NCS2001SQ1T2 [ONSEMI]

0.9 V, Rail-to-Rail, Single Operational Amplifier; 0.9 V,轨至轨,单路运算放大器
NCS2001SQ1T2
型号: NCS2001SQ1T2
厂家: ONSEMI    ONSEMI
描述:

0.9 V, Rail-to-Rail, Single Operational Amplifier
0.9 V,轨至轨,单路运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS2001  
0.9 V, Rail−to−Rail, Single  
Operational Amplifier  
The NCS2001 is an industry first sub−one voltage operational  
amplifier that features a rail−to−rail common mode input voltage range,  
along with rail−to−rail output drive capability. This amplifier is  
guaranteed to be fully operational down to 0.9 V, providing an ideal  
solution for powering applications from a single cell Nickel Cadmium  
(NiCd) or Nickel Metal Hydride (NiMH) battery. Additional features  
include no output phase reversal with overdriven inputs, trimmed input  
offset voltage of 0.5 mV, extremely low input bias current of 40 pA, and  
a unity gain bandwidth of 1.4 MHz at 5.0 V. The tiny NCS2001 is the  
ideal solution for small portable electronic applications and is available  
in the space saving SOT23−5 and SC70−5 packages with two industry  
standard pinouts.  
http://onsemi.com  
MARKING  
DIAGRAMS  
5
SOT23−5  
SN SUFFIX  
CASE 483  
5
AAxYW  
1
1
2
Features  
5
4
SC70−5  
SQ SUFFIX  
CASE 419A  
0.9 V Guaranteed Operation  
5
|
AAx  
Rail−to−Rail Common Mode Input Voltage Range  
Rail−to−Rail Output Drive Capability  
No Output Phase Reversal for Over−Driven Input Signals  
0.5 mV Trimmed Input Offset  
3
1
1
x = G for SN1  
H for SN2  
I for SQ1  
Y = Year  
W = Work Week  
M = Date Code  
10 pA Input Bias Current  
1.4 MHz Unity Gain Bandwidth at "2.5 V, 1.1 MHz at "0.5 V  
Tiny SC70−5 and SOT23−5 Packages  
Pb−Free Package is Available  
J for SQ2  
PIN CONNECTIONS  
Typical Applications  
1
2
3
5
4
V
V
EE  
OUT  
Single Cell NiCd/NiMH Battery Powered Applications  
Cellular Telephones  
Pagers  
V
CC  
+ −  
Non−Inverting  
Input  
Inverting  
Input  
Personal Digital Assistants  
Electronic Games  
Style 1 Pinout (SN1T1, SQ1T1)  
Digital Cameras  
Camcorders  
Hand−Held Instruments  
V
1
2
3
5
4
V
CC  
OUT  
V
EE  
+ −  
Non−Inverting  
Input  
Inverting  
Input  
Style 2 Pinout (SN2T1, SQ2T1)  
Rail to Rail Input  
Rail to Rail Output  
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
dimensions section on page 14 of this data sheet.  
0.8 V  
to  
7.0 V  
+
This device contains 63 active transistors.  
Figure 1. Typical Application  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
September, 2004 − Rev. 12  
NCS2001/D  
NCS2001  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
7.0  
Unit  
V
Supply Voltage (V to V  
)
V
S
CC  
EE  
Input Differential Voltage Range (Note 1)  
Input Common Mode Voltage Range (Note 1)  
Output Short Circuit Duration (Note 2)  
Junction Temperature  
V
V
t
V
V
−300 mV to 7.0 V  
−300 mV to 7.0 V  
Indefinite  
150  
V
IDR  
ICR  
Sc  
EE  
V
EE  
sec  
°C  
T
J
Power Dissipation and Thermal Characteristics  
SOT23−5 Package  
Thermal Resistance, Junction−to−Air  
R
P
235  
340  
°C/W  
mW  
q
JA  
Power Dissipation @ T = 70°C  
A
D
SC70−5 Package  
Thermal Resistance, Junction−to−Air  
R
P
280  
286  
°C/W  
mW  
q
JA  
Power Dissipation @ T = 70°C  
A
D
Storage Temperature Range  
T
−65 to 150  
2000  
°C  
stg  
ESD Protection at any Pin Human Body Model (Note 3)  
V
ESD  
V
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. Either or both inputs should not exceed the range of V −300 mV to V +7.0 V.  
EE  
EE  
2. Maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.  
T = T + (P ).  
R
q
JA  
J
A
D
3. ESD data available upon request.  
DC ELECTRICAL CHARACTERISTICS  
(V = 2.5 V, V = −2.5 V, V  
= V = 0 V, R to GND, T = 25°C unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
V
V
= 0.45 V, V = −0.45 V  
EE  
T = 25°C  
T = 0°C to 70°C  
T = −40°C to 105°C  
CC  
−6.0  
−8.5  
−9.5  
0.5  
6.0  
8.5  
9.5  
A
A
A
= 1.5 V, V = −1.5 V  
CC  
EE  
T = 25°C  
T = 0°C to 70°C  
T = −40°C to 105°C  
−6.0  
−7.0  
−7.5  
0.5  
6.0  
7.0  
7.5  
A
A
A
= 2.5 V, V = −2.5 V  
CC  
EE  
T = 25°C  
−6.0  
−7.5  
−7.5  
0.5  
6.0  
7.5  
7.5  
A
T = 0°C to 70°C  
A
T = −40°C to 105°C  
A
Input Offset Voltage Temperature Coefficient (R = 50)  
D V /D T  
IO  
8.0  
m
V
/
°
C
S
T = −40°C to 105°C  
A
Input Bias Current (V = 1.0 V to 5.0 V)  
I
10  
pA  
V
CC  
IB  
Input Common Mode Voltage Range  
V
ICR  
V
EE  
to V  
CC  
Large Signal Voltage Gain  
A
VOL  
kV/V  
V
V
V
= 0.45 V, V = −0.45 V  
EE  
CC  
R = 10 k  
40  
20  
L
R = 2.0 k  
L
= 1.5 V, V = −1.5 V  
CC  
EE  
R = 10 k  
40  
40  
L
R = 2.0 k  
L
= 2.5 V, V = −2.5 V  
CC  
EE  
R = 10 k  
R = 2.0 k  
L
20  
15  
40  
40  
L
http://onsemi.com  
2
 
NCS2001  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V = 2.5 V, V = −2.5 V, V  
= V = 0 V, R to GND, T = 25°C unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Swing, High State Output (V = +0.5 V)  
V
OH  
V
ID  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
0.40  
0.35  
0.494  
0.466  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
0.40  
0.35  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
0.40  
0.35  
L
V
CC  
= 1.5 V, V = −1.5 V  
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
1.45  
1.40  
1.498  
1.480  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
1.45  
1.40  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
1.45  
1.40  
L
V
CC  
= 2.5 V, V = −2.5 V  
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
2.45  
2.40  
2.498  
2.475  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
2.45  
2.40  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
2.45  
2.40  
L
Output Voltage Swing, Low State Output (V = −0.5 V)  
V
OL  
V
ID  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
−0.494  
−0.480  
−0.40  
−0.35  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
−0.40  
−0.35  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
−0.40  
−0.35  
L
V
CC  
= 1.5 V, V = −1.5 V  
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
−1.493  
−1.480  
−1.45  
−1.40  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
−1.45  
−1.40  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
−1.45  
−1.40  
L
V
CC  
= 2.5 V, V = −2.5 V  
EE  
T = 25°C  
R = 10 k  
L
A
−2.492  
−2.479  
−2.45  
−2.40  
R = 2.0 k  
L
T = 0°C to 70°C  
A
R = 10 k  
R = 2.0 k  
L
−2.45  
−2.40  
L
T = −40°C to 105°C  
A
R = 10 k  
R = 2.0 k  
L
−2.45  
−2.40  
L
http://onsemi.com  
3
NCS2001  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V = 2.5 V, V = −2.5 V, V  
= V = 0 V, R to GND, T = 25°C unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Common Mode Rejection Ratio (V = 0 to 5.0 V)  
Symbol  
CMRR  
PSRR  
Min  
60  
Typ  
70  
Max  
Unit  
dB  
in  
Power Supply Rejection Ratio (V = 0.5 V to 2.5 V, V = −2.5 V)  
55  
65  
dB  
CC  
EE  
Output Short Circuit Current  
I
mA  
SC  
V
V
V
= 0.45 V, V = −0.45 V, V = "0.4 V  
EE ID  
Source Current High Output State  
Sink Current Low Output State  
CC  
0.5  
1.2  
−3.0  
−1.5  
= 1.5 V, V = −1.5 V, V = "0.5 V  
CC  
EE  
ID  
Source Current High Output State  
Sink Current Low Output State  
15  
29  
−40  
−20  
= 2.5 V, V = −2.5 V, V = "0.5 V  
CC  
EE  
ID  
Source Current High Output State  
Sink Current Low Output State  
40  
76  
−96  
−50  
Power Supply Current (Per Amplifier, V = 0 V)  
I
D
mA  
O
V
V
V
= 0.45 V, V = −0.45 V  
EE  
CC  
T = 25°C  
0.51  
1.10  
1.10  
1.10  
A
T = 0°C to 70°C  
A
T = −40°C to 105°C  
A
= 1.5 V, V = −1.5 V  
CC  
EE  
T = 25°C  
0.72  
1.40  
1.40  
1.40  
A
T = 0°C to 70°C  
A
T = −40°C to 105°C  
A
= 2.5 V, V = −2.5 V  
CC  
EE  
T = 25°C  
0.82  
1.50  
1.50  
1.50  
A
T = 0°C to 70°C  
A
T = −40°C to 105°C  
A
AC ELECTRICAL CHARACTERISTICS  
(V = 2.5 V, V = −2.5 V, V  
= V = 0 V, R to GND, T = 25°C unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Differential Input Resistance (V = 0 V)  
Symbol  
Min  
Typ  
u1.0  
3.0  
Max  
Unit  
R
in  
C
in  
e
n
tera  
pF  
W
CM  
Differential Input Capacitance (V  
= 0 V)  
CM  
Equivalent Input Noise Voltage (f = 1.0 kHz)  
100  
nV/Hz  
MHz  
Gain Bandwidth Product (f = 100 kHz)  
GBW  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
0.5  
1.1  
1.3  
1.4  
EE  
= 1.5 V, V = −1.5 V  
EE  
= 2.5 V, V = −2.5 V  
EE  
Gain Margin (R = 10 k, C = 5.0 pf)  
Am  
6.5  
60  
80  
dB  
°
L
L
Phase Margin (R = 10 k, C = 5.0 pf)  
fm  
L
L
Power Bandwidth (V = 4.0 V , R = 2.0 k, THD = 1.0%, A = 1.0)  
BW  
P
kHz  
%
O
pp  
L
V
Total Harmonic Distortion (V = 4.0 V , R = 2.0 k, A = 1.0)  
THD  
SR  
O
pp  
L
V
f = 1.0 kHz  
f = 10 kHz  
0.008  
0.08  
Slew Rate (V = "2.5 V, V = −2.0 V to 2.0 V, R = 2.0 k, A = 1.0)  
V/m s  
S
O
L
V
Positive Slope  
Negative Slope  
1.0  
1.0  
1.6  
1.6  
6.0  
6.0  
http://onsemi.com  
4
NCS2001  
0
−0.1  
−0.2  
−0.3  
0
−0.2  
−0.4  
−0.6  
0.6  
V
V
CC  
CC  
V
V
= 2.5 V  
= −2.5 V  
CC  
EE  
V
V
= 2.5 V  
= −2.5 V  
CC  
EE  
High State Output  
Sourcing Current  
R to GND  
T = 25°C  
A
L
High State Output  
Sourcing Current  
I to GND  
L
T = 25°C  
A
Low State Output  
Sinking Current  
0.3  
0.2  
0.4  
Low State Output  
Sinking Current  
0.2  
0
0.1  
0
V
V
EE  
EE  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
100  
1.0 k  
10 k  
100 k  
1.0 M  
R , Load Resistance (W)  
L
I , Load Current (mA)  
L
Figure 2. Split Supply Output Saturation vs.  
Load Resistance  
Figure 3. Split Supply Output Saturation vs.  
Load Current  
1000  
100  
V
V
= 2.5 V  
= −2.5 V  
0
CC  
EE  
Gain  
80  
60  
R = 10 k to GND  
T = 25°C  
A
100  
10  
1.0  
0
L
45  
Phase  
90  
Phase  
Margin = 60°  
40  
20  
0
135  
180  
V
CC  
V
EE  
= 2.5 V  
= −2.5 V  
1.0  
10  
100  
1.0 k  
10 k 100 k 1.0 M 10 M  
0
25  
50  
75  
100  
125  
T , Ambient Temperature (°C)  
A
f, Frequency (Hz)  
Figure 4. Input Bias Current vs. Temperature  
Figure 5. Gain and Phase vs. Frequency  
V
S
= ±2.5 V  
V
S
= ±2.5 V  
A = 1.0  
V
R = 10 k  
L
R = 10 k  
L
C = 10 pf  
L
C = 10 pF  
L
A = 1.0  
V
T = 25°C  
A
T = 25°C  
A
t, time (500 ns/Div)  
t, time (1.0 m s/Div)  
Figure 6. Transient Response  
Figure 7. Slew Rate  
http://onsemi.com  
5
 
NCS2001  
80  
6
5
4
3
2
1
0
V
V
= ±2.5 V  
S
70  
60  
50  
40  
30  
20  
10  
0
V
CC  
V
EE  
= 2.5 V  
= −2.5 V  
A = 1.0  
V
R = 10 k  
L
T = 25°C  
A
T = 25°C  
A
= ±1.5 V  
= ±0.5 V  
S
V
S
1.0 k  
10 k  
100 k  
1.0 M  
10  
100  
1.0 k  
10 k  
100 k 1.0 M  
10 M  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 8. Output Voltage vs. Frequency  
Figure 9. Common Mode Rejection  
vs. Frequency  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Output Pulsed Test  
at 3% Duty Cycle  
V
V
= 2.5 V  
= −2.5 V  
CC  
EE  
−40°C  
PSR +  
PSR −  
T = 25°C  
A
25°C  
85°C  
40  
0
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
f, Frequency (Hz)  
V
S,  
Supply Voltage (V)  
Figure 10. Power Supply Rejection  
vs. Frequency  
Figure 11. Output Short Circuit Sinking  
Current vs. Supply Voltage  
1.2  
200  
160  
120  
80  
Output Pulsed Test  
at 3% Duty Cycle  
T = 125°C  
A
−40°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T = 25°C  
A
T = −55°C  
A
25°C  
85°C  
40  
0
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
V
S,  
Supply Voltage (V)  
V , Supply Voltage (V)  
S
Figure 12. Output Short Circuit Sourcing  
Current vs. Supply Voltage  
Figure 13. Supply Current vs. Supply Voltage  
http://onsemi.com  
6
NCS2001  
10  
1.0  
0.1  
10  
A = 1000  
V
A = 1000  
V
1.0  
0.1  
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
A = 1.0  
V
A = 1.0  
V
V
V
= ±0.5 V  
R = 2.0 k  
T = 25°C  
A
V
V
= ±0.5 V  
R = 10 k  
T = 25°C  
A
S
L
S
L
= 0.4 V  
= 0.4 V  
out  
pp  
out  
pp  
0.01  
10  
0.01  
10  
100  
1.0 k  
10 k  
100 k  
100  
1.0 k  
10 k  
100 k  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 14. Total Harmonic Distortion vs.  
Frequency with 1.0 V Supply  
Figure 15. Total Harmonic Distortion vs.  
Frequency with 1.0 V Supply  
10  
1.0  
0.1  
10  
A = 1000  
V
1.0  
0.1  
A = 1000  
V
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
V
V
= ±2.5 V  
V
V
= ±2.5 V  
S
S
0.01  
0.01  
A = 1.0  
V
= 4.0 V  
= 4.0 V  
out  
pp  
A = 1.0  
V
out  
pp  
R = 2.0 k  
L
R = 10 k  
L
T = 25°C  
T = 25°C  
A
A
0.001  
0.001  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 16. Total Harmonic Distortion vs.  
Frequency with 5.0 V Supply  
Figure 17. Total Harmonic Distortion vs.  
Frequency with 5.0 V Supply  
2.0  
2.0  
1.5  
1.0  
+Slew Rate, V = ±2.5 V  
S
1.5  
1.0  
−Slew Rate, V = ±2.5 V  
S
−Slew Rate, V = ±0.45 V  
V
V
= 2.5 V  
= −2.5 V  
S
CC  
EE  
0.5  
0
0.5  
0
R = 10 k  
+Slew Rate, V = ±0.45 V  
L
S
R = 10 k  
C = 10 pF  
L
C = 10 pF  
L
L
T = 25°C  
A
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
T , Ambient Temperature (°C)  
A
T , Ambient Temperature (°C)  
A
Figure 18. Slew Rate vs. Temperature  
Figure 19. Gain Bandwidth Product vs.  
Temperature  
http://onsemi.com  
7
NCS2001  
80  
60  
80  
60  
V
S
= ±2.5 V  
100  
60  
40  
20  
0
60  
40  
20  
0
V
= ±0.5 V  
Phase Margin  
S
V
V
= 2.5 V  
= −2.5 V  
CC  
EE  
140  
40  
R = 10 k  
C = 10 pF  
L
V
= ±0.5 V  
S
180  
L
V
= ±2.5 V  
S
20  
Gain Margin  
220  
−20  
−40  
R = 10 k  
T = 25°C  
L
A
0
−50  
260  
100 M  
−25  
0
25  
50  
75  
100  
125  
10 k  
100 k  
1.0 M  
f, Frequency (Hz)  
10 M  
T , Ambient Temperature (°C)  
A
Figure 20. Voltage Gain and Phase vs.  
Frequency  
Figure 21. Gain and Phase Margin vs.  
Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
80  
60  
40  
Phase Margin  
Phase Margin  
60  
40  
50  
40  
30  
20  
10  
0
A = 100  
V
V
= 2.5 V  
= −2.5 V  
V
CC  
V
V
= 2.5 V  
= −2.5 V  
CC  
EE  
R = 10 k  
C = 10 pF  
T = 25°C  
A
EE  
L
R = 10 k to GND  
T = 25°C  
A
L
L
Gain Margin  
20  
0
20  
0
Gain Margin  
10  
100  
1.0 k  
10 k  
100 k  
1.0  
10  
100  
1000  
C , Output Load Capacitance (pF)  
L
R , Differential Source Resistance (W)  
t
Figure 22. Gain and Phase Margin vs.  
Differential Source Resistance  
Figure 23. Gain and Phase Margin vs.  
Output Load Capacitance  
80  
60  
40  
20  
80  
60  
40  
20  
8.0  
6.0  
4.0  
Phase Margin  
R = 10 k  
L
C = 10 pF  
L
T = 25°C  
A
Gain Margin  
R = 10 k  
2.0  
0
L
T = 25°C  
A
Split Supplies  
0
±3.5  
0
0
±0.5 ±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
0
±0.5 ±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
V , Supply Voltage (V)  
S
V , Supply Voltage (V)  
S
Figure 24. Output Voltage Swing vs.  
Supply Voltage  
Figure 25. Gain and Phase Margin vs.  
Supply Voltage  
http://onsemi.com  
8
 
NCS2001  
100  
80  
60  
40  
20  
0
20  
15  
V
= ±2.5 V  
S
R = ∞  
C = 0  
L
L
R = 2.0 k  
R = 10 k  
10  
L
L
A = 1.0  
V
T = 25°C  
A
5
0
−5  
−10  
−15  
−20  
T = 25°C  
A
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
−3.0  
−2.0  
−1.0  
0
1.0  
2.0  
3.0  
V , Supply Voltage (V)  
S
V
CM  
, Common Mode Input Voltage Range (V)  
Figure 26. Open Loop Voltage Gain vs.  
Supply Voltage  
Figure 27. Input Offset Voltage vs. Common  
Mode Input Voltage Range VS = + 2.5 V  
20  
15  
3.0  
2.0  
V
= ±0.45 V  
S
R = ∞  
C = 0  
L
L
10  
A = 1.0  
V
1.0  
T = 25°C  
A
D
V
=
5
.
0
m
V
5
io  
R = ∞  
C = 0  
L
L
0
0
A = 1.0  
T = 25°C  
A
V
−5  
−10  
−15  
−20  
−1.0  
−2.0  
−3.0  
±0.35 ±0.5  
−0.5 −0.4 −0.3 −0.2 −0.1  
0
0.1 0.2 0.3 0.4 0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
V
CM  
, Common Mode Input Voltage Range (V)  
V , Supply Voltage (V)  
S
Figure 28. Input Offset Voltage vs. Common  
Mode Input Voltage Range, VS = + 0.45 V  
Figure 29. Common−Mode Input Voltage Range  
vs. Power Supply Voltage  
http://onsemi.com  
9
NCS2001  
APPLICATION INFORMATION AND OPERATING DESCRIPTION  
C
GENERAL INFORMATION  
fb  
The NCS2001 is an industry first rail−to−rail input,  
rail−to−rail output amplifier that features guaranteed  
sub−one voltage operation. This unique feature set is  
achieved with the use of a modified analog CMOS process  
that allows the implementation of depletion MOSFET  
devices. The amplifier has a 1.0 MHz gain bandwidth  
product, 2.2 V/m s slew rate and is operational over a power  
supply range less than 0.9 V to as high as 7.0 V.  
R
fb  
R
in  
+
Input  
Output  
C
in  
C
= Input and printed circuit board capacitance  
in  
Figure 30. Input Capacitance Pole Cancellation  
Inputs  
The input topology chosen for this device series is  
unconventional when compared to most low voltage  
operational amplifiers. It consists of an N−Channel  
depletion mode differential transistor pair that drives a  
folded cascade stage and current mirror. This configuration  
extends the input common mode voltage range to  
Output  
The output stage consists of complimentary P and  
N−Channel devices connected to provide rail−to−rail output  
drive. With a 2.0 k load, the output can swing within 50 mV  
of either rail. It is also capable of supplying over 75 mA  
when powered from 5.0 V and 1.0 mA when powered from  
0.9 V.  
encompass the V and V power supply rails, even when  
EE  
CC  
powered from a combined total of less than 0.9 V. Figures 27  
and 28 show the input common mode voltage range versus  
power supply voltage.  
The differential input stage is laser trimmed in order to  
minimize offset voltage. The N−Channel depletion mode  
MOSFET input stage exhibits an extremely low input bias  
current of less than 10 pA. The input bias current versus  
temperature is shown in Figure 4. Either one or both inputs  
When connected as a unity gain follower, the NCS2001 can  
directly drive capacitive loads in excess of 820 pF at room  
temperature without oscillating but with significantly  
reduced phase margin. The unity gain follower configuration  
exhibits the highest bandwidth and is most prone to  
oscillations when driving a high value capacitive load. The  
capacitive load in combination with the amplifier’s output  
impedance, creates a phase lag that can result in an  
under−damped pulse response or a continuous oscillation.  
Figure 32 shows the effect of driving a large capacitive load  
in a voltage follower type of setup. When driving capacitive  
loads exceeding 820 pF, it is recommended to place a low  
value isolation resistor between the output of the op amp and  
the load, as shown in Figure 31. The series resistor isolates the  
capacitive load from the output and enhances the phase  
margin. Refer to Figure 33. Larger values of R will result in  
a cleaner output waveform but excessively large values will  
degrade the large signal rise and fall time and reduce the  
output amplitude. Depending upon the capacitor  
characteristics, the isolation resistor value will typically be  
between 50 to 500 W. The output drive capability for resistive  
and capacitive loads is shown in Figures 2, 3, and 23.  
can be biased as low as V minus 300 mV to as high as  
EE  
7.0 V without causing damage to the device. If the input  
common mode voltage range is exceeded, the output will not  
display a phase reversal. If the maximum input positive or  
negative voltage ratings are to be exceeded, a series resistor  
must be used to limit the input current to less than 2.0 mA.  
The ultra low input bias current of the NCS2001 allows  
the use of extremely high value source and feedback resistor  
without reducing the amplifier’s gain accuracy. These high  
value resistors, in conjunction with the device input and  
printed circuit board parasitic capacitances C , will add an  
in  
additional pole to the single pole amplifier in Figure 30. If  
low enough in frequency, this additional pole can reduce the  
phase margin and significantly increase the output settling  
time. The effects of C , can be canceled by placing a zero  
in  
into the feedback loop. This is accomplished with the  
R
+
Input  
Output  
addition of capacitor C . An approximate value for C can  
fb  
fb  
C
be calculated by:  
L
R
  C  
in  
in  
C
+
fb  
R
fb  
Isolation resistor R = 50 to 500  
Figure 31. Capacitance Load Isolation  
Note that the lowest phase margin is observed at cold  
temperature and low supply voltage.  
http://onsemi.com  
10  
 
NCS2001  
V
in  
V
V
= ±0.45 V  
S
= 0.8 V  
in  
pp  
R = 0  
C = 820 pF  
L
A = 1.0  
V
T = 25°C  
A
V
out  
Figure 32. Small Signal Transient Response with Large Capacitive Load  
V
in  
V
V
= ±0.45 V  
S
= 0.8 V  
in  
pp  
R = 51  
C = 820 pF  
L
A = 1.0  
V
T = 25°C  
A
V
out  
Figure 33. Small Signal Transient Response with Large  
Capacitive Load and Isolation Resistor  
http://onsemi.com  
11  
NCS2001  
R
T
470 k  
V
CC  
Output Voltage  
0
0.9 V  
0.67 V  
C
1.0 nF  
CC  
CC  
Timing Capacitor  
Voltage  
T
0.33 V  
+
f
O
= 1.5 kHz  
The non−inverting input threshold levels are set so that  
the capacitor voltage oscillates between 1/3 and 2/3 of  
R
470 k  
1a  
V
CC  
. This requires the resistors R , R and R to be of  
1a 1b 2  
equal value. The following formula can be used to  
approximate the output frequency.  
0.9 V  
R
470 k  
2
R
1b  
470 k  
1
f
+
O
1.39 RTCT  
Figure 34. 0.9 V Square Wave Oscillator  
D
1
1N4148  
V
10 k  
CC  
cww  
cw  
Output Voltage  
0
CC  
CC  
1.0 M  
D
2
0.67 V  
0.33 V  
Timing Capacitor  
Voltage  
1N4148  
10 k  
Clock−wise, Low Duty Cycle  
V
CC  
C
T
V
CC  
1.0 nF  
Output Voltage  
+
0
CC  
CC  
f
O
Timing Capacitor  
Voltage  
0.67 V  
0.33 V  
R
1a  
470 k  
Counter−Clock−wise, High Duty Cycle  
V
CC  
R
470 k  
2
The timing capacitor C will charge through diode D and discharge  
T
2
R
through diode D , allowing a variable duty cycle. The pulse width of the  
1b  
1
470 k  
signal can be programmed by adjusting the value of the trimpot. The ca-  
pacitor voltage will oscillate between 1/3 and 2/3 of V , since all the  
CC  
resistors at the non−inverting input are of equal value.  
Figure 35. Variable Duty Cycle Pulse Generator  
http://onsemi.com  
12  
NCS2001  
R
1
1.0 M  
2.5 V  
R
3
1.0 k  
+
10,000 m F  
C
in  
10 m F  
−2.5 V  
R
R
1
3
C
+
C
in  
eff.  
R
2
1.0 M  
Figure 36. Positive Capacitance Multiplier  
A
f
C
f
400 pF  
R
f
100 k  
f
L
f
H
0.5 V  
1
R
10 k  
2
f +  
[ 200 Hz  
[ 4.0 kHz  
L
2 p R C  
1 1  
+
V
O
1
f
+
V
in  
H
2 p R C  
f f  
C
1
R
10 k  
1
80 nF  
−0.5 V  
R
f
R
A + 1 )  
+ 11  
f
2
Figure 37. 1.0 V Voiceband Filter  
http://onsemi.com  
13  
NCS2001  
V
supply  
V
CC  
V
in  
V
+
in  
I
+
sink  
R
sense  
R
sense  
Figure 38. High Compliance Current Sink  
I
s
V
L
1.0 V  
R
sense  
R
3
1.0 k  
R
R
1
4
I
V
O
R
s
L
1.0 k  
1.0 k  
R
+
5
435 mA  
212 mA  
34.7 mV  
36.9 mV  
V
O
2.4 k  
75  
R
6
For best performance, use low  
tolerance resistors.  
R
2
3.3 k  
Figure 39. High Side Current Sense  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCS2001SN1T1  
SOT23−5  
3000 / Tape & 7” Reel  
3000 / Tape & 7” Reel  
NCS2001SN1T1G  
SOT23−5  
(Pb−Free)  
NCS2001SN2T1  
NCS2001SQ1T1  
NCS2001SQ1T1G  
SOT23−5  
SC70−5  
3000 / Tape & 7” Reel  
3000 / Tape & 7” Reel  
3000 / Tape & 7” Reel  
SC70−5  
(Pb−Free)  
NCS2001SQ2T1  
NCS2001SQ1T2  
NCS2001SQ2T2  
SC70−5  
SC70−5  
SC70−5  
3000 / Tape & 7” Reel  
3000 / Tape & 7” Reel  
3000 / Tape & 7” Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
14  
NCS2001  
PACKAGE DIMENSIONS  
SOT23−5  
N SUFFIX  
PLASTIC PACKAGE  
CASE 483−02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
S
1
2
L
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
J
C
0.013 0.100 0.0005 0.0040  
0.05 (0.002)  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
H
M
K
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCS2001  
PACKAGE DIMENSIONS  
SC70−5  
Q SUFFIX  
CASE 419A−02  
ISSUE G  
A
G
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
1
2
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
M
M
0.2 (0.008)  
B
D 5 PL  
N
0.026 BSC  
0.65 BSC  
−−−  
0.004  
0.004  
0.004  
0.010  
0.012  
−−−  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
J
0.008 REF  
0.20 REF  
C
0.079  
0.087  
2.00  
2.20  
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCS2001/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY