NCS2002/D [ONSEMI]

NCS2002/D ;
NCS2002/D
型号: NCS2002/D
厂家: ONSEMI    ONSEMI
描述:

NCS2002/D

文件: 总16页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS2002, NCV2002  
Sub−One Volt Rail−to−Rail  
Operational Amplifier with  
Enable Feature  
The NCS2002 is an industry first sub−one volt operational amplifier  
that features a rail−to−rail common mode input voltage range, along  
with rail−to−rail output drive capability. This amplifier is guaranteed  
to be fully operational down to 0.9 V, providing an ideal solution for  
powering applications from a single cell Nickel Cadmium (NiCd) or  
Nickel Metal Hydride (NiMH) battery. Additional features include no  
output phase reversal with overdriven inputs, trimmed input offset  
voltage of 0.5 mV, extremely low input bias current of 40 pA, and a  
unity gain bandwidth of 1.1 MHz at 5.0 V.  
http://onsemi.com  
MARKING  
DIAGRAM  
6
4
5
TSOP  
SN SUFFIX  
CASE 318G  
6
AAxYW  
1
3
2
1
The NCS2002 also has an active high enable pin that allows external  
shutdown of the device. In the standby mode, the supply current is  
typically 1.9 mA at 1.0 V. Because of its small size and enable feature,  
this amplifier represents the ideal solution for small portable  
electronic applications. The NCS2002 is available in the space saving  
SOT23−6 (TSOP−6) package with two industry standard pinouts.  
x
= P for NCS2002SN1T1  
Q for NCS2002SN2T1  
AA = Assembly Location  
Y
W
= Year  
= Work Week  
PIN CONNECTIONS  
Features  
0.9 V Guaranteed Operation  
1
2
3
6
5
V
V
EE  
OUT  
Standby Mode: I = 1.9 mA at 1.0 V, Typical  
D
Enable  
V
CC  
+ −  
Rail−to−Rail Common Mode Input Voltage Range  
Rail−to−Rail Output Drive Capability  
Non−Inverting  
Input  
Inverting  
Input  
4
Style 1 Pinout (SN1T1)  
No Output Phase Reversal for Over−Driven Input Signals  
0.5 mV Trimmed Input Offset  
10 pA Input Bias Current  
1.1 MHz Unity Gain Bandwidth at $2.5 V, 1.0 MHz at $0.5 V  
Tiny SOT23−6 (TSOP−6) Package  
1
2
3
6
5
V
V
CC  
OUT  
Enable  
V
EE  
+ −  
Non−Inverting  
Input  
Inverting  
Input  
4
Style 2 Pinout (SN2T1)  
Typical Applications  
Single Cell NiCd / NiMH Battery Powered Applications  
Cellular Telephones  
Pagers  
Personal Digital Assistants  
Electronic Games  
Digital Cameras  
Camcorders  
Hand Held Instruments  
ORDERING INFORMATION  
Device  
Package  
TSOP  
TSOP  
TSOP  
TSOP  
Shipping  
NCS2002SN1T1  
NCS2002SN2T1  
NCV2002SN1T1*  
NCV2002SN2T1*  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
Rail to Rail Input  
Rail to Rail Output  
*NCV2002: T = −40°C, T  
= +125°C.  
low  
high  
Guaranteed by design. NCV prefix is for automotive  
and other applications requiring site and change  
control.  
0.8 V  
to  
7.0 V  
+
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
This device contains 81 active transistors.  
Figure 1. Typical Application  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
January, 2004 − Rev. 2  
NCS2002/D  
NCS2002, NCV2002  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
7.0  
Unit  
V
Supply Voltage (V to V  
)
V
S
CC  
EE  
Input Differential Voltage Range (Note 1)  
Input Common Mode Voltage Range (Note 1)  
Output Short Circuit Duration (Note 2)  
Junction Temperature  
V
V
t
V
V
– 300 mV to 7.0 V  
– 300 mV to 7.0 V  
Indefinite  
V
IDR  
ICR  
Sc  
EE  
V
EE  
sec  
°C  
T
150  
J
Power Dissipation and Thermal Characteristics  
SOT23−6 Package  
Thermal Resistance, Junction to Air  
Power Dissipation @ T = 70°C  
R
P
235  
340  
°C/W  
mW  
q
JA  
A
D
Operating Ambient Temperature Range  
T
A
°C  
NCS2002  
NCV2002 (Note 3)  
−40 to 105  
−40 to 125  
Storage Temperature Range  
ESD Protection at any Pin Human Body Model (Note 4)  
T
−65 to 150  
2000  
°C  
stg  
V
ESD  
V
1. Either or both inputs should not exceed the range of V – 300 mV to V + 7.0 V.  
EE  
EE  
2. Maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.  
T T + (P  
R )  
q
JA  
J
A
D
3. NCV prefix is for automotive and other applications requiring site and change control.  
4. ESD data available upon request.  
DC ELECTRICAL CHARACTERISTICS (V = 2.5 V, V = −2.5 V, V = V = 0 V, R to Gnd, T = 25°C, unless otherwise noted)  
CC  
EE  
CM  
O
L
A
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
T = 25°C  
−6.0  
−8.5  
−9.5  
0.5  
6.0  
8.5  
9.5  
A
T = 0°C to 70°C  
A
T = T  
A
to T  
low  
high  
= 1.5 V, V = −1.5 V  
EE  
T = 25°C  
−6.0  
−7.0  
−7.5  
0.5  
6.0  
7.0  
7.5  
A
T = 0°C to 70°C  
A
T = T  
A
to T  
low  
high  
= 2.5 V, V = −2.5 V  
EE  
T = 25°C  
−6.0  
−7.5  
−7.5  
0.5  
6.0  
7.5  
7.5  
A
T = 0°C to 70°C  
A
T = T  
A
to T  
low  
high  
Input Offset Voltage Temperature Coefficient (R = 50)  
DV / DT  
8.0  
mV/°C  
S
IO  
T = T  
to T  
A
low  
high  
Input Bias Current (V = 1.0 V to 5.0 V)  
I
10  
pA  
V
CC  
IB  
Input Common Mode Voltage Range  
Large Signal Voltage Gain  
V
ICR  
V
EE  
to V  
CC  
A
VOL  
kV/V  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
R = 10 k  
40  
40  
40  
L
= 1.5 V, V = −1.5 V  
EE  
R = 10 k  
L
= 2.5 V, V = −2.5 V  
EE  
R = 10 k  
L
10  
Output Voltage Swing, High State Output (V = + 0.5 V)  
V
OH  
V
ID  
T = T  
to T  
A
low  
high  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
R = 10 k  
0.40  
0.35  
0.442  
0.409  
L
R = 2.0 k  
L
= 1.5 V, V = −1.5 V  
EE  
R = 10 k  
L
1.45  
1.40  
1.494  
1.473  
R = 2.0 k  
L
= 2.5 V, V = −2.5 V  
EE  
R = 10 k  
L
2.45  
2.40  
2.493  
2.469  
R = 2.0 k  
L
http://onsemi.com  
2
 
NCS2002, NCV2002  
DC ELECTRICAL CHARACTERISTICS (V = 2.5 V, V = −2.5 V, V = V = 0 V, R to Gnd, T = 25°C, unless otherwise noted)  
CC  
EE  
CM  
O
L
A
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Swing, Low State Output (V = − 0.5 V)  
V
OL  
V
ID  
T = T  
to T  
high  
A
low  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
EE  
R = 10 k  
−0.446  
−0.432  
−0.40  
−0.35  
L
R = 2.0 k  
L
= 1.5 V, V = −1.5 V  
EE  
R = 10 k  
L
−1.497  
−1.484  
−1.45  
−1.40  
R = 2.0 k  
L
= 2.5 V, V = −2.5 V  
EE  
R = 10 k  
L
−2.496  
−2.481  
−2.45  
−2.40  
R = 2.0 k  
L
Common Mode Rejection Ratio (V = 0 to 5.0 V)  
CMRR  
PSRR  
60  
82  
dB  
dB  
in  
T = T  
to T  
A
low  
high  
Power Supply Rejection Ratio (V = 0.5 V to 2.5 V, V = −2.5 V)  
60  
85  
CC  
EE  
T = T  
to T  
A
low  
high  
Output Short Circuit Current  
I
mA  
SC  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V, V = $0.4 V  
EE ID  
Source Current High Output State  
Sink Current Low Output State  
0.5  
1.0  
−3.0  
−2.0  
= 1.5 V, V = −1.5 V, V = $0.5 V  
EE  
ID  
Source Current High Output State  
Sink Current Low Output State  
25  
32  
−58  
−45  
= 2.5 V, V = −2.5 V, V = $0.5 V  
EE  
ID  
Source Current High Output State  
Sink Current Low Output State  
65  
86  
−128  
−100  
Power Supply Current (Per Amplifier, V = 0 V)  
I
D
mA  
O
T = T  
to T  
A
low  
high  
V
CC  
V
CC  
V
CC  
= 0.5 V to V = −0.5 V  
EE  
Venable = V  
Venable = V  
480  
1.5  
600  
3.0  
CC  
EE  
= 1.5 V to V = −1.5 V  
EE  
Venable = V  
Venable = V  
720  
2.2  
900  
5.0  
CC  
EE  
= 2.5 V to V = −2.5 V  
EE  
Venable = V  
820  
2.5  
1000  
5.0  
CC  
EE  
Venable = V  
Enable Input Threshold Voltage (V = 2.5 V, V = −2.5 V)  
V
th(EN)  
V
CC  
EE  
Operating  
Disabled  
2.7 V + V  
1.9  
2.8 V + V  
EE  
EE  
1.7 V + V  
EE  
Enable Input Current (V = 5.0 V, V = 0)  
I
mA  
CC  
EE  
Enable  
Enable = 5.0 V  
Enable = Gnd  
1.1  
1.1  
2.0  
2.0  
http://onsemi.com  
3
NCS2002, NCV2002  
AC ELECTRICAL CHARACTERISTICS(V = 2.5 V, V = −2.5 V, V = V = 0 V, R to Gnd, T = 25°C, unless otherwise noted)  
CC  
EE  
CM  
O
L
A
Rating  
= 0 V)  
Symbol  
Min  
Typ  
Max  
Unit  
tera W  
pf  
Differential Input Resistance (V  
R
in  
C
in  
e
n
>1.0  
3.0  
CM  
Differential Input Capacitance (V  
= 0 V)  
CM  
Equivalent Input Noise Voltage (f = 1.0 kHz)  
Gain Bandwidth Product (f = 100 kHz)  
100  
nV/ǠHz  
MHz  
GBW  
V
CC  
V
CC  
V
CC  
= 0.45 V, V = −0.45 V  
0.6  
0.8  
0.8  
0.9  
EE  
= 1.5 V, V = −1.5 V  
EE  
= 2.5 V, V = −2.5 V  
EE  
Gain Margin (R = 10 k, C = 5.0 pf)  
Am  
6.5  
60  
80  
dB  
Deg  
kHz  
%
L
L
Phase Margin (R = 10 k, C = 5.0 pf)  
fm  
L
L
Power Bandwidth (V = 4.0 Vpp, R = 2.0 k, THD = 1.0 %, A = 1.0)  
BW  
P
O
L
V
Total Harmonic Distortion (V = 4.0 Vpp, R = 2.0 k, A = 1.0)  
THD  
SR  
O
L
V
f = 1.0 kHz  
f = 10 kHz  
0.008  
0.08  
Slew Rate (V = $2.5 V, V = −2.0 V to 2.0 V, R = 2.0 k, A = 1.0)  
V/ms  
S
O
L
V
Positive Slope  
Negative Slope  
0.85  
0.85  
1.2  
1.3  
Time Delay for Device to Turn On (R = 10 k)  
t
t
5.5  
2.5  
7.5  
3.0  
ms  
ms  
L
on  
Time Delay for Device to Turn Off (R = 10 k)  
L
off  
http://onsemi.com  
4
NCS2002, NCV2002  
0
0
−200  
−400  
−600  
600  
V
CC  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0.4  
V
= ±2.5 V  
S
V
CC  
R to Gnd  
T = 25°C  
A
High State Output  
Sourcing Current  
L
V
S
= $2.5 V  
R to Gnd  
T = 25°C  
A
L
High State Output  
Sourcing Current  
Low State Output  
Sinking Current  
0.3  
400  
Low State Output  
Sinking Current  
0.2  
200  
0
0.1  
0
V
EE  
V
EE  
0
4.0  
8.0  
12  
16  
20  
100  
1.0 k  
10 k  
100 k  
1.0 M  
R , Load Resistance (W)  
L
I , Load Current (mA)  
L
Figure 2. Output Saturation Voltage versus  
Load Resistance  
Figure 3. Output Saturation Voltage versus  
Load Current  
10,000  
1000  
100  
100  
V
= $2.5 V  
0
S
Gain  
R = 100 k  
L
80  
60  
40  
20  
0
20  
T = 25°C  
A
Amp = 0.8 mV  
Phase  
60  
100  
140  
180  
10  
V
= ±2.5 V  
S
R = ∞  
C = 0  
A = 1.0  
V
L
1.0  
0
L
1.0  
10  
100  
1.0 k  
10 k  
100 k 1.0 M 10 M  
0
25  
50  
75  
100  
125  
T , Ambient Temperature (°C)  
A
f, Frequency (Hz)  
Figure 4. Input Bias Current versus  
Temperature  
Figure 5. Gain and Phase versus Frequency  
V
= $2.5 V  
S
V
= $2.5 V  
S
R = 10 k  
C = 10 pF  
L
R = 10 k  
C = 10 pF  
L
L
L
A = 1.0  
V
A = 1.0  
V
T = 25°C  
A
T = 25°C  
A
t, Time (500 ns/Div)  
t, Time (1.0 ms/Div)  
Figure 6. Transient Response  
Figure 7. Slew Rate  
http://onsemi.com  
5
 
NCS2002, NCV2002  
10  
8.0  
6.0  
4.0  
2.0  
90  
A = 1.0  
V
80  
70  
60  
50  
40  
30  
20  
V
= ±2.5 V  
R = 10 k  
S
L
V
V
= ±3.5 V  
= ±2.5 V  
R = ∞  
T = 25°C  
A
S
L
A = 1.0  
V
T = 25°C  
A
S
V
S
= ±0.45 V  
10  
0
0
1.0 k  
10 k  
100 k  
1.0 M  
10  
100  
1.0 k  
10 k  
100 k 1.0 M  
10 M  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 8. Output Voltage versus Frequency  
Figure 9. Common Mode Rejection Ratio  
versus Frequency  
120  
280  
240  
200  
160  
120  
80  
V
= ±2.5 V  
S
Output Pulsed Test  
at 3% Duty Cycle  
−40°C  
R = ∞  
100  
80  
L
25°C  
A = 1.0  
V
PSR +  
T = 25°C  
A
PSR −  
60  
85°C  
40  
20  
0
40  
0
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0 ±3.5  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
f, Frequency (Hz)  
V , Supply Voltage (V)  
S
Figure 10. Power Supply Rejection Ratio  
versus Frequency  
Figure 11. Output Short Circuit Sinking  
Current versus Supply Voltage  
200  
160  
120  
80  
1.0  
0.8  
0.6  
0.4  
Output Pulsed Test  
at 3% Duty Cycle  
−40°C  
85°C  
25°C  
25°C  
−40°C  
85°C  
0.2  
0
40  
0
R = ∞  
A = 1.0  
V
L
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
V
S,  
Supply Voltage (V)  
V , Supply Voltage (V)  
S
Figure 12. Output Short Circuit Sourcing  
Current versus Supply Voltage  
Figure 13. Supply Current versus Supply  
Voltage with No Load  
http://onsemi.com  
6
NCS2002, NCV2002  
10  
10  
A = 1000  
V
A = 1000  
V
1.0  
0.1  
1.0  
A = 100  
A = 100  
V
V
V
V
= ±0.5 V  
V
V
= ±0.5 V  
S
S
A = 10  
V
A = 10  
V
= 0.4 V  
= 0.4 V  
out  
pp  
out  
pp  
R = 2.0 k  
T = 25°C  
A
R = 10 k  
T = 25°C  
A
L
L
0.1  
A = 1.0  
V
A = 1.0  
V
0.01  
0.01  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 14. Total Harmonic Distortion versus  
Frequency with 1.0 V Supply  
Figure 15. Total Harmonic Distortion versus  
Frequency with 1.0 V Supply  
10  
1.0  
0.1  
10  
A = 1000  
A = 1000  
V
V
1.0  
0.1  
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
V
V
= ±2.5 V  
V
V
= ±2.5 V  
S
S
0.01  
0.01  
= 4.0 V  
= 4.0 V  
out  
pp  
out  
pp  
A = 1.0  
V
R = 10 k  
T = 25°C  
A
R = 2.0 k  
T = 25°C  
A
L
L
A = 1.0  
V
0.001  
0.001  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, Frequency (Hz)  
f, Frequency (Hz)  
Figure 16. Total Harmonic Distortion versus  
Frequency with 5.0 V Supply  
Figure 17. Total Harmonic Distortion versus  
Frequency with 5.0 V Supply  
3.0  
2.0  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
+Slew Rate, V = ±2.5 V  
S
V
= ±2.5 V  
S
R = 10 k  
C = 10 pF  
L
L
−Slew Rate, V = ±2.5 V  
S
+Slew Rate, V = ±0.5 V  
S
−Slew Rate, V = ±0.5 V  
S
1.0  
0
R = 10 k  
L
C = 10 pF  
L
A = 1.0  
V
0.6  
0.5  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
T , Ambient Temperature (°C)  
A
T , Ambient Temperature (°C)  
A
Figure 18. Slew Rate versus Temperature  
Figure 19. Gain Bandwidth Product versus  
Temperature  
http://onsemi.com  
7
NCS2002, NCV2002  
100  
60  
100  
60  
Phase Margin  
V
= ±2.5 V  
S
100  
140  
180  
220  
260  
40  
20  
0
80  
60  
40  
80  
60  
40  
V
= ±0.5 V  
S
V
= ±2.5 V  
S
R = 10 k  
C = 10 pF  
L
V
S
= ±2.5 V  
L
V
= ±0.5 V  
S
Gain Margin  
R = 100 k  
T = 25°C  
L
20  
0
−20  
−40  
20  
0
A
Amp = 0.8 mV  
100 k  
−50 −25  
0
25  
50  
75  
100  
125  
10 k  
1.0 M  
10 M  
100 M  
f, Frequency (Hz)  
T , Ambient Temperature (°C)  
A
Figure 20. Voltage Gain and Phase versus  
Frequency  
Figure 21. Gain and Phase Margin versus  
Temperature  
100  
100  
100  
100  
Phase Margin  
Phase Margin  
80  
60  
40  
80  
60  
40  
80  
60  
80  
60  
V
= ±2.5 V  
V
= ±2.5 V  
S
S
R = 10 k  
R = 10 k  
C = 10 pF  
T = 25°C  
A
L
L
A = 100  
V
L
T = 25°C  
A
40  
20  
0
40  
20  
0
Gain Margin  
Gain Margin  
20  
0
20  
0
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0  
10  
100  
1000  
C , CapacitIve Load (pF)  
L
R , Differential Source Resistance (W)  
t
Figure 22. Gain and Phase Margin versus  
Differential Source Resistance  
Figure 23. Gain and Phase Margin versus  
Output Load Capacitance  
100  
80  
100  
80  
60  
40  
20  
8.0  
6.0  
Phase Margin  
60  
4.0  
2.0  
40  
Gain Margin  
R = 10 k  
L
20  
0
A = 100  
V
T = 25°C  
A
0
0
0
±0.5 ±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
0
±0.5 ±1.0  
±1.5  
±2.0  
±2.5  
±3.0 ±3.5  
V , Supply Voltage (V)  
S
V , Supply Voltage (V)  
S
Figure 24. Output Voltage Swing versus  
Supply Voltage  
Figure 25. Gain and Phase Margin versus  
Supply Voltage  
http://onsemi.com  
8
NCS2002, NCV2002  
100  
80  
60  
40  
20  
0
20  
V
= ±2.5 V  
S
15  
10  
5
R = ∞  
C = 0  
L
L
A = 1.0  
V
T = 25°C  
A
0
−5  
−10  
R = 10 k  
T = 25°C  
A
L
−15  
−20  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
−3.0  
−2.0  
−1.0  
, Common Voltage Range (V)  
CM  
0
1.0  
2.0  
3.0  
V , Supply Voltage (V)  
V
S
Figure 26. Open Loop Voltage Gain versus  
Supply Voltage  
Figure 27. Input Offset Voltage versus Common  
Mode Input Voltage Range, VS = + 2.5 V  
20  
15  
10  
5
3.0  
2.0  
1.0  
0
V
= ±0.9 V  
S
R = ∞  
C = 0  
L
L
A = 1.0  
V
T = 25°C  
A
D V = 5.0 mV  
IO  
R = ∞  
L
0
C = 0  
L
A = 1.0  
T = 25°C  
A
V
−5  
−10  
−1.0  
−2.0  
−3.0  
−15  
−20  
−1.0 −0.8 −0.6 −0.4 −0.2  
0
0.2 0.4 0.6 0.8 1.0  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
V
CM  
, Common Mode Input Voltage (V)  
V , Supply Voltage (V)  
S
Figure 28. Input Offset Voltage versus Common  
Figure 29. Common−Mode Input Voltage Range  
versus Power Supply Voltage  
Mode Input Voltage Range, VS = + 0.9 V  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
EN(on)  
V
EN(off)  
R = ∞  
L
A = 1.0  
T = 25°C  
A
A = ∞  
T = 25°C  
A
0.5  
0
V
V
0.5  
0
±3.5  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
V , Supply Voltage (V)  
S
V , Supply Voltage (V)  
S
Figure 30. Supply Current versus  
Supply Voltage (Disabled)  
Figure 31. Enable Input Voltage versus  
Supply Voltage  
http://onsemi.com  
9
 
NCS2002, NCV2002  
16  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
R = 10 k  
T = 25°C  
A
L
t
t
on  
off  
0
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
±3.0  
±3.5  
V , SUPPLY VOLTAGE (V)  
S
Figure 32. Propagation Delay versus Supply Voltage  
APPLICATION INFORMATION AND OPERATING DESCRIPTION  
GENERAL INFORMATION  
The ultra low input bias current of the NCS2002 allows  
the use of extremely high value source and feedback resistor  
without reducing the amplifier’s gain accuracy. These high  
value resistors, in conjunction with the device input and  
The NCS2002 is an industry first rail−to−rail input,  
rail−to−rail output amplifier that features guaranteed sub  
one volt operation. This unique feature set is achieved with  
the use of a modified analog CMOS process that allows the  
implementation of depletion MOSFET devices. The  
amplifier has a 1.0 MHz gain bandwidth product, 1.2 V/ms  
slew rate and is operational over a power supply range less  
than 0.9 V to as high as 7.0 V.  
printed circuit board parasitic capacitances C , will add an  
in  
additional pole to the single pole amplifier in Figure 33. If  
low enough in frequency, this additional pole can reduce the  
phase margin and significantly increase the output settling  
time. The effects of C , can be canceled by placing a zero  
in  
into the feedback loop. This is accomplished with the  
Inputs  
addition of capacitor C . An approximate value for C can  
fb  
fb  
The input topology chosen for this device series is  
unconventional when compared to most low voltage  
operational amplifiers. It consists of an N−channel depletion  
mode differential transistor pair that drives a folded cascade  
stage and current mirror. This configuration extends the  
be calculated by:  
R
+
  C  
in  
in  
C
fb  
R
fb  
C
fb  
input common mode voltage range to encompass the V  
EE  
and V power supply rails, even when powered from a  
CC  
R
fb  
combined total of less than 0.9 volts. Figures 27, 28 and 29  
show the input common mode voltage range versus power  
supply voltage.  
The differential input stage is laser trimmed in order to  
minimize offset voltage. The N−channel depletion mode  
MOSFET input stage exhibits an extremely low input bias  
current of less than 10 pA. The input bias current versus  
temperature is shown in Figure 4. Either one or both inputs  
R
in  
+
Input  
Output  
C
in  
C
= Input and printed circuit board capacitance  
in  
Figure 33. Input Capacitance Pole Cancellation  
can be biased as low as V minus 300 mV to as high as  
EE  
7.0 V without causing damage to the device. If the input  
common mode voltage range is exceeded, the output will not  
display a phase reversal. If the maximum input positive or  
negative voltage ratings are to be exceeded, a series resistor  
must be used to limit the input current to less than 2.0 mA.  
http://onsemi.com  
10  
 
NCS2002, NCV2002  
Output  
The output stage consists of complimentary P and N  
large signal rise and fall time and reduce the output  
amplitude. Depending upon the capacitor characteristics,  
the isolation resistor value will typically be between 50 to  
500 W. The output drive capability for resistive and  
capacitive loads is shown in Figures 2, 3, and 23.  
channel devices connected to provide rail−to−rail output  
drive. With a 2.0 k load, the output can swing within 50 mV  
of either rail. It is also capable of supplying over 75 mA  
when powered from 5.0 V and 1.0 mA when powered from  
0.9 V.  
R
+
Input  
Output  
When connected as a unity gain follower, the NCS2002  
can directly drive capacitive loads in excess of 820 pF at  
room temperature without oscillating but with significantly  
reduced phase margin. The unity gain follower  
configuration exhibits the highest bandwidth and is most  
prone to oscillations when driving a high value capacitive  
load. The capacitive load in combination with the  
amplifier’s output impedance, creates a phase lag that can  
result in an under−damped pulse response or a continuous  
oscillation. Figure 35 shows the effect of driving a large  
capacitive load in a voltage follower type of setup. When  
driving capacitive loads exceeding 820 pF, it is  
recommended to place a low value isolation resistor  
between the output of the op amp and the load, as shown in  
Figure 34. The series resistor isolates the capacitive load  
from the output and enhances the phase margin. Refer to  
Figure 36. Larger values of R will result in a cleaner output  
waveform but excessively large values will degrade the  
C
L
Isolation resistor R = 50 to 500  
Figure 34. Capacitance Load Isolation  
Note that the lowest phase margin is observed at cold  
temperature and low supply voltage.  
Enable Pin  
The enable pin allows the user to externally control the  
device. if the enable pin is pulled below the input disable  
threshold voltage (V  
< 45% V ), the amplifier is  
EN  
CC  
disabled. Once the enable pin is taken above the threshold  
voltage (V = 60% V ), the amplifier will turn on. In the  
EN  
CC  
event the enable pin is not connected, the amplifier will  
remain on by default  
http://onsemi.com  
11  
 
NCS2002, NCV2002  
V
in  
V
V
= ±0.45 V  
= 0.8 Vpp  
S
in  
R = 0  
C = 820 pF  
L
A = 1.0  
V
T = 25°C  
A
V
out  
Figure 35. Small Signal Transient Response with Large Capacitive Load  
V
in  
V
V
= ±0.45 V  
= 0.8 Vpp  
S
in  
R = 51  
C = 820 pF  
L
A = 1.0  
V
T = 25°C  
A
V
out  
Figure 36. Small Signal Transient Response with Large  
Capacitive Load and Isolation Resistor.  
http://onsemi.com  
12  
NCS2002, NCV2002  
R
T
470 k  
V
CC  
Output Voltage  
0
0.9 V  
0.67 V  
C
1.0 nF  
CC  
CC  
Timing Capacitor  
Voltage  
T
0.33 V  
+
f
O
= 1.5 kHz  
The non−inverting input threshold levels are set so that  
the capacitor voltage oscillates between 1/3 and 2/3 of  
R
470 k  
1a  
V
CC  
. This requires the resistors R , R and R to be of  
1a 1b 2  
equal value. The following formula can be used to  
approximate the output frequency.  
0.9 V  
R
470 k  
2
R
1b  
470 k  
1
f
+
O
1.39 RTCT  
Figure 37. 0.9 V Square Wave Oscillator  
D
1
1N4148  
V
10 k  
CC  
cww  
cw  
Output Voltage  
0
CC  
CC  
1.0 M  
D
2
0.67 V  
0.33 V  
Timing Capacitor  
Voltage  
1N4148  
10 k  
Clock−wise, Low Duty Cycle  
V
CC  
C
T
V
CC  
1.0 nF  
Output Voltage  
+
0
CC  
CC  
f
O
Timing Capacitor  
Voltage  
0.67 V  
0.33 V  
R
1a  
470 k  
Counter−Clock−wise, High Duty Cycle  
V
CC  
R
470 k  
2
The timing capacitor C will charge through diode D and discharge  
T
2
R
through diode D , allowing a variable duty cycle. The pulse width of the  
1b  
1
470 k  
signal can be programmed by adjusting the value of the trimpot. The ca-  
pacitor voltage will oscillate between 1/3 and 2/3 of V , since all the  
CC  
resistors at the non−inverting input are of equal value.  
Figure 38. Variable Duty Cycle Pulse Generator  
http://onsemi.com  
13  
NCS2002, NCV2002  
R
1
1.0 M  
2.5 V  
R
3
1.0 k  
+
10,000 µF  
C
in  
10 mF  
−2.5 V  
R
R
1
3
C
+
C
in  
eff.  
R
2
1.0 M  
Figure 39. Positive Capacitance Multiplier  
A
f
C
f
400 pF  
R
f
100 k  
f
L
f
H
0.5 V  
1
R
10 k  
2
f +  
[ 200 Hz  
[ 4.0 kHz  
L
2 p R C  
1 1  
+
V
O
1
f
+
V
in  
H
2 p R C  
f f  
C
1
R
10 k  
1
80 nF  
−0.5 V  
R
f
R
A + 1 )  
+ 11  
f
2
Figure 40. 1.0 V Voiceband Filter  
http://onsemi.com  
14  
NCS2002, NCV2002  
V
supply  
V
CC  
V
in  
V
+
in  
I
+
sink  
R
sense  
R
sense  
Figure 41. High Compliance Current Sink  
I
s
V
L
1.0 V  
R
sense  
R
3
1.0 k  
R
R
1
4
I
V
O
R
s
L
1.0 k  
1.0 k  
R
+
5
435 mA  
212 mA  
34.7 mV  
36.9 mV  
V
O
2.4 k  
75  
R
6
For best performance, use low  
tolerance resistors.  
R
2
3.3 k  
Figure 42. High Side Current Sense  
http://onsemi.com  
15  
NCS2002, NCV2002  
PACKAGE DIMENSIONS  
TSOP−6  
CASE 318G−02  
ISSUE I  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
L
6
5
2
4
B
S
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS.  
1
3
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
D
A
B
C
D
G
H
J
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
G
M
J
C
0.05 (0.002)  
K
L
K
M
S
10  
0
3.00 0.0985 0.1181  
10  
_
_
_
_
H
2.50  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCS2002/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY