NCS2021SN3T1 [ONSEMI]

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, PLASTIC, SC-59, SOT-23, TSOP-5;
NCS2021SN3T1
型号: NCS2021SN3T1
厂家: ONSEMI    ONSEMI
描述:

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, PLASTIC, SC-59, SOT-23, TSOP-5

放大器 光电二极管
文件: 总16页 (文件大小:91K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS2021  
Product Preview  
1.8 Volt Rail-to-Rail Output  
Operational Amplifier  
The NCS2021 operational amplifier provides rail–to–rail operation  
on the output and can swing within XX mV of each rail. Specifically  
optimized for portable battery operated equipment with an available  
combination of low supply voltage and current, and small package  
size. Typical supply current remains below 10 mA from –40°C to  
125°C. It is designed to work at very low supply voltages (1.8 V and  
ground), yet can operate with a supply of up to 12 V and ground.  
http://onsemi.com  
MARKING  
DIAGRAMS  
5
SOT23–5  
(TSOP–5/SC59–5)  
SN SUFFIX  
5
AAxYW  
1
Features  
Low Supply Current (I = 10 mA / per Amplifier, Typical)  
1
CASE 483  
D
Low Supply Current Variation from –40°C to 125°C  
Wide Voltage, Single Supply Operation (1.8 V and Ground to 12.0 V  
and Ground)  
x
= L for SN2  
M for SN3  
= Year  
Y
W
= Work Week  
High Input Impedance: Typically XX Input Current  
Typical Unity Gain Bandwidth @ 5.0 V = 60 kHz, @ 1.8 V = 50 kHz  
Output Voltage Swings Within XX mV of Both Rails @ XX V  
No Phase Reversal on the Output for Over–Driven Input Signals  
Input Offset Trimmed to 5.0 mV typical  
5
4
SC70–5  
(SC–88A /SOT–353  
SQ SUFFIX  
5
AAzM  
3
2
1
1
CASE 419A  
Work Down to Two Discharged NiCd Battery Cells  
ESD Protected Inputs up to 2.0 kV (Human Body Model)  
z
= N for SQ2  
O for SQ3  
= Date Code  
M
Typical Applications  
Dual NiCd / NiMH Cell Powered Systems  
Portable Computing and Communication Devices  
Low Voltage Active Filters  
Power Supply Monitor and Control  
Interface to DSP  
PIN CONNECTIONS  
1
2
3
5
4
V
V
DD  
OUT  
V
SS  
+ –  
Non–Inverting  
Input  
Inverting  
Input  
Style 2 Pinout (SN2T1, SQ2T1)  
Non–Inverting  
Input  
1
2
3
5
4
V
DD  
+
V
SS  
Inverting  
Input  
V
OUT  
Style 3 Pinout (SN3T1, SQ3T1)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
dimensions section on page 11 of this data sheet.  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
April, 2002 – Rev. 0  
NCS2021/D  
NCS2021  
MAXIMUM RATINGS  
Characteristic  
Symbol  
Value  
10  
Unit  
V
Supply Voltage (V to V  
)
V
S
DD  
SS  
ESD Protection at any Pin Human Body Model  
Voltage at any Device Pin  
V
2000  
V
ESD  
V
V
$0.3  
V
DP  
S
Input Differential Voltage Range (Note 1)  
Common Mode Input Voltage Range (Note 1)  
Output Short Circuit Duration  
V
V
to V  
to V  
V
IDR  
DD  
DD  
SS  
V
V
V
CM  
SS  
t
(Note 2)  
150  
s
S
Maximum Junction Temperature  
Storage Temperature Range  
T
_C  
_C  
mW  
J
T
–65 to 150  
(Note 2)  
stg  
Maximum Power Dissipation  
P
D
1. Either or both inputs should not exceed the range of V – 0.3 V to V + 12 V  
SS  
DD  
2. Maximum package power dissipation limits must be considered to ensure maximum junction temperature (T ) is not exceeded.  
J
T = T + (P R )  
q
JA  
J
A
D
3. ESD data available on request.  
Typical Electrical Characteristics Table  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to Ground, T = 25°C, unless otherwise noted)  
DD  
SS  
CM  
O
L
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
V
V
= 0.9 V, V = 0.9 V  
T = 25°C  
T = –40°C to 85°C  
DD  
SS  
–5.0  
5.0  
5.0  
A
A
= 2.5 V, V = 2.5 V  
DD  
A
SS  
T = 25°C  
–5.0  
5.0  
5.0  
T = –40°C to 85°C  
A
= 6.0 V, V = 6.0 V  
DD  
A
SS  
T = 25°C  
–5.0  
5.0  
5.0  
T = –40°C to 85°C  
A
Input Offset Voltage Temperature Coefficient (R = 50 W)  
D V / D T  
8.0  
mV/°C  
S
IO  
T = – 40°C to 105°C  
A
Input Bias Current (V = 1.8 V to 12 V)  
|I |  
–150  
20  
150  
pA  
V
DD  
IB  
Common Mode Input Voltage Range  
Large Signal Voltage Gain  
V
ICR  
V
SS  
V
– 0.4  
DD  
A
VOL  
kV/V  
V
V
V
= 0.9 V, V = – 0.9 V  
R = 10 kW  
R = 100 kW  
DD  
SS  
5
20  
L
L
= 2.5 V, V = – 2.5 V  
DD  
L
SS  
R = 10 kW  
15  
40  
R = 100 kW  
L
= 6.0 V, V = – 6.0 V  
DD  
L
SS  
R = 10 kW  
50  
70  
R = 100 kW  
L
http://onsemi.com  
2
NCS2021  
Typical Electrical Characteristics Table  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to Ground, T = 25°C, unless otherwise noted)  
DD  
SS  
CM  
O L A  
Characteristics  
Output Voltage Swing, High (V = 0.5 V)  
Symbol  
Min  
Typ  
Max  
Unit  
V
OH  
V
In  
V
V
V
= 0.9 V, V = 0.9 V (T = 25 °C)  
DD  
SS A  
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C  
A
R = 10 kW  
L
R = 100 kW  
L
= 2.5 V, V = 2.5 V (T = 25 °C)  
DD  
SS  
A
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C)  
A
R = 10 kW  
L
R = 100 kW  
L
= 6.0 V , V = –6.0 V (T = 25 °C)  
DD  
SS  
A
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C  
A
R = 10 kW  
L
R = 100 kW  
L
Output Voltage Swing, Low (V = –0.5 V)  
V
OL  
Min  
Typ  
Max  
V
In  
V
V
V
= 0.9 V, V = 0.9 V (T = 25 °C)  
DD  
SS A  
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C  
A
R = 10 kW  
L
R = 100 kW  
L
= 2.5 V, V = 2.5 V (T = 25°C)  
DD  
SS  
A
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C)  
A
R = 10 kW  
L
R = 100 kW  
L
= 6.0 V , V = –6.0 (T = 25 °C)  
DD  
SS  
A
R = 10 kW  
L
R = 100 kW  
L
T = –40 °C to 85 °C  
A
R = 10 kW  
L
R = 100 kW  
L
Common Mode Rejection Ratio  
CMRR  
dB  
V
in  
V
in  
V
in  
= 0 to 1.8 V  
= 0 to 5.0 V  
= 0 to 12 V  
44  
40  
30  
50  
50  
50  
Power Supply Rejection Ratio  
/ V = 12 V / Ground, 5.0 V / Ground, 1.8 V / Ground  
+PSRR  
–PSRR  
dB  
dB  
V
DD  
40  
40  
50  
50  
SS  
Power Supply Rejection Ratio  
/ V = 12 V / Ground, 5.0 V / Ground, 1.8 V / Ground  
V
DD  
SS  
Output Short Circuit Current (V Diff = ± 1.0 V)  
I
mA  
in  
SC  
V
V
V
= +0.9 V, V = – 0.9 V  
Source  
Sink  
DD  
SS  
1.5  
–20  
20  
–1.5  
= +2.5 V, V = – 2.5 V  
DD  
SS  
Source  
12  
– 60  
60  
–12  
Sink  
= +6.0 V, V = – 6.0 V  
DD  
SS  
Source  
Sink  
40  
–160  
160  
– 40  
Power Supply Current (Per Amplifier, V = 0 V)  
I
D
mA  
O
V
V
V
= +0.9 V, V = – 0.9 V  
T = – 40 °C to 85 °C)  
DD  
SS  
10  
10  
10  
20  
20  
20  
A
= +2.5 V, V = – 2.5 V  
DD  
SS  
T = – 40 °C to 85 °C)  
A
DD  
= +6.0 V, V = – 6.0 V  
SS  
T = – 40 °C to 85 °C)  
A
http://onsemi.com  
3
NCS2021  
Typical Electrical Characteristics Table  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to Ground, T = 25°C, unless otherwise noted)  
DD  
SS  
CM  
O L A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate (V = ±2.5 V, V = – 2.0 to 2.0 V, R = 10 kW, A = 1.0)  
SR  
mV/ms  
S
O
L
V
Positive Slope  
Negative Slope  
35  
35  
Gain Bandwidth Product  
GBW  
kHz  
V
DD  
V
DD  
V
DD  
= 1.8 V  
= 5.0 V  
= 12 V  
60  
60  
60  
Gain Margin (R = 10 kW, C = 0 pf)  
Am  
dB  
Deg  
kHz  
%
L
L
Phase Margin (R = 10 kW, C = 0 pf)  
fm  
L
L
Power Bandwidth ( V = 4.0 Vpp, R = 10 kW, THD 1.0 %)  
BW  
P
O
L
Total Harmonic Distortion (V = 4.5 Vpp, R = 10 kW, A = 1.0)  
THD  
O
L
V
f = 1.0 kHz  
f = 10 kHz  
Differential Input Resistance (V  
= 0 V)  
R
in  
C
in  
e
n
tera W  
pf  
CM  
Differential Input Capacitance (V  
= 0 V)  
CM  
Equivalent Input Noise Voltage ( Freq = 10 Hz)  
nV/Hz  
http://onsemi.com  
4
NCS2021  
GRAPHS  
Symbols  
vs. V  
Title  
Common Mode Input Voltage versus Supply Voltage  
Input Bias Current versus Ambient Temperature  
Equivalent Input Noise Voltage versus Frequency  
Equivalent Input Noise Current versus Frequency  
Common Mode Rejection Ratio versus Frequency  
Power Supply Rejection Ratio versus Frequency  
Output High–State Saturation Voltage versus Sinking Current  
Output Low–State Saturation Voltage versus Sourcing Current  
Output Voltage versus Frequency  
Figure  
V
1
2
3
4
5
6
7
8
9
CM  
S
I
IB  
vs. T  
A
e vs. f  
n
i vs. f  
n
CMRR vs. f  
PSRR vs. f  
V
OH  
V
OL  
V
vs. I  
OH  
OL  
vs. I  
vs. f  
OUT  
THD vs. f  
Total Harmonic Distortion versus Frequency for a 1.8 V Supply  
Total Harmonic Distortion versus Frequency for a 5.0 V Supply  
Total Harmonic Distortion versus Frequency for a 10 V Supply  
Total Harmonic Distortion versus Frequency for a 12 V Supply  
10  
11  
12  
13  
A & f vs. f  
Voltage Gain and Phase versus Frequency  
Gain and Phase Margin versus Supply Voltage  
Gain and Phase Margin versus Load Resistance  
Gain and Phase Margin versus Load Capacitance  
Open Loop Voltage Gain versus Supply Voltage  
Open Loop Voltage Gain versus Load Resistance  
Gain Bandwidth Product versus Supply Voltage  
Gain Bandwidth Product versus Ambient Temperature  
Small–signal Transient Response versus Time  
Large–signal Transient Response versus Time  
Slew Rate versus Supply Voltage  
14, 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
A
m
A
m
A
m
& f vs. V  
m S  
& f vs. R  
m
L
L
& f vs. C  
m
A
VOL  
vs. V  
S
A
VOL  
vs. R  
L
GBW vs. V  
S
GBW vs. T  
A
V
O
V
O
vs. t  
vs. t  
SR vs. T  
A
SR vs. T  
Slew Rate versus Ambient Temperature  
A
I
I
I
I
vs. V  
Output Short Circuit Current versus Supply Voltage  
Output Short Circuit Current versus Ambient Temperature  
Supply Current versus Supply Voltage  
SC  
SC  
S
vs. T  
A
vs. V  
D
D
S
vs. T  
Supply Current versus Ambient Temperature  
A
http://onsemi.com  
5
NCS2021  
6.0  
4.0  
600  
V
= $2.5 V  
S
R = ∞  
L
A = 1.0  
V
2.0  
400  
200  
0
A = 1.0  
V
DV v 5.0 mV  
IO  
0
–2.0  
–4.0  
–6.0  
R = ∞  
L
T = 25°C  
A
0
2.0  
4.0  
6.0  
–25  
0
25  
50  
75  
100  
125  
V , SUPPLY VOLTAGE ($V)  
S
V , SUPPLY VOLTAGE ($V)  
S
Figure 1. Common Mode Input Voltage versus  
Supply Voltage  
Figure 2. Input Bias Current versus Ambient  
Temperature  
200  
150  
2000  
1500  
V
= $0.9 V  
V = $0.9 V  
S
T = 25°C  
A
S
T = 25°C  
A
100  
50  
0
1000  
500  
0
10  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
f, FREQUENCY  
f, FREQUENCY  
Figure 4. Equivalent Input Noise Current  
versus Frequency  
Figure 3. Equivalent Input Noise Voltage  
versus Frequency  
100  
80  
100  
80  
V
= $2.5 V  
V = $2.5 V  
S
A = 1.0  
V
S
A = 1.0  
V
PSR+  
PSR–  
R = ∞  
R = ∞  
L
L
T = 25°C  
T = 25°C  
A
A
60  
40  
60  
40  
20  
0
20  
0
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
10 k  
f, FREQUENCY  
f, FREQUENCY  
Figure 5. Common Mode Rejection Ratio  
versus Frequency  
Figure 6. Power Supply Rejection Ratio  
versus Frequency  
http://onsemi.com  
6
NCS2021  
0
2.0  
1.6  
T = 125°C  
A
V
V
= $2.5 V  
S
85°C  
= –2.5 V  
OUT  
25°C  
–0.4  
R = to GND  
L
A = 100  
V
–40°C  
–0.8  
–1.2  
1.2  
0.8  
V
V
= $2.5 V  
S
–40°C  
25°C  
= 2.5 V  
OUT  
–1.6  
–2.0  
0.4  
R = to GND  
A = 100  
V
L
T = 125°C  
85°C  
A
0
0
4.0  
8.0  
12  
16  
20  
24  
0
4.0  
8.0  
12  
16  
20  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 7. Output High–State Saturation Voltage  
versus Sinking Current  
Figure 8. Output Low–State Saturation Voltage  
versus Sourcing Current  
15  
10  
5
10  
1.0  
V
= $0.9 V  
S
A = 10  
V
R = 10 k  
V
= 12  
L
S
R = 10 k  
L
V
OUT  
= 0.9 V  
PP  
THD v 1.0 %  
R to V  
T = 25°C  
A
L
SS  
R to V  
L
SS  
T = 25°C  
A
A = 1000  
V
5.0 V  
1.8 V  
100  
10  
0.1  
1.0  
0
0.01  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
f, FREQUENCY, (Hz)  
f, FREQUENCY, (Hz)  
Figure 9. Output Voltage versus Frequency  
Figure 10. Total Harmonic Distortion versus  
Frequency for a 1.8 V Supply  
10  
10  
1.0  
0.1  
1.0  
A = 1000  
V
1.0  
0.1  
100  
10  
A = 1000  
V
V
DD  
V
SS  
= +7.5 V  
= –2.5 V  
100  
10  
R = 10 k  
V
= $2.5 V  
L
S
V
OUT  
= 2.0 V  
PP  
R = 10 k  
L
0.01  
0.01  
R to GND  
V
OUT  
= 2.5 V  
PP  
L
1.0  
T = 25°C  
A
R to V  
L
SS  
T = 25°C  
A
0.001  
0.001  
10  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
f, FREQUENCY  
f, FREQUENCY  
Figure 11. Total Harmonic Distortion versus  
Frequency for a 5.0 V Supply  
Figure 12. Total Harmonic Distortion versus  
Frequency for a 10 V Supply  
http://onsemi.com  
7
NCS2021  
10  
1.0  
0.1  
100  
V
= 2.5 V  
S
R = 10 k  
C = 7.5 pF  
T = 25°C  
A
L
L
GAIN  
60  
0
A = 1000  
V
V
= $6.0 V  
100  
S
20  
–90  
–180  
R = 10 k  
PHASE  
L
0.01  
V
OUT  
= 6.0 V  
PP  
10  
R to V  
T = 25°C  
A
L
SS  
1.0  
0.001  
–20  
10  
100  
1.0 k  
10 k  
0.1  
1.0  
10  
100 1.0 k  
10 k 100 k 1.0 M  
f, FREQUENCY  
f, FREQUENCY (Hz)  
Figure 13. Total Harmonic Distortion versus  
Frequency for a 12 V Supply  
Figure 14. Voltage Gain and Phase  
versus Frequency  
80  
60  
40  
20  
0
–60  
40  
20  
C = 7.5 pF  
T = 25°C  
A
L
V
= 2.5 V  
S
R = 10 k  
C = 7.5 pF  
T = 25°C  
A
L
GAIN  
L
Phase Margin, R = 1.0 M  
L
–120  
–180  
–240  
PHASE  
Phase Margin, R = 10 k  
L
0
Gain Margin, R = 10 k  
L
Gain Margin, R = 1.0 M  
L
–20  
0
$1.0  
$2.0  
$3.0  
$4.0  
$5.0 $.6.0  
1.0 k  
10 k  
100 k  
1.0 M  
V , SUPPLY VOLTAGE (V)  
S
f, FREQUENCY (Hz)  
Figure 16. Gain and Phase Margin  
versus Supply Voltage  
Figure 15. Voltage Gain and Phase  
versus Frequency  
60  
60  
Phase Margin, R = 1.0 M  
L
V
S
= $2.5 V  
T = 25°C  
A
Phase Margin  
Phase Margin, R = 10 k  
40  
20  
40  
20  
L
V
= $2.5 V  
S
C = 7.5 pF  
T = 25°C  
A
L
Gain Margin, R = 10 k  
L
Gain Margin  
Gain Margin, R = 1.0 M  
L
0
0
10 k  
100 k  
1.0 M  
1.0  
10  
100  
1.0 k  
R , LOAD RESISTANCE (W)  
L
C , LOAD CAPACITANCE (pF)  
L
Figure 17. Gain and Phase Margin  
versus Load Resistance  
Figure 18. Gain and Phase Margin  
versus Load Capacitance  
http://onsemi.com  
8
NCS2021  
140  
120  
100  
80  
120  
C = 7.5 pF  
T = 25°C  
A
L
T = 25°C  
A
V
DV  
= $6.0 V  
S
= $5.0 V  
R = 1.0 M  
OUT  
L
100  
80  
V
DV  
= $2.5 V  
S
= $2.0 V  
OUT  
R = 100 k  
L
V
DV  
= $0.9 V  
S
R = 10 k  
L
= $0.8 V  
OUT  
60  
60  
1.0 k  
10 k  
100 k  
1.0 M  
0
$1.0  
$2.0  
$3.0  
$4.0  
$5.0  
$.6.0  
V , SUPPLY VOLTAGE (V)  
S
R , LOAD RESISTANCE (W)  
L
Figure 19. Open Loop Voltage Gain  
versus Supply Voltage  
Figure 20. Open Loop Voltage Gain  
versus Load Resistance  
80  
70  
60  
50  
40  
80  
R = 10 k  
L
C = 7.5 pF  
L
T = 25°C  
A
A
VOL  
70  
60  
50  
V
= $2.5 V  
S
R = 10 k  
C = 7.5 pF  
L
L
A
VOL  
–75  
–50  
–25  
0
25  
50  
75  
100 125  
0
$1.0  
$2.0  
$3.0  
$4.0  
$5.0  
V , SUPPLY VOLTAGE (V)  
S
T , AMBIENT TEMPERATURE (°C)  
A
Figure 21. Gain Bandwidth Product  
versus Supply Voltage  
Figure 22. Gain Bandwidth Product  
versus Ambient Temperature  
R = 10 k  
V
V
V
= $2.5 V  
V
V
V
= $2.5 V  
L
S
S
R = 10 k  
L
C = 100 pF  
= 40 mV  
= 2.0 V  
PP  
L
OUT  
OUT  
PP  
OUT  
OUT  
C = 100 pF  
L
A = 1.0  
= 2.5 V  
= 2.5 V  
V
A = 1.0  
V
T = 25°C  
A
T = 25°C  
A
t, TIME ( 20 mS / Div)  
t, TIME ( 100 mS / Div)  
Figure 23. Small–signal Transient Response  
versus Time  
Figure 24. Large–signal Transient Response  
versus Time  
http://onsemi.com  
9
NCS2021  
35  
30  
25  
20  
15  
35  
R = 10 k  
V
= $2.5 V  
L
S
C = 100 pF  
R = 10 k  
C = 100 pF  
A = 1.0  
V
L
L
A = 1.0  
V
L
30  
25  
20  
15  
T = 25°C  
A
SR+  
SR–  
SR+  
SR–  
0
0
0
$1.0  
$2.0  
$3.0  
$4.0  
$5.0  
$6.0  
12  
–75  
–50  
–25  
0
25  
50  
75  
100 125  
V , SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
A
S
Figure 25. Slew Rate versus Supply Voltage  
Figure 26. Slew Rate versus Ambient Temperature  
50  
120  
I
I
+: V  
–: V  
to V  
to V  
V
I
I
= $2.5 V  
SC  
SC  
OUT  
SS  
DD  
S
I
+
+: V  
–: V  
to V  
to V  
OUT  
SC  
SC  
SC  
OUT  
OUT  
SS  
DD  
40  
30  
20  
T = 25°C  
A
A
A
VOL  
VOL  
80  
40  
0
I
+
SC  
I
SC  
I
SC  
10  
0
–70  
–30  
10  
50  
90  
130  
$2.0  
$4.0  
T , AMBIENT TEMPERATURE (°C)  
A
V , SUPPLY VOLTAGE (V)  
S
Figure 27. Output Short Circuit Current  
versus Supply Voltage  
Figure 28. Output Short Circuit Current  
versus Ambient Temperature  
10  
9.0  
8.0  
7.0  
6.0  
10  
9.0  
8.0  
7.0  
6.0  
V
= 12  
S
T = 125°C  
A
10 V  
85°C  
25°C  
5.0 V  
1.8 V  
V
= V /2  
V
= V /2  
OUT  
DD  
OUT DD  
–40°C  
R = ∞  
A = 1.0  
R = ∞  
L
L
A = 1.0  
V
V
2.0  
4.0  
6.0  
8.0  
10  
–50  
10  
50  
130  
V , SUPPLY VOLTAGE (V)  
S
T , AMBIENT TEMPERATURE (°C)  
A
Figure 29. Supply Current versus Supply Voltage  
Figure 30. Supply Current  
versus Ambient Temperature  
http://onsemi.com  
10  
NCS2021  
ORDERING INFORMATION  
Device  
Package  
Shipping*  
NCS2021SN2T1  
NCS2021SN3T1  
NCS2021SQ2T1  
NCS2021SQ3T1  
SOT23–5 (TSOP–5/SC59–5)  
SOT23–5 (TSOP–5/SC59–5)  
SC70–5 (SC88A, SOT–353)  
SC70–5 (SC88A, SOT–353)  
3000 Units on 7” Tape & Reel  
3000 Units on 7” Tape & Reel  
3000 Units on 7” Tape & Reel  
3000 Units on 7” Tape & Reel  
http://onsemi.com  
11  
NCS2021  
PACKAGE DIMENSIONS  
SOT23–5  
(TSOP–5/SC59–5)  
N SUFFIX  
PLASTIC PACKAGE  
CASE 483–01  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
5
4
3
B
C
S
1
2
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
L
G
A
B
C
D
G
H
J
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
A
J
0.05 (0.002)  
K
L
H
M
K
M
S
10  
0
3.00 0.0985 0.1181  
10  
_
_
_
_
2.50  
http://onsemi.com  
12  
NCS2021  
PACKAGE DIMENSIONS  
SC70–5  
(SC–88A/SOT–353)  
Q SUFFIX  
CASE 419A–02  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: INCH.  
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.  
G
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
5
4
3
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
–B–  
S
1
2
0.026 BSC  
0.65 BSC  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
0.008 REF  
0.20 REF  
M
M
B
0.2 (0.008)  
D 5 PL  
0.079  
0.087  
2.00  
2.20  
N
J
C
K
H
http://onsemi.com  
13  
NCS2021  
Notes  
http://onsemi.com  
14  
NCS2021  
Notes  
http://onsemi.com  
15  
NCS2021  
ON Semiconductor is a trademark and  
is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right  
to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must  
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NCS2021/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY