NCS2250SN2T1G [ONSEMI]

Comparator, High Speed 50 ns, Low Voltage Rail-to-Rail;
NCS2250SN2T1G
型号: NCS2250SN2T1G
厂家: ONSEMI    ONSEMI
描述:

Comparator, High Speed 50 ns, Low Voltage Rail-to-Rail

放大器 光电二极管
文件: 总12页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS2250, NCV2250,  
NCS2252, NCV2252  
Comparator, High Speed,  
50 ns, Low Voltage,  
Rail-to-Rail  
www.onsemi.com  
The NCS2250 and NCS2252 low voltage comparators feature fast  
response time and rail−to−rail input and output. The extended  
common mode input voltage range allows input signals 200 mV above  
and below the rails, allowing voltage detection at ground or the supply.  
A propagation delay of 50 ns with a 100 mV overdrive makes this  
comparator suitable for applications requiring faster response times.  
These single channel devices are available with a complementary  
push−pull output in the NCS2250 or with an open drain output in the  
NCS2252. Both options are offered in TSOP−5 (SOT23−5) and  
SC−88A (SC70−5) packages. Automotive qualified devices are also  
available, denoted by the NCV prefix.  
5
1
SCALE 2:1  
SCALE 2:1  
TSOP−5  
(SOT23−5)  
CASE 483  
SC−88A  
(SC70−5)  
CASE 419A−02  
MARKING DIAGRAMS  
Features  
Propagation Delay: 50 ns with 100 mV Overdrive  
Rail−to−rail Input: V − 200 mV to V + 200 mV  
5
1
SS  
DD  
XX AYWG  
XX MG  
Supply Voltage: 1.8 V to 5.5 V  
G
G
Supply Current: 150 μA Typical at 5 V Supply  
Available with Push−pull or Open Drain Output  
Packages: TSOP−5 (SOT23−5) and SC−88A (SC70−5)  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
XX = Specific Device Code  
A
Y
W
M
G
= Assembly Location  
= Year  
= Work Week  
= Date Code  
= Pb−Free Package  
These Devices are Pb−free, Halogen Free/BFR Free and are RoHS  
Compliant  
(Note: Microdot may be in either location)  
Applications  
Voltage Threshold Detector  
Zero−crossing Detectors  
PIN DIAGRAM  
High−speed Sampling Circuits  
Logic Level Shifting / Translation  
Clock and Data Signal Restoration  
OUT  
VSS  
IN+  
1
2
3
5
4
VDD  
IN−  
End Products  
Automotive  
Lighting  
TSOP−5 (SOT23−5) and  
SC−88A (SC70−5) pinout  
Smartphones, cell phones  
Portable and battery−powered systems  
Power supplies  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
June, 2018 − Rev. 5  
NCS2250/D  
NCS2250, NCV2250, NCS2252, NCV2252  
Table 1. ORDERING INFORMATION  
Automotive  
Output  
Device (Note 1)  
NCS2250SQ2T2G  
NCS2250SN2T1G  
NCS2252SQ2T2G  
NCS2252SN2T1G  
NCV2250SQ2T2G  
NCV2250SN2T1G  
NCV2252SQ2T2G  
NCV2252SN2T1G  
Package  
Marking  
5C  
Shipping †  
No  
Push−Pull  
SC−88A (SC70−5)  
TSOP−5 (SOT23−5)  
SC−88A (SC70−5)  
TSOP−5 (SOT23−5)  
SC−88A (SC70−5)  
TSOP−5 (SOT23−5)  
SC−88A (SC70−5)  
TSOP−5 (SOT23−5)  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
5A  
Open Drain  
Push−Pull  
Open Drain  
5F  
5D  
Yes  
5C  
5A  
5F  
5D  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
1. Contact local sales office for more information.  
Table 2. PIN DESCRIPTION  
Name  
Type  
Description  
V
DD  
Power  
Positive supply pin. Connect to positive rail. A bypass capacitor of at least 0.1 μF is  
recommended as close as possible to the V pin  
DD  
V
Power  
Output  
Negative supply pin. Connect to ground or negative rail. If not connected to ground,  
SS  
a bypass capacitor of at least 0.1 μF is recommended as close as possible to the V pin  
SS  
OUT  
Output pin. NCS2250 has a complementary push−pull output stage. NCS2252 has an open  
drain output stage which requires an external pull−up resistor  
IN−  
IN+  
Input  
Input  
Inverting input  
Non−inverting input  
www.onsemi.com  
2
 
NCS2250, NCV2250, NCS2252, NCV2252  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 2)  
Rating  
Symbol  
Value  
Units  
V
Supply Voltage Range (V − V  
)
V
S
0 to 6  
DD  
SS  
Input Voltage Range  
Output Voltage Range  
V
V
V
− 0.3 to V + 0.3  
V
IN  
SS  
DD  
V
− 0.3 to V + 0.3  
V
O
SS  
DD  
Output Short Circuit Current (Note 3)  
Maximum Junction Temperature (Note 4)  
Storage Temperature Range  
I
Continuous  
+150  
mA  
°C  
°C  
V
SC  
T
J(max)  
Tstg  
−65 to +150  
ESD Capability (Note 5)  
Human Body Model  
Machine Model  
HBM  
MM  
2000  
50  
Latch−up Current (Note 6)  
I
LU  
100  
mA  
Moisture Sensitivity Level (Note 7)  
MSL  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
3. Applies to both single−supply and split−supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 50 mA over long term may adversely affect  
reliability.  
4. See APPLICATION INFORMATION for Safe Operating Area.  
5. This device series incorporates ESD protection and is tested by the following methods:  
− ESD Human Body Model tested per JEDEC standard JESD22−A114 (AEC−Q100−002)  
− ESD Machine Model tested per JEDEC standard JESD22−A115 (AEC−Q100−003)  
6. Latch−up Current per JEDEC standard JESD78.  
7. Moisture Sensitivity Level tested per IPC/JEDEC standard J−ST−020A.  
Table 4. THERMAL INFORMATION  
Single Layer Board  
(Note 8)  
Parameter  
Symbol  
Package  
Units  
Junction−to−Ambient  
Thermal Resistance  
q
TSOP−5 (SOT23−5)  
SC−88A (SC70−5)  
150  
°C/W  
JA  
162  
8. Values based on a single layer 1S standard PCB with 1.0 oz copper and a 50 mm2 copper area.  
Table 5. OPERATING RANGES (Note 9)  
Parameter  
Power Supply Voltage  
Symbol  
Min  
Max  
Units  
V
V
S
1.8  
5.5  
Input Common Mode Voltage Range  
Ambient Temperature  
V
V
– 0.2  
V + 0.2  
DD  
V
CM  
SS  
T
−40  
125  
°C  
A
9. See APPLICATION INFORMATION for Safe Operating Area.  
www.onsemi.com  
3
 
NCS2250, NCV2250, NCS2252, NCV2252  
Table 6. ELECTRICAL CHARACTERISTICS AT 5 V SUPPLY  
Typical values are referenced to T = 25°C, V = 5 V, V = 0 V, V = mid−supply, C = 50 pF, unless otherwise noted. NCS2252 is  
A
DD  
SS  
CM  
L
connected to R  
= 10 kΩ to V , unless otherwise noted. Boldface numbers apply from T = −40°C to 125°C (Notes 10, 11)  
PULL−UP  
D
D
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
150  
88  
Max  
Units  
μA  
SUPPLY CHARACTERISTICS  
Quiescent Supply Current  
No load  
I
200  
DD  
250  
Power Supply Rejection Ratio  
PSRR  
dB  
62.5  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
I
0.5  
20  
20  
81  
3.8  
6
mV  
pA  
pA  
dB  
pF  
V
OS  
6
Input Bias Current  
(Note 11)  
(Note 11)  
IB  
1000  
1000  
Input Offset Current  
I
OS  
Common Mode Rejection Ratio  
CMRR  
59  
Input Capacitance  
C
IN  
OUTPUT CHARACTERISTICS  
Output Voltage High  
NCS2250, I  
= 4 mA  
V
OH  
V
– 0.1  
OUT  
DD  
V
DD  
– 0.3  
Output Voltage Low  
I
= 4 mA  
V
I
V + 0.09  
SS  
V
OUT  
OL  
O
V
SS  
+ 0.3  
Output Current Capability  
NCS2250, Sourcing  
Sinking  
48  
52  
1
mA  
Output Leakage Current  
Output Rise Time  
NCS2252, V = 5.5 V  
I
nA  
ns  
ns  
S
LEAK  
NCS2250, 10% to 90%, V = 100 mV  
t
4
OD  
rise  
Output Fall Time  
NCS2250, 90% to 10%, V = 100 mV  
t
fall  
4
OD  
NCS2252, 90% to 10%, V = 100 mV  
5.5  
50  
60  
90  
50  
60  
90  
6
OD  
Propagation Delay (Note 11)  
NCS2250  
V
= 100 mV  
= 50 mV  
= 20 mV  
= 100 mV  
= 50 mV  
= 20 mV  
t
, t  
64  
64  
ns  
ns  
ns  
OD  
pLH pHL  
V
OD  
OD  
OD  
V
NCS2252  
(Note 12)  
V
t
pHL  
V
OD  
OD  
V
Propagation Delay Skew  
(NCS2250)  
V
OD  
= 100 mV, C = 50 pF  
t
SKEW  
L
V
OD  
= 50 mV, C = 50 pF  
2
L
V
OD  
= 20 mV, C = 50 pF  
1
L
10.Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
11. Performance guaranteed over the indicated operating temperature range by design and/or characterization.  
12.Typical values are provided for NCS2252 output high−to−low propagation delay. NCS2252 is an open drain comparator. Output low−to−high  
propagation delay is a function of the RC time constant, which is dependent on the pull−up resistor.  
www.onsemi.com  
4
 
NCS2250, NCV2250, NCS2252, NCV2252  
Table 7. ELECTRICAL CHARACTERISTICS AT 1.8 V SUPPLY  
Typical values are referenced to T = 25°C, V = 1.8 V, V = 0 V, V = mid−supply, C = 50 pF, unless otherwise noted. NCS2252 is  
A
DD  
SS  
CM  
L
connected to R  
= 10 kΩ to V , unless otherwise noted. Boldface numbers apply from T = −40°C to 125°C (Notes 13, 14)  
PULL−UP  
D
D
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
145  
82  
Max  
Units  
μA  
SUPPLY CHARACTERISTICS  
Quiescent Supply Current  
No load  
I
200  
DD  
250  
Power Supply Rejection Ratio  
PSRR  
dB  
62.5  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
I
0.5  
20  
20  
76  
4.4  
6
mV  
pA  
pA  
dB  
pF  
V
OS  
6
Input Bias Current  
(Note 14)  
(Note 14)  
IB  
1000  
1000  
Input Offset Current  
I
OS  
Common Mode Rejection Ratio  
CMRR  
55  
Input Capacitance  
C
IN  
OUTPUT CHARACTERISTICS  
Output Voltage High  
NCS2250, I  
= 4 mA  
V
OH  
V
V
– 0.14  
OUT  
DD  
V
– 0.3  
DD  
Output Voltage Low  
I
= 4 mA  
V
+ 0.12  
V
OUT  
OL  
O
SS  
V
SS  
+ 0.3  
Output Current Capability  
NCS2250, Sourcing  
Sinking  
I
25  
42  
1
mA  
Output Leakage Current  
Output Rise Time  
NCS2252, V = 5.5 V  
I
nA  
ns  
ns  
S
LEAK  
NCS2250, 10% to 90%, V = 100 mV  
t
7
OD  
rise  
Output Fall Time  
NCS2250, 90% to 10%, V = 100 mV  
t
fall  
6
OD  
NCS2252, 90% to 10%, V = 100 mV  
7
OD  
Propagation Delay (Note 14)  
NCS2250  
V
= 100 mV  
= 50 mV  
= 20 mV  
= 100 mV  
= 50 mV  
= 20 mV  
t
, t  
56  
71  
68  
68  
ns  
ns  
ns  
OD  
pLH pHL  
V
OD  
OD  
OD  
V
106  
56  
71  
106  
5
NCS2252  
(Note 15)  
V
t
pHL  
V
OD  
OD  
V
Propagation Delay Skew  
(NCS2250)  
V
OD  
= 100 mV, C = 50 pF  
t
SKEW  
L
V
OD  
= 50 mV, C = 50 pF  
2
L
V
OD  
= 20 mV, C = 50 pF  
1
L
13.Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
14.Performance guaranteed over the indicated operating temperature range by design and/or characterization.  
15.Typical values are provided for NCS2252 output high−to−low propagation delay. NCS2252 is an open drain comparator.  
Output low−to−high propagation delay is a function of the RC time constant, which is dependent on the pull−up resistor.  
www.onsemi.com  
5
 
NCS2250, NCV2250, NCS2252, NCV2252  
GRAPHS  
Typical performance at T = 25°C, unless otherwise noted.  
A
0.25  
0.2  
5
0.25  
0.2  
5
4
4
V
C
= 5 V  
S
= 50 pF  
0.15  
0.1  
L
3
0.15  
0.1  
3
INPUT  
2
2
OUTPUT  
0.05  
0
1
0.05  
0
1
Input  
0
0
20 mV  
50 mV  
100 mV  
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
−1  
−2  
−3  
−4  
−5  
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
−1  
−2  
−3  
−4  
−5  
Input  
INPUT  
20 mV  
50 mV  
100 mV  
V
C
= 5 V  
S
OUTPUT  
= 50 pF  
L
NCS2250  
25  
−25  
0
50  
75 100 125 150 175 200  
−25  
0
25  
50  
75 100 125 150 175 200  
Time (ns)  
Time (ns)  
Figure 1. Transient Response at 5 V Supply  
with Varying Input Overdrive Voltages  
Figure 2. Transient Response at 5 V Supply  
with Varying Input Overdrive Voltages  
0.3  
1.5  
0.15  
1.5  
INPUT  
OUTPUT  
0.2  
0.1  
1.0  
V
= 1.8 V  
= 50 pF  
0.1  
0.05  
0
1.0  
S
C
L
V
C
= 1.8 V  
= 50 pF  
S
0.5  
0.5  
L
NCS2250  
Input  
0.0  
0
0.0  
Input  
20 mV  
50 mV  
100 mV  
20 mV  
50 mV  
100 mV  
−0.05  
−0.1  
−0.15  
−0.5  
−1.0  
−1.5  
−0.1  
−0.2  
−0.3  
−0.5  
−1.0  
−1.5  
INPUT  
OUTPUT  
−25  
0
25  
50  
75 100 125 150 175 200  
−25  
0
25  
50  
75 100 125 150 175 200  
Time (ns)  
Time (ns)  
Figure 3. Transient Response at 1.8 V Supply  
with Varying Input Overdrive Voltages  
Figure 4. Transient Response at 1.8 V Supply  
with Varying Input Overdrive Voltages  
160  
160  
Vs = 1.8 V  
Vs = 1.8 V  
140  
120  
100  
80  
140  
Vs = 3 V  
Vs = 3 V  
Vs = 5 V  
Vs = 5 V  
120  
100  
80  
60  
60  
40  
40  
Output low−to−high  
= 50 pF  
Output high−to−low  
20  
20  
C
C
= 50 pF  
L
L
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Input Overdrive Voltage (mV)  
Input Overdrive Voltage (mV)  
Figure 5. Output High−to−Low Propagation Delay  
vs. Input Overdrive Voltage  
Figure 6. Output Low−to−High Propagation Delay  
vs. Input Overdrive Voltage  
www.onsemi.com  
6
NCS2250, NCV2250, NCS2252, NCV2252  
GRAPHS (continued)  
Typical performance at T = 25°C, unless otherwise noted.  
A
140  
140  
130  
120  
110  
100  
90  
Vs = 1.8 V  
Vs = 1.8 V  
Vs = 3 V  
Vs = 5 V  
Output high−to−low  
20 mV overdrive  
Output low−to−high  
130  
120  
110  
100  
90  
Vs = 3 V  
Vs = 5 V  
20 mV overdrive  
NCS2250  
80  
80  
70  
70  
60  
60  
50  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 7. Output High−to−Low Propagation Delay  
vs. Load Capacitance  
Figure 8. Output Low−to−High Propagation Delay  
vs. Load Capacitance  
20  
20  
I
I
IB+  
I
I
IB+  
15  
15  
10  
5
IB−  
IB−  
10  
5
Vs = 5 V  
Vs = 1.8 V  
T = 25°C  
T = 25°C  
0
−5  
0
−5  
−10  
−15  
−20  
−10  
−15  
−20  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
−0.2 0.4  
1
1.6  
2.2  
2.8  
3.4  
4
4.6  
5.2  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Figure 9. Input Current vs. Common Mode  
Voltage at 1.8 V Supply  
Figure 10. Input Current vs. Common Mode  
Voltage at 5 V Supply  
225  
200  
175  
150  
125  
100  
75  
225  
I
I
IB−  
IB−  
200  
I
I
IB+  
IB+  
I
175  
150  
125  
100  
75  
I
OS  
OS  
Vs = 1.8 V  
Vs = 5 V  
50  
50  
25  
25  
0
0
−25  
−25  
−50  
−50  
−50  
−50  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 11. Input Current vs. Temperature  
at 1.8 V Supply  
Figure 12. Input Current vs. Temperature  
at 5 V Supply  
www.onsemi.com  
7
NCS2250, NCV2250, NCS2252, NCV2252  
GRAPHS (continued)  
Typical performance at T = 25°C, unless otherwise noted.  
A
1
1
Vs = 5 V  
0.9  
Vs = 5 V  
0.9  
Vs = 1.8 V  
Vs = 1.8 V  
0.8  
0.8  
0.7  
0.6  
NCS2250  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
50  
Output Current (mA)  
Output Current (mA)  
Figure 13. Output Voltage High (Relative to VDD  
vs. Output Current  
)
Figure 14. Output Voltage Low (Relative to VSS  
vs. Output Current  
)
80  
180  
Vs = 1.8 V  
Vs = 5 V  
SINKING  
60  
170  
160  
150  
140  
130  
120  
110  
100  
40  
Vs = 1.8 V  
Vs = 5 V  
20  
0
Vs = 1.8 V  
Vs = 5 V  
SOURCING (NCS2250)  
−20  
−40  
−60  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 15. Output Current Capability vs. Temperature  
Figure 16. Supply Current vs. Temperature  
www.onsemi.com  
8
NCS2250, NCV2250, NCS2252, NCV2252  
APPLICATION INFORMATION  
Input Stage  
to provide sourcing current, the timing of the output  
low−to−high transition is determined by the RC time  
constant of the pull−up resistor and the load capacitance.  
The NCS2250 and NCS2252 have rail−to−rail inputs. The  
input common mode voltage range of these comparators  
extend 200 mV beyond the rails, allowing voltage sensing  
at ground or at the supply voltage.  
Hysteresis  
When the inputs are near the same voltage, slight voltage  
fluctuations due to noise can cause the output to oscillate  
between high and low states. If noise−induced switching  
behavior is observed at the output, hysteresis should be  
added through an external resistor network. This is  
particularly the case for NCS2250, as sustained output  
oscillations causing increased supply current will result in  
elevated junction temperature.  
Hysteresis can be added to the circuit by adding one or two  
external resistors depending on whether an inverting or  
non−inverting configuration is needed. Figure 17 shows the  
inverting configuration. In this configuration, the output  
voltage adjusts the threshold at the IN+ pin.  
Output Stage  
The NCS2250 has a complementary, push−pull output  
stage. When the output transitions between high and low  
states, a low resistance path is created between the positive  
and negative supply rails, temporarily increasing the supply  
current during the transition.  
The NCS2252 has an open−drain output stage. This  
allows the output to be connected through a pull−up resistor  
to another supply voltage for applications where level  
translation or level shifting is needed. The output resistor  
can be connected to voltages below V or up to V + 0.3  
DD  
DD  
V. Since the NCS2252 relies on an external pull−up resistor  
R
F
R
R
1
+
NCS2250  
2
V
IN  
Figure 17. Comparator with Hysteresis, Inverting Configuration  
For the inverting configuration, the value of the  
high−level input voltage which triggers the output to switch  
from high to low is given by the following equation:  
The value of the low−level input voltage which triggers  
the output to switch from low to high is given by the  
following equation:  
R1   RF  
R1   RF ) R1   R2  
VIN_high  
+
  VDD  
VIN_low  
+
  VDD  
(eq. 1)  
(eq. 2)  
R1   RF ) R1   R2 ) R2   RF  
R1   RF ) R1   R2 ) R2   RF  
www.onsemi.com  
9
 
NCS2250, NCV2250, NCS2252, NCV2252  
Figure 18 shows the non−inverting configuration. For the  
non−inverting configuration, the threshold V set by R and  
th  
1
R is fixed. The output adjusts the input signal on IN+.  
2
R
F
R
IN  
V
IN  
+
R
1
NCS2250  
R
2
Figure 18. Comparator with Hysteresis, Non−Inverting  
Configuration  
Layout Techniques  
High speed layout techniques are recommended for the  
best performance.  
The value of the high−level input voltage which triggers  
the output to switch from low to high is given by the  
following equation:  
Bypass capacitors of at least 0.1 mF must be placed as  
close as possible to supply pins.  
Vth   (RIN ) RF)  
VIN_high  
+
(eq. 3)  
RF  
The traces on the input pins should be short to minimize  
any noise on the high impedance inputs. In general, shorter  
traces will reduce parasitic capacitance, inductance, and  
resistance.  
Identify and keep sensitive traces away from possible  
noise sources such as clocks. Crosstalk can be reduced by  
increasing the distance between traces. Do not let traces run  
parallel for long distances. Take advantage of routing layers  
to separate traces that would otherwise run parallel. Ground  
or DC voltage supplies can be used to separate a sensitive  
trace from a noise source.  
The value of the low−level input voltage which triggers  
the output to switch from high to low is given by the  
following equation:  
Vth   (RIN ) RF) * RIN   VDD  
VIN_low  
+
(eq. 4)  
RF  
Power dissipation  
The absolute maximum junction temperature is 150°C.  
The junction temperature can be calculated using the power  
dissipation P, thermal resistance q , and ambient  
JA  
temperature T .  
A
Avoid floating nodes as these will pick up noise.  
TJ + qJA   P ) TA  
(eq. 5)  
www.onsemi.com  
10  
 
NCS2250, NCV2250, NCS2252, NCV2252  
PACKAGE DIMENSIONS  
SC−88A (SC−70−5/SOT−353)  
CASE 419A−02  
ISSUE L  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDER FOOTPRINT  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
www.onsemi.com  
11  
NCS2250, NCV2250, NCS2252, NCV2252  
TSOP−5 / (SOT23−5)  
CASE 483  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
G
H
J
K
M
S
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
10  
3.00  
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NSC2250/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY