NCS21914 [ONSEMI]

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz;
NCS21914
型号: NCS21914
厂家: ONSEMI    ONSEMI
描述:

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz

文件: 总22页 (文件大小:1052K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Operational  
Amplifier, 25 mV Offset,  
Zero-Drift, 36 V Supply,  
2 MHz  
NCS21911, NCV21911,  
NCS21912, NCV21912,  
NCS21914, NCV21914  
www.onsemi.com  
MARKING  
DIAGRAMS  
The NCS2191x family of high precision op amps feature low input  
offset voltage and nearzero drift over time and temperature. These op  
amps operate over a wide supply range from 4 V to 36 V with low  
quiescent current. The railtorail output swings within 10 mV of the  
rails. The family includes the single channel NCS(V)21911, the dual  
channel NCS(V)21912, and the quad channel NCS(V)21914 in a  
variety of packages. All versions are specified for operation from  
40°C to +125°C. Automotive qualified options are available under  
the NCV prefix.  
5
5
AEZAYWG  
1
G
TSOP5  
1
CASE 483  
8
8
912  
1
AYWG  
Micro8  
G
CASE 846A02  
1
Features  
8
Input Offset Voltage: 25 mV max  
ZeroDrift Offset Voltage: 0.085 mV/°C max  
Voltage Noise Density: 22 nV/Hz typical  
Unity Gain Bandwidth: 2 MHz typical  
Supply Voltage: 4 V to 36 V  
Quiescent Current: 570 mA max  
RailtoRail Output  
912  
ALYWX  
8
1
G
SOIC8 NB  
1
CASE 75107  
14  
XXXX  
XXXX  
ALYWG  
G
14  
1
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
TSSOP14 WB  
CASE 948G  
1
These Devices are Pbfree, Halogen free/BFR free and are RoHS  
compliant  
14  
1
XXXXXXXXXG  
AWLYWW  
14  
Typical Applications  
Temperature Measurements  
Transducer Applications  
Electronic Scales  
Medical Instrumentation  
Current Sensing  
Automotive  
1
SOIC14 NB  
CASE 751A03  
XXXXX = Specific Device Code  
= Assembly Location  
L or WL = Wafer Lot  
A
Y
W
G
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
June, 2020 Rev. 2  
NCS21911/D  
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
PIN CONNECTIONS  
Single Channel Configuration  
NCS21911  
VDD  
OUT  
VSS  
IN+  
1
2
3
5
4
IN−  
Dual Channel Configuration  
NCS21912  
Quad Channel Configuration  
NCS21914  
OUT 1  
IN1  
IN+ 1  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT 1  
IN1  
IN+ 1  
VSS  
1
2
3
4
8
7
6
5
OUT 4  
VDD  
IN4  
OUT 2  
+
+
+
IN+ 4  
VSS  
IN2  
+
IN+ 2  
IN+ 3  
IN3  
OUT 3  
IN+ 2  
IN2  
+
+
OUT 2  
8
ORDERING INFORMATION  
Channels  
Single  
Device  
Package  
Shipping †  
NCS21911SN2T1G  
SOT235 / TSOP5  
SOIC8  
3000 / Tape & Reel  
2500 / Tape & Reel  
Dual  
NCS21912DR2G  
(In Development*)  
NCS21912DMR2G  
MICRO8  
SOIC14  
4000 / Tape & Reel  
2500 / Tape & Reel  
Quad  
NCS21914DR2G  
(In Development*)  
NCS21914DTBR2G  
(In Development*)  
TSSOP14  
2500 / Tape & Reel  
Automotive Qualified  
Channels  
Single  
Device  
Package  
SOT235 / TSOP5  
SOIC8  
Shipping  
NCV21911SN2T1G  
3000 / Tape & Reel  
2500 / Tape & Reel  
Dual  
NCV21912DR2G  
(In Development*)  
NCV21912DMR2G  
MICRO8  
SOIC14  
4000 / Tape & Reel  
2500 / Tape & Reel  
Quad  
NCV21914DR2G  
(In Development*)  
NCV21914DTBR2G  
(In Development*)  
TSSOP14  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*Contact local sales office for more information.  
www.onsemi.com  
2
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
Unit  
Supply Voltage (VDDVSS)  
INPUT AND OUTPUT PINS  
Input Voltage (Note 1)  
40  
V
VSS – 0.3 to VDD + 0.3  
V
Differential Input Voltage (Note 2)  
Input Current (Notes 1 and 2)  
Output Short Circuit Current (Note 3)  
TEMPERATURE  
17  
10  
V
mA  
mA  
Continuous  
Operating Temperature  
Storage Temperature  
–40 to +125  
–65 to +150  
+150  
°C  
°C  
°C  
Junction Temperature  
ESD RATINGS (Note 4)  
Human Body Model (HBM)  
Charged Device Model (CDM)  
OTHER RATINGS  
3000  
2000  
V
V
Latchup Current (Note 5)  
MSL  
100  
mA  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Input terminals are diodeclamped to the powersupply rails. Input signals that can swing more than 0.3 V beyond the supply rails should  
be current limited to 10 mA or less.  
2. The inputs are diode connected with a total input protection of 1.65 kW, increasing the absolute maximum differential voltage to 17 V  
.
DC  
If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input  
current to 10 mA.  
3. Shortcircuit to V or V . Short circuits to either rail can cause an increase in the junction temperature. The total power dissipation must  
DD  
SS  
be limited to prevent the junction temperature from exceeding the 150_C limit.  
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard JS0012017 (AECQ100002)  
ESD Charged Device Model tested per JEDEC standard JS0022014 (AECQ100011)  
5. Latchup Current tested per JEDEC standard JESD78E (AECQ100004).  
THERMAL INFORMATION (Note 6)  
Rating  
Symbol  
Package  
Value  
Unit  
Thermal Resistance, Junction to Ambient  
q
TSOP5 /  
SOT235  
170  
°C/W  
JA  
Micro8/MSOP8  
SOIC8  
116  
87  
SOIC14  
59  
TSSOP14  
78  
2
6. As mounted on an 80x80x1.5 mm FR4 PCB with 2S2P, 2 oz copper, and a 200 mm heat spreader area. Following JEDEC JESD517  
guidelines.  
OPERATING CONDITIONS  
Parameter  
Supply Voltage (V V  
Symbol  
Range  
4 to 36  
Unit  
V
)
V
T
DD  
SS  
S
Specified Operating Temperature Range  
Input Common Mode Voltage Range  
Differential Voltage (Note 7)  
40 to 125  
°C  
V
A
V
CM  
V
SS  
to V 1.5  
DD  
V
DIFF  
17  
V
7. The inputs are diode connected with a total input protection of 1.65 kW, increasing the absolute maximum differential voltage to 17 V  
.
DC  
If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input  
current to 10 mA.  
www.onsemi.com  
3
 
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
ELECTRICAL CHARACTERISTICS V = 4 V to 36 V  
S
At T = +25°C, R = 10 kW connected to midsupply, V  
= V  
= midsupply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = –40°C to 125°C, guaranteed by characterization and/or design.  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
V
1
25  
mV  
mV/°C  
pA  
OS  
Offset Voltage Drift vs Temp  
Input Bias Current (Note 8)  
DV /DT  
0.02  
100  
0.085  
500  
OS  
I
IB  
3500  
500  
pA  
Input Offset Current (Note 8)  
Common Mode Rejection Ratio  
I
200  
150  
150  
140  
130  
pA  
OS  
3500  
pA  
CMRR  
V
V  
DD  
V
V
= 36 V  
= 12 V  
140  
130  
130  
120  
130  
120  
120  
110  
dB  
SS  
CM  
S
V
1.5 V  
S
(Note 8)  
V
= 8 V  
S
(Note 8)  
