
0.40 BSC  
0.30 REF  
0.25  
0.00  
0.15 REF  
4.80  
A
(A3)  
DETAIL B  
DETAIL B  
0.10  
C
C
ALTERNATE  
0.45  
0.15  
CONSTRUCTION  
0.08  
A1  
NOTE 4  
SEATING  
PLANE  
SIDE VIEW  
D2  
C
K
DETAIL C  
14  
DETAIL A  
L2  
27  
L2  
DETAIL C  
8 PLACES  
E2  
52X  
L
SOLDERING FOOTPRINT*  
1
52  
40  
6.40  
4.80  
52X  
0.63  
52X b  
e
0.07  
C
C
A B  
BOTTOM VIEW  
0.05  
NOTE 3  
4.80  
6.40  
0.11  
0.49  
DETAIL D  
PKG  
8 PLACES  
OUTLINE  
DETAIL D  
52X  
0.25  
0.40  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
20  
NCP81566  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCP81567MNTXG

6+2 Phase Output Controller with SVID Interface for Computer CPU Applications
ONSEMI

NCP81599MNTXG

I2C Configurable, 4-Switch Buck Boost Controller for USB-PD Power Delivery and Type-C Applications
ONSEMI

NCP9001

1.5 MHz, 600 mA, High−Efficiency, Low Quiescent Current, Adjustable Output Voltage Step−Down Converter
ONSEMI

NCP9001SNT1G

1.5 MHz, 600 mA, High−Efficiency, Low Quiescent Current, Adjustable Output Voltage Step−Down Converter
ONSEMI

NCP9002

1.3 Watt Audio Power Amplifier with Fast Turn On Time
ONSEMI

NCP9002FCT2G

1.3 Watt Audio Power Amplifier with Fast Turn On Time
ONSEMI

NCP9003

Compact Backlight LED Boost Driver
ONSEMI

NCP9003SNT1G

Compact Backlight LED Boost Driver
ONSEMI

NCP9004

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP9004FCT1G

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCPRKIT001

DESIGN ENGINEERING KITS
MURATA

NCQ1004

Small Signal Field-Effect Transistor, 0.46A I(D), 60V, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, CERAMIC, LCC-20
MICROSEMI