NCS5021MNR2 [ONSEMI]

NCS5021MNR2;
NCS5021MNR2
型号: NCS5021MNR2
厂家: ONSEMI    ONSEMI
描述:

NCS5021MNR2

文件: 总13页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS5021  
Product Preview  
Dual Band EDGE  
Compatible PA Controller  
The NCS5021 circuit is dedicated to RF Power amplifier control for  
GSM and DCS standards. It significantly reduces the number of  
external passive devices while giving the RF designer the capability to  
perfectly tune the control loop. This device is compatible with both  
constant and nonconstant envelope modulations, which are used with  
GSM and GSM/EDGE.  
http://onsemi.com  
MARKING  
DIAGRAM  
1
12  
1
Features  
xxx  
QFN 3x312 LEAD  
SQL SUFFIX  
ALYW  
Integrated Two 50 W Matched RF Power Detectors  
Direct Supply from Battery Voltage  
CASE 485N  
Low Bandwidth Mode (EDGE)  
High Gain Integrator Requesting only One External Capacitor  
PA Control Buffer Compatible with Gate Controlled Amplifiers  
Generation of Prebias Level for PA at Start of Burst  
12 Pins QFN 3 x 3  
xxx  
Code  
A
L
Y
= Specific Device  
= Assembly Location  
= Wafer Lot  
= Year  
Typical Applications  
W
= Work Week  
Global System for Mobile Communication (GSM/DCS)  
Personal Communication Network (PCN)  
9
1
8
2
7
3
RF GSM  
V
APC  
10  
11  
12  
6
5
4
EDGE  
V
CC  
SELECT  
ENABLE  
GND  
RF GND  
RF DCS  
100 kHz  
8
3
RAMP  
CTRL  
9
+
V
APC  
6
1/1  
G = 2  
Clamp  
+
1/100  
CMOS DETECTOR  
RF GSM  
RF GND  
RF DCS  
10  
11  
12  
50 W  
+
QFN3x312 (Top View)  
50 W  
75 mV  
4
Calibration  
Timer  
250 k  
ORDERING INFORMATION  
Device  
NCS5021MN  
NCS5021MNR2  
Package  
Shipping  
2
1
7
5
BAND SELECT  
GND  
CEXT  
QFN3x312 Bulk/Railed/Tray  
V
ENABLE  
MIN  
PRESET  
Tape & Reel  
QFN3x312  
Figure 1. Functional Block Diagram  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
July, 2006 Rev. 6  
NCS5021/D  
NCS5021  
V
BAT  
Power Amplifier  
Two Couplers  
GSM  
DCS  
GSM  
DCS  
Pin GSM  
Pin DCS  
Pout GSM  
Pout DCS  
18 dB  
14 dB  
V
EDGE  
SELECT  
3
BAT  
NCS5021  
V
CC  
100 kHz  
8
RAMP  
CTRL  
9
+
V
APC  
6
1/1  
1/100  
G = 2  
Clamp  
+
CMOS DETECTOR  
RF GSM  
RF GND  
RF DCS  
10  
11  
50 W  
+
50 W  
75 mV  
4
12  
Calibration  
Timer  
250 k  
2
1
7
5
BAND  
SELECT  
GND  
CEXT  
ENABLE  
V
PRESET  
MIN  
V
REF  
From DSP  
Figure 2. Typical Application Circuit with Two Couplers  
V
BAT  
Power Amplifier  
Dual Couplers  
GSM  
DCS  
GSM  
DCS  
Pin GSM  
Pin DCS  
Pout GSM  
18 dB  
14 dB  
Pout DCS  
V
EDGE  
SELECT  
3
BAT  
NCS5021  
V
CC  
100 kHz  
8
RAMP  
CTRL  
9
+
V
APC  
6
1/1  
1/100  
G = 2  
Clamp  
+
CMOS DETECTOR  
RF GSM  
RF GND  
RF DCS  
10  
11  
+
50 W  
50 W  
75 mV  
4
12  
Calibration  
Timer  
250 k  
2
1
7
5
BAND  
SELECT  
GND  
CEXT  
ENABLE  
V
PRESET  
MIN  
V
REF  
From DSP  
Figure 3. Typical Application Circuit with Dual Couplers  
http://onsemi.com  
2
NCS5021  
PIN DESCRIPTION  
Pin  
Name  
Pin Description  
1
CEXT  
Integrator’s external capacitor: The external capacitor is determining the integrator’s frequency response  
and has a direct impact over the loop stability and its transient response.  
2
3
BAND SELECT GSM/DCS band selection: A logical “0” on this input pin select the GSM RF input and a logical “1” selects  
DCS RF input.  
EDGE SELECT EDGE mode selection: When the EDGE pin is switched to a logical “1”, the integrator’s bandwidth is divided  
by a factor of one hundred. The control loop becomes too slow to compensate the amplitude modulation  
created by EDGE. This mode is not activated during power rampup and rampdown to allow the control  
loop to fit into the GSM time and frequency masks.  
4
5
GND  
Digital ground: To be connected to a digital ground.  
ENABLE  
Shutdown mode: A zero on this input pin switches off the output buffer V  
. Also the Integrator’s CEXT  
APC  
capacitor is Reset (shot circuited) and all other functions are in low power mode. This input must be high  
typically 25 ms before RAMP CONTROL raises. During this time the device is in calibration mode to cancel  
internal offset. Before each first burst, the device must be set from disable to enable in order to perform the  
calibration, excepted for a series of burst (GPRS).  
6
7
V
Power Amplifier Control signal: This output pin controls the power amplifier. It remains at zero if ENABLE pin  
APC  
is low. When ENABLE pins high, V  
rises to the voltage level on VMIN PRESET with a gain of 2 only if  
APC  
RAMP CTRL is over than 75 mV. Then it remains at VMIN PRESET level until RAMP CTRL goes over 100  
mV, then the loop is closed and V  
has a clamp at 2.8 V.  
controls the PA power. So in order to protect the PA, the output buffer  
APC  
VMIN PRESET Output voltage minimum value: This analog input pin defines the V  
minimum voltage. This level amplified  
APC  
by two should be slightly below the power amplifier amplification threshold. It helps the loop to quickly con-  
verge without overshoot when the output power begins to rise.  
8
9
V
Power supply.  
CC  
RAMP CTRL  
Power control loop reference voltage: Due to the output detector offset voltage fixed at 100 mV in GSM and  
DCS a voltage higher than 100 mV must be applied to raise V  
. The ramp control voltage does not give a  
APC  
direct power value. It indicates the voltage, which should be present at the power detector output.  
10  
RF GSM  
GSM band: RF signal input: The RF signal may vary from 200 MHz to 2.5 GHz. The input power may reach  
+18 dBm.  
When no RF is applied, the internal output detector offset is fixed at 100 mV.  
11  
12  
RF GND  
RF DCS  
Ground Pin to be connected to the RF ground. So each internal 50 W required for matching is connected  
between RF input and this ground pin.  
DCS band : RF input signal: The RF signal may vary from 200 MHz to 2.5 GHz. The input power may reach  
+18 dBm.  
When no RF is applied, the internal output detector offset is fixed at 100 mV.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
23  
Unit  
dBm  
V
Maximum Input Power on RF Pins  
Maximum Power Supply  
P
MAX  
V
5.5  
CCMAX  
Human Body Model (HBM) ESD Rating for RF GSM and RF DCS Pin.  
All Other Pins are (Note 4)  
1000  
2000  
V
ESD HBM  
ESD MM  
Machine Model (MM) ESD Rating for RF GSM and RF DCS Pin.  
All Other Pins are (Note 5)  
100  
200  
V
Operating Ambient Temperature  
Storage Temperature  
TA  
30 to +85  
°C  
°C  
V
T
stg  
65 to +150  
Maximum Input DC Voltage on Pins  
Minimum Input DC Voltage on Pins  
V
V
+ 0.3  
CC  
IMAX  
V
0.3  
15  
V
IMIN  
Maximum Current on Pin V  
IO  
mA  
APC  
MAX  
1. Guaranteed by design.  
2. Tested.  
3. Guaranteed by design and characterized.  
4. Human Body Model, 100 pF discharged through a 1.5 kΩ resistor following specification JESD22/A114.  
5. Machine Model, 200 pF discharged through all pins following specification JESD22/A115.  
http://onsemi.com  
3
 
NCS5021  
ELECTRICAL CHARACTERISTICS Limits apply for TA between 30°C to +85°C (unless otherwise noted).  
Input Specifications  
Pin  
8
Rating  
Operating Power Supply (Note 6)  
Symbol  
Min  
2.9  
Typ  
Max  
4.8  
Unit  
V
V
CC  
CC  
8
Active Mode Current Consumption (Unloaded) (Note 6)  
Power Down Current Consumption (Note 6)  
Wake Up Time (Notes 8 and 9)  
I
4.7  
0.1  
25  
7.0  
mA  
mA  
8
I
1.0  
pdn  
5
W
ut  
TBD  
200  
50  
ms  
10  
12  
Operating Frequency Range Max (Note 8)  
F_in  
2500  
MHz  
9
Operating Voltage Range on Ramp CTRL (Note 8)  
V Ramp  
CTRL  
1800  
0.8  
mV  
V
7
Operating voltage range on VMIN PRESET. Below 100 mV with 0 V  
from integrator, the transfer function is not guaranteed linear but low-  
er than the straight line defined by GOP. (Note 6)  
V
0.1  
MIL  
Detector  
10  
12  
Linear Detection Range (Note 8)  
Range Linear  
20  
25  
18  
20  
dBm  
With a "1.0 dB Linearity in Nominal Conditions at +25°C  
With a "2.0 dB Linearity at 30°C < T < +85°C  
10  
12  
Not Linear Detection Range (Note 8)  
Range Not  
Linear  
dBm  
mV  
10  
12  
Detector Sensitivity (Note 8)  
Det_Sens  
Fin = 2.0 GHz, R = –15 dBm  
10  
1800  
fin  
Fin = 800 MHz, R = 20 dBm  
fin  
10  
12  
Input Impedance on RF GSM and RF DCS Pin  
R_in  
50  
W
10  
12  
Harmonic Return Loss by RF_IN up to 20 dBm @ 900 MHz (Note 8)  
H_Return  
dBc  
H2  
H3  
38  
52  
10  
12  
Voltage Standing Wave Ratio @ 25°C (Note 8)  
VSWR  
DD  
2:1  
10  
12  
Internal Output Detector Delay to 90% Detected of RF Power Step  
(Note 7)  
100  
300  
ns  
Filter and Comparator  
9
Ramp CTRL Threshold Offset Voltage to Close Loop @ 25°C and  
= 3.6 V (Note 8)  
O Ramp  
CTRL  
90  
100  
110  
5.0  
mV  
mV  
V
CC  
9
Ramp CTRL Drifting Threshold Voltage versus V and Temperature  
D Ramp  
CTRL  
CC  
(Note 8)  
9
9
9
Smoothing Filter Corner Frequency @ 25°C (Note 7)  
Smoothing Filter Attenuation @ 1.0 MHz @ 25°C (Note 7)  
FCS  
ATT  
100  
45  
kHz  
dB  
Comparator Threshold to Switch on VMIN PRESET versus O Ramp  
CTRL. Due to hysteresis, add 5 mV for going up and remove 5 mV  
for going down (Note 6)  
V THRD  
50  
70  
90  
mV  
9
Comparator Hysteresis @ 25°C and 3.6 V (Note 8)  
H THRD  
10  
mV  
6. Tested.  
7. Guaranteed by design.  
8. Guaranteed by design and characterized.  
9. Time necessary for internal calibration, see “t1” on Figure 20. Typical Timing Chart for GSM and EDGE Application.  
http://onsemi.com  
4
 
NCS5021  
ELECTRICAL CHARACTERISTICS Limits apply for TA between 30°C to +85°C (unless otherwise noted).  
Integrator Section  
Pin  
Rating  
Symbol  
GDC  
Min  
Typ  
Max  
Unit  
dB  
DC Gain (Note 11)  
Open Loop BandWidth from the Detector (RF GSM or RF DCS) to  
55  
70  
INT_BW  
kHz  
Output Buffer (V  
) @ 25 °C and CEXT = 1 nF (Note 12)  
EDGE SELECT = 0 (not active)  
EDGE SELECT = 1 (active)  
APC  
160  
1.6  
Phase Margin (Note 12)  
Step Level on V  
P_MARG  
S EDGE  
60  
75  
°
5
7
when EDGE is Switch in Close Loop with RAMP  
2.5  
mV  
APC  
CTRL constant in operating range. Typical Value @ V = 3.6 V and  
CC  
25°C (Note 11)  
Output Buffers and Logic Section  
6
Buffer Available Output Current (Note 10)  
I
mA  
out  
V
= (V  
= (V  
unloaded 100 mV)  
10  
–1.0  
–0.1  
APC  
APC  
V
APC  
APC  
V
unloaded + 100 mV))  
= 50 mV  
APC  
6
Output Buffers Voltage Clamp (Note 10)  
V
2.65  
8.0  
2.8  
10  
3.0  
V
high  
Simulate Bandwidth With Out the Integrator Through Close Loop Way  
(Detector, Comparator, Adder and Output Buffer) (Note 11)  
BW  
MHz  
7
6
From 0.1 to 0.8 Apply on VMIN PRESET and no voltage from  
GOP  
10  
+10  
%
Integrator. V  
(Note 10)  
is equal at Two Times VMIN PRESET  
APC  
Ripple Rejection, (Ripple 0.2 Vpp) @ 25°C in Close Loop.  
(Note 12)  
PSRR  
dB  
60  
58  
50  
35  
70  
68  
60  
45  
= 1.0 kHz EDGE = 0  
= 10 kHz EDGE = 0  
= 1.0 kHz EDGE = 1  
= 10 kHz EDGE = 1  
2, 3, Voltage Input Logic Low (Note 10)  
5
V
0.3  
V
V
IL  
2, 3, Voltage Input Logic High (Note 10)  
5
V
1.5  
IH  
2, 3 Current Input Logic (Note 11)  
Lin  
0.01  
250  
0.1  
mA  
kW  
5
Pull down on ENABLE logic input to keep level low when the driver is  
in high impedance condition. (Note 12)  
PDE  
150  
400  
10.Tested.  
11. Guaranteed by design.  
12.Guaranteed by design and characterized.  
http://onsemi.com  
5
 
NCS5021  
TYPICAL PERFORMANCE CHARACTERISTICS  
80  
60  
80  
60  
EDGE = 0  
40  
40  
EDGE = 0  
20  
20  
0
0
20  
40  
60  
20  
EDGE = 1  
1.0 k  
EDGE = 1  
40  
60  
10  
100  
10 k  
100 k  
1.0 M  
10 M  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. OpenLoop Gain at CEXT = 1.0 nF  
Figure 5. OpenLoop Gain at CEXT = 4.7 nF  
180  
135  
90  
180  
EDGE = 0  
EDGE = 0  
135  
90  
45  
45  
0
0
45  
90  
135  
180  
45  
90  
135  
180  
EDGE = 1  
EDGE = 1  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. OpenLoop Phase at CEXT = 1.0 nF  
30°C  
Figure 7. OpenLoop Phase at CEXT = 4.7 nF  
10000  
1000  
100  
10  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
900 MHz  
0
1800 MHz  
5  
10  
1
90  
290  
490  
690  
890 1090 1290 1490  
25 20 15 10 5  
0
5
10  
15  
20  
RAMP CTRL (mV)  
RF INPUT POWER (dBm)  
Figure 8. Transfer Function with 18 dB  
Coupler at 900 MHz  
Figure 9. Detector Characteristic  
http://onsemi.com  
6
 
NCS5021  
TYPICAL PERFORMANCE CHARACTERISTICS  
2
1
0
10  
30°C  
20  
30  
40  
50  
60  
70  
80  
EDGE = 1  
0
1  
2  
+85°C  
EDGE = 0  
100 k 1.0 M  
100  
1.0 k  
10 k  
FREQUENCY (Hz)  
5  
0
5
10  
15  
20  
25  
30  
35  
PA OUTPUT (dBm)  
Figure 11. PSRR at V = 3.6 V and Ripple 0.2 Vpp  
Figure 10. PA Output Drift vs. Temperature with  
18 dB Coupler at 900 MHz  
CC  
0.5  
40  
35  
30  
25  
20  
15  
10  
5
High Power  
0.25  
0
Low Power  
High Power  
Medium Power  
Medium Power  
Low Power  
0.25  
0
880  
0.5  
885  
890  
895  
900  
905  
910  
915  
880  
885  
890  
895  
900  
905  
910  
915  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. PA Output vs. EGSM Frequency Range  
with 18 dB Coupler  
Figure 13. Power Variation vs.  
EGSM Frequency Range  
35  
30  
25  
20  
15  
10  
5
0.5  
0.25  
0
High Power  
Medium Power  
DCS Range  
1760  
PCS Range  
0.25  
Low Power  
0
5  
0.5  
1710 1730 1750 1770 1790 1810 1830 1850 1870 1890 1910  
1710  
1810  
1860  
1910  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. PA Output vs. DCS/PCS Frequency  
Range with 14 dB Coupler  
Figure 15. Power Variation vs. DCS/PCS  
Frequency Range  
http://onsemi.com  
7
NCS5021  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
30  
40  
50  
60  
70  
80  
90  
100  
20  
30  
40  
50  
60  
70  
80  
90  
100  
H2  
H2  
H3  
H3  
20  
10  
0
INPUT POWER (dBm)  
10  
20  
20  
10  
0
INPUT POWER (dBm)  
10  
20  
Figure 16. Return Harmonic by Input RF GSM or  
RF DCS at 900 MHz  
Figure 17. Return Harmonic by Input RF GSM or  
RF DCS at 1.8 GHz  
1: 22.687 Ω 4.3623 Ω 277.71 pH  
S
1 U FS  
11  
2.4  
2.2  
2
2 500.000 000 MHz  
hp  
2: 51.27 Ω  
4.0469 Ω  
200 Ω  
Cor  
MARKER 1  
2.5 GHz  
1.8  
1.6  
1.4  
1.2  
1
1
2
200  
700  
1200  
1700  
2200  
2700  
FREQUENCY (MHz)  
CH1 START 200.000 000 MHz STOP 2 500.000 000 MHz  
Figure 18. VSWR for Input RF GSM or RF DCS  
Figure 19. S11 Parameter in Smith Chart for Input  
RF GSM or RF DCS  
http://onsemi.com  
8
NCS5021  
V
ENABLE  
Pin 4  
V
BAND  
SELECT  
Pin 3  
V
RAMP  
CTRL  
Pin 11  
100 mV  
t1  
V
EDGE  
SELECT  
Pin 2  
Only for EDGE (8PSK) modulation  
V
VAPC  
Pin 7  
dBc  
+2.4  
+4  
+1  
1  
0
6  
Nominal Level  
Time mask for EDGE (8PSK) modulation  
15  
30 dBc  
Time mask for GMSK modulation  
RF  
Power  
Level  
7056/13 (542,8 ms)  
10  
8
10 22  
22 10  
8
10  
Time (ms)  
Figure 20. Typical Timing Chart for GSM and EDGE Application  
http://onsemi.com  
9
NCS5021  
DETAILED OPERATING