V
= 4 V  
S
Input Capacitance  
EMI Rejection Ratio  
C
Common Mode  
f = 5 GHz  
3
pF  
dB  
IN  
EMIRR  
100  
80  
f = 400 MHz  
OUTPUT CHARACTERISTICS  
Open Loop Voltage Gain  
A
VOL  
V
SS  
+ 0.5 V < V < V – 0.5 V  
130  
150  
dB  
O
DD  
125  
135  
Open Loop Output Impedance  
Z
No Load  
No Load  
See  
W
OUT_OL  
Figure 23  
Output Voltage High, Referenced to  
Rail  
V
OH  
5
10  
mV  
100  
140  
5
210  
250  
10  
R = 10 kW  
L
Output Voltage Low, Referenced to  
Rail  
V
OL  
No Load  
mV  
100  
140  
18  
210  
250  
R = 10 kW  
L
Short Circuit Current  
Capacitive Load Drive  
I
Sinking Current  
Sourcing Current  
mA  
nF  
SC  
16  
C
1
L
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Gain Margin  
GBW  
C = 100 pF  
2
13  
55  
1.6  
20  
45  
1
MHz  
dB  
°
L
A
C = 100 pF  
L
M
M
Phase Margin  
ϕ
C = 100 pF  
L
Slew Rate  
SR  
G = +1  
V/ms  
ms  
Settling Time  
t
S
V
S
= 36 V  
0.1%  
0.01%  
ms  
Overload Recovery Time  
t
V
S
=
18 V, A = 10,  
IN  
ms  
OR  
V
V
= 2.5 V  
8. Guaranteed by characterization and/or design.  
www.onsemi.com  
4
 
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
ELECTRICAL CHARACTERISTICS V = 4 V to 36 V  
S
At T = +25°C, R = 10 kW connected to midsupply, V  
= V  
= midsupply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = –40°C to 125°C, guaranteed by characterization and/or design.  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Total Harmonic Distortion + Noise  
THD+N  
f
IN  
= 1 kHz, A = 1, V  
= 1  
0.0003  
%
V
OUT  
Vrms  
Voltage Noise Density  
Current Noise Density  
Voltage Noise, PeaktoPeak  
Voltage Noise, RMS  
e
f = 1 kHz  
f = 1 kHz  
22  
100  
400  
70  
nV/Hz  
fA/Hz  
N
i
N
e
PP  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
nV  
PP  
e
rms  
nV  
rms  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
V
S
= 4 V to 36 V  
0.02  
154  
475  
0.3  
mV/V  
dB  
130  
Quiescent Current  
I
Q
Per channel  
570  
mA  
570  
www.onsemi.com  
5
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
GRAPHS  
Typical performance at T = 25°C, unless otherwise noted.  
A
35  
30  
25  
20  
15  
10  
5
16  
V
V
= 36 V  
S
V
V
= 36 V  
S
14  
12  
10  
8
= midsupply  
CM  
= midsupply  
CM  
105 units  
105 units  
6
4
2
0
0
20 16 12 8 4  
0
4
8
12  
16  
20  
0.10  
0.06  
0.02  
0.02  
0.06  
0.10  
OFFSET VOLTAGE (mV)  
OFFSET VOLTAGE DRIFT (mV/°C)  
Figure 1. Offset Voltage Distribution  
Figure 2. Offset Voltage Drift Distribution  
15  
10  
5
15  
10  
5
V
= 4 V  
S
V
V
= 36 V  
S
5 typical units  
= midsupply  
CM  
5 typical units  
0
0
5  
10  
15  
5  
10  
15  
0
0.5  
1
1.5  
2
2.5  
3
50  
25  
0
25  
50  
75  
100  
125  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 3. Offset Voltage vs. Temperature  
Figure 4. Offset Voltage vs. Common Mode  
Voltage  
15  
10  
5
15  
10  
5
V
= 36 V  
V
= midsupply  
S
CM  
5 typical units  
5 typical units  
0
0
5  
10  
15  
5  
10  
15  
0
5
10  
15  
20  
25  
30  
35  
4
8
12  
16  
20  
24  
28  
32  
36  
SUPPLY VOLTAGE (V)  
Figure 6. Offset Voltage vs. Power Supply  
COMMON MODE VOLTAGE (V)  
Figure 5. Offset Voltage vs. Common Mode  
Voltage  
www.onsemi.com  
6
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
120  
100  
80  
25  
V
= 36 V  
S
20  
15  
R = 10 kW  
C = 25 pF  
L
PHASE MARGIN  
L
10  
60  
5
GAIN  
0
40  
5  
20  
10  
15  
20  
A = 1  
V
0
V
= 4 V, 36 V  
S
A = 1  
V
R = 10 kW  
L
A = 10  
V
20  
10  
1k  
100k  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Open Loop Gain and Phase vs.  
Frequency  
Figure 8. Closed Loop Gain vs. Frequency  
300  
200  
100  
0
1600  
1200  
800  
400  
0
V
V
= 36 V  
V
S
= 36 V  
S
I +  
= midsupply  
IB  
CM  
I
I
IB  
OS  
100  
200  
300  
I +  
IB  
I −  
IB  
I
OS  
400  
40 20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
Figure 10. Input Current vs. Temperature  
COMMON MODE VOLTAGE (V)  
Figure 9. Input Current vs. Common Mode  
Voltage  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
R = 10 kW  
V = 4 V, 36 V  
S
R = 10 kW  
L
L
PSRR+  
PSRR−  
60  
V
S
=
=
=
=
2, PSRR+  
18, PSRR+  
2, PSRR−  
18, PSRR−  
40  
V
S
V
S
V
S
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. PSRR vs. Frequency  
Figure 12. CMRR vs. Frequency  
www.onsemi.com  
7
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
5
0.5  
0.4  
V
= 4 V, 36 V  
S
4.5  
4
V
CM  
V
CM  
= V +0.5 to V 1.5 V  
SS DD  
5 typical units  
= V to V 1.5 V  
SS  
DD  
0.3  
3.5  
3
0.2  
0.1  
2.5  
2
0
0.1  
0.2  
0.3  
0.4  
0.5  
1.5  
1
0.5  
0
0.5  
50 25  
0
25  
50  
75 100  
125  
150  
50 25  
0
25  
50  
75 100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. PSRR vs. Temperature  
Figure 14. CMRR vs. Temperature at VS = 4 V  
2
1.8  
1.6  
1.4  
1.2  
1
400  
300  
V
S
= 36 V  
V
CM  
V
CM  
= V +0.5 to V 1.5 V  
SS DD  
= V to V 1.5 V  
SS  
DD  
200  
100  
0.8  
0.6  
0.4  
0.2  
0
0
100  
200  
300  
400  
0.2  
0.4  
50 25  
0
25  
50  
75 100  
125  
150  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TIME (s)  
Figure 15. CMRR vs. Temperature at VS = 36 V  
Figure 16. 0.1 Hz to 10 Hz Noise  
1k  
100  
10  
0.01  
0.001  
V
S
= 36 V  
V
= 36 V  
A = 1  
A = 1  
V
S
V
R = 10 kW  
L
B
W
= 80 kHz  
V
IN  
= 1 V  
rms  
0.0001  
1
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Voltage Noise Density vs.  
Frequency  
Figure 18. THD+N vs. Frequency  
www.onsemi.com  
8
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
0.50  
10  
1
V
= 36 V  
A = 1  
A = 1  
V
S
V
0.48  
0.46  
0.44  
0.42  
0.40  
0.38  
0.36  
0.34  
0.32  
0.30  
R = 10 kW  
L
B
W
= 80 kHz  
f = 1 kHz  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.1  
1
10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
OUTPUT AMPLITUDE (V  
)
rms  
SUPPLY VOLTAGE (V)  
Figure 19. THD+N vs. Output Amplitude  
Figure 20. Quiescent Current vs. Supply  
Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
0.38  
0.36  
0.34  
0.32  
0.30  
A = 1  
A = 1  
V
V
V
V
= 4 V  
= 36 V  
S
S
50  
25  
0
25  
50  
75  
100 125  
150  
50 25  
0
25  
50  
75 100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Quiescent Current vs. Temperature  
Figure 22. Open Loop Gain vs. Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10k  
1k  
V
= 36 V  
R
R
R
= 0 W  
= 25 W  
= 50 W  
S
iso  
iso  
iso  
R = 10 kW  
A = 1 V/V  
V
L
100  
10  
1
0.1  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
200  
400  
600  
800  
1000  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 23. Open Loop Output Impedance vs.  
Frequency  
Figure 24. Small Signal Overshoot vs.  
Capacitive Load (100 mV Output Step)  
www.onsemi.com  
9
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
5
70  
60  
50  
40  
30  
20  
10  
0
R = 10 kW  
4
3
L
Input  
Output  
R
R
R
= 0 W  
= 25 W  
= 50 W  
iso  
iso  
iso  
A = 1  
V
100 mV Step  
2
1
0
1  
2  
3  
4  
5  
V
S
= 8 V  
R = 10 kW  
L
C = 15 pF  
L
0
200  
400  
600  
800  
1000  
CAPACITIVE LOAD (pF)  
TIME (100 ms/div)  
Figure 25. Small Signal Overshoot vs.  
Capacitive Load (100 mV Output Step)  
Figure 26. No Phase Reversal  
4
3
20  
15  
10  
5
2
1
0
0
1  
2  
3  
4  
5  
V
= 18 V  
S
10  
R = 10 kW  
C = 15 pF  
A = 10  
L
Input  
Output  
15  
L
V
20  
TIME (1 ms/div)  
Figure 27. Positive Overload Recovery  
4
3
20  
15  
10  
5
V
=
18 V  
S
Input  
Output  
R = 10 kW  
C = 15 pF  
A = 10  
L
L
2
V
1
0
0
1  
2  
3  
4  
5  
10  
15  
20  
TIME (1 ms/div)  
Figure 28. Negative Overload Recovery  
www.onsemi.com  
10  
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
V
= 36 V  
S
0.08  
0.06  
0.04  
0.02  
0
R = 10 kW  
L
C = 15 pF  
L
A = 1  
V
V
= 36 V  
S
R = 10 kW  
L
C = 15 pF  
L
A = 1  
V
0.02  
0.04  
0.06  
0.08  
0.1  
0.02  
0.04  
0.06  
0.08  
0.1  
Input  
Output  
Input  
Output  
TIME (10 ms/div)  
TIME (10 ms/div)  
Figure 29. NonInverting Small Signal Step  
Figure 30. Inverting Small Signal Step  
Response  
Response  
10  
8
10  
8
V
= 36 V  
S
R = 10 kW  
L
C = 15 pF  
A = 1  
V
L
6
4
6
4
2
V
S
= 36 V  
2
R = 10 kW  
L
C = 15 pF  
A = 1  
V
L
0
0
2  
2  
4  
6  
4  
6  
8  
Input  
Output  
Input  
Output  
8  
10  
10  
TIME (10 ms/div)  
TIME (10 ms/div)  
Figure 31. NonInverting Large Signal Step  
Figure 32. Inverting Large Signal Step  
Response  
Response  
0.01  
0.01  
V
= 36 V  
V = 36 V  
S
S
0.008  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
R = 10 kW  
R = 10 kW  
L
L
C = 15 pF  
C = 15 pF  
L
L
V
= 10 V Step  
V
= 10 V Step  
IN  
IN  
0.002  
0
0.002  
0.004  
0.006  
0.002  
0.004  
0.006  
0.008  
0.01  
Output  
Input  
Output  
Input  
0.008  
0.01  
TIME (5 ms/div)  
TIME (5 ms/div)  
Figure 33. Large Signal Settling Time,  
Figure 34. Large Signal Settling Time,  
LowtoHigh  
HightoLow  
www.onsemi.com  
11  
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
35  
25  
20  
I
I
, Source  
, Sink  
V
S
= 36 V  
SC  
SC  
V = 18 V  
S
30  
25  
20  
15  
10  
5
15  
10  
5
0
V
S
= 9 V  
5  
10  
15  
20  
25  
V
S
=
5 V  
V
S
=
2.5 V  
0
50  
0
50  
100  
150  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 35. Short Circuit Current vs.  
Temperature  
Figure 36. Maximum Output Voltage vs.  
Frequency (AV = 1 for VS = + 2.5 V, + 5 V, + 9 V;  
AV = 2 for VS = + 18 V)  
36  
3
2.5  
2
V
S
= 36 V  
T = 40°C  
A
35.5  
35  
T = 0°C  
A
T = 25°C  
A
T = 85°C  
A
T = 125°C  
A
34.5  
34  
1.5  
1
T = 40°C  
T = 0°C  
A
A
T = 25°C  
A
0.5  
0
33.5  
T = 85°C  
A
T = 125°C  
A
V
= 36 V  
S
33  
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
2
4
6
8
10  
12  
14 16 18 20  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 37. Output Voltage Low vs. Output  
Current  
Figure 38. Output Voltage High vs. Output  
Current  
160  
140  
120  
100  
80  
0
20  
V
= 36 V  
V = 36 V  
S
S
V
= 100 mVp  
IN  
A = 1  
V
40  
60  
80  
60  
100  
120  
40  
20  
140  
160  
0
10M  
100M  
1G  
10G  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. EMIRR IN+ vs. Frequency  
Figure 40. ChanneltoChannel Crosstalk  
www.onsemi.com  
12  
 
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
APPLICATION INFORMATION  
Overview  
The NCS21911 series of amplifiers uses  
a
chopperstabilized architecture, which provides the  
advantage of minimizing offset voltage drift over  
temperature and time. The simplified block diagram is  
shown in Figure 41. Unlike the classical chopper  
architecture, the chopper stabilized architecture has two  
signal paths.  
The NCS21911, NCS21912, and NCS21914 precision op  
amps provide low offset voltage and zero drift over  
temperature. With a maximum offset voltage of 25 mV and  
input common mode voltage range that includes ground, the  
NCS21911 series is wellsuited for applications where  
precision is required, such as low side current sensing and  
interfacing with sensors.  
Main amp  
IN+  
+
OUT  
IN−  
+
+
+
Chopper  
Chopper  
RC notch filter  
RC notch filter  
Figure 41. Simplified NCS21911 Block Diagram  
In Figure 41, the lower signal path is where the chopper  
samples the input offset voltage, which is then used to  
correct the offset at the output. The offset correction occurs  
at a frequency of 250 kHz. The chopperstabilized  
architecture is optimized for best performance at  
frequencies up to the related Nyquist frequency (1/2 of the  
offset correction frequency). As the signal frequency  
exceeds the Nyquist frequency, 125 kHz, aliasing may occur  
at the output. This is an inherent limitation of all chopper and  
chopperstabilized architectures. Nevertheless, the  
NCS21911 series op amps have minimal aliasing up to  
200 kHz and are less susceptible to aliasing effects when  
compared to competitor parts from other manufacturers.  
ON Semiconductor’s patented approach utilizes two  
cascaded, symmetrical, RC notch filters tuned to the  
chopper frequency and its fifth harmonic to reduce aliasing  
effects.  
only does this help retain high frequency components of the  
input signal, but it also improves the loop gain at low  
frequencies. This is especially useful for lowside current  
sensing and sensor interface applications where the signal is  
low frequency and the differential voltage is relatively  
small.  
Application Circuits  
LowSide Current Sensing  
Lowside current sensing is used to monitor the current  
through a load. This method can be used to detect  
overcurrent conditions and is often used in feedback  
control, as shown in Figure 42. A sense resistor is placed in  
series with the load to ground. Typically, the value of the  
sense resistor is less than 100 mW to reduce power loss  
across the resistor. The op amp amplifies the voltage drop  
across the sense resistor with a gain set by external resistors  
R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision  
resistors are required for high accuracy, and the gain is set  
to utilize the full scale of the ADC for the highest resolution.  
The chopperstabilized architecture also benefits from  
the feedforward path, which is shown as the upper signal  
path of the block diagram in Figure 41. This is the high speed  
signal path that extends the gain bandwidth up to 2 MHz. Not  
www.onsemi.com  
13  
 
NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914  
R
3
V
LOAD  
VDD  
VDD  
ADC  
VDD  
Load  
R
1
Microcontroller  
control  
+
R
SENSE  
R
2
R
4
Figure 42. LowSide Current Sensing  
Differential Amplifier for Bridged Circuits  
produced is relatively small and needs to be amplified before  
going into an ADC. Precision amplifiers are recommended  
in these types of applications due to their high gain, low  
noise, and low offset voltage.  
Sensors to measure strain, pressure, and temperature are  
often configured in a Wheatstone bridge circuit as shown in  
Figure 43. In the measurement, the voltage change that is  
R
F
VDD  
VDD  
R
R
3
1
R
3
R
x
+
Figure 43. Wheatstone Bridge Circuit Amplification  
EMI Susceptibility and Input Filtering  
capacitors as close as possible to the supply pins. Keep traces  
short, utilize a ground plane, choose surfacemount  
components, and place components as close as possible to  
the device pins. These techniques will reduce susceptibility  
to electromagnetic interference (EMI). Thermoelectric  
effects can create an additional temperature dependent  
offset voltage at the input pins. To reduce these effects, use  
metals with low thermoelectric coefficients and prevent  
temperature gradients from heat sources or cooling fans.  
Op amps have varying amounts of EMI susceptibility.  
Semiconductor junctions can pick up and rectify EMI  
signals, creating an EMIinduced voltage offset at the  
output, adding another component to the total error. Input  
pins are the most sensitive to EMI. The NCS2191x  
integrates lowpass filters to decrease its sensitivity to EMI.  
Figure 39 shows the EMIRR performance.  
General Layout Guidelines  
To ensure optimum device performance, it is important to  
follow good PCB design practices. Place 0.1 mF decoupling  
www.onsemi.com  
14  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE N  
5
1
DATE 12 AUG 2020  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
1.9  
5
1
5
0.074  
0.95  
XXXAYWG  
XXX MG  
0.037  
G
G
1
Analog  
Discrete/Logic  
2.4  
0.094  
XXX = Specific Device Code XXX = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
M
G
= Date Code  
= PbFree Package  
1.0  
0.039  
= PbFree Package  
(Note: Microdot may be in either location)  
0.7  
0.028  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ARB18753C  
TSOP5  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC14 NB  
CASE 751A03  
ISSUE L  
14  
1
DATE 03 FEB 2016  
SCALE 1:1  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
0.10  
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
6.50  
14  
14X  
1.18  
XXXXXXXXXG  
AWLYWW  
1
1
XXXXX = Specific Device Code  
A
WL  
Y
= Assembly Location  
= Wafer Lot  
= Year  
1.27  
PITCH  
WW  
G
= Work Week  
= PbFree Package  
14X  
0.58  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42565B  
SOIC14 NB  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC14  
CASE 751A03  
ISSUE L  
DATE 03 FEB 2016  
STYLE 1:  
STYLE 2:  
CANCELLED  
STYLE 3:  
STYLE 4:  
PIN 1. NO CONNECTION  
2. CATHODE  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. NO CONNECTION  
5. ANODE/CATHODE  
6. NO CONNECTION  
7. ANODE/CATHODE  
8. ANODE/CATHODE  
9. ANODE/CATHODE  
10. NO CONNECTION  
11. ANODE/CATHODE  
12. ANODE/CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
PIN 1. NO CONNECTION  
2. ANODE  
3. ANODE  
4. NO CONNECTION  
5. ANODE  
6. NO CONNECTION  
7. ANODE  
8. ANODE  
9. ANODE  
10. NO CONNECTION  
11. ANODE  
12. ANODE  
13. NO CONNECTION  
14. COMMON CATHODE  
3. CATHODE  
4. NO CONNECTION  
5. CATHODE  
6. NO CONNECTION  
7. CATHODE  
8. CATHODE  
9. CATHODE  
10. NO CONNECTION  
11. CATHODE  
12. CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
STYLE 5:  
STYLE 6:  
STYLE 7:  
STYLE 8:  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. ANODE/CATHODE  
5. ANODE/CATHODE  
6. NO CONNECTION  
7. COMMON ANODE  
8. COMMON CATHODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. ANODE/CATHODE  
12. ANODE/CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
PIN 1. CATHODE  
2. CATHODE  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
7. CATHODE  
8. ANODE  
PIN 1. ANODE/CATHODE  
2. COMMON ANODE  
3. COMMON CATHODE  
4. ANODE/CATHODE  
5. ANODE/CATHODE  
6. ANODE/CATHODE  
7. ANODE/CATHODE  
8. ANODE/CATHODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. COMMON CATHODE  
12. COMMON ANODE  
13. ANODE/CATHODE  
14. ANODE/CATHODE  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. NO CONNECTION  
5. ANODE/CATHODE  
6. ANODE/CATHODE  
7. COMMON ANODE  
8. COMMON ANODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. NO CONNECTION  
12. ANODE/CATHODE  
13. ANODE/CATHODE  
14. COMMON CATHODE  
9. ANODE  
10. ANODE  
11. ANODE  
12. ANODE  
13. ANODE  
14. ANODE  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42565B  
SOIC14 NB  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
Micro8  
CASE 846A02  
ISSUE K  
DATE 16 JUL 2020  
SCALE 2:1  
GENERIC  
MARKING DIAGRAM*  
8
XXXX  
AYWG  
G
1
XXXX = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
STYLE 1:  
STYLE 2:  
PIN 1. SOURCE 1  
STYLE 3:  
PIN 1. SOURCE  
PIN 1. N-SOURCE  
2. N-GATE  
(Note: Microdot may be in either location)  
2. SOURCE  
3. SOURCE  
4. GATE  
2. GATE 1  
3. SOURCE 2  
4. GATE 2  
3. P-SOURCE  
4. P-GATE  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. P-DRAIN  
6. P-DRAIN  
7. N-DRAIN  
8. N-DRAIN  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB14087C  
MICRO8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSSOP14 WB  
CASE 948G  
ISSUE C  
14  
DATE 17 FEB 2016  
1
SCALE 2:1  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
A
B
C
D
F
G
H
J
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION NN  
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
J1  
K
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
GENERIC  
MARKING DIAGRAM*  
14  
SOLDERING FOOTPRINT  
XXXX  
XXXX  
ALYWG  
G
7.06  
1
1
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
0.65  
PITCH  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASH70246A  
TSSOP14 WB  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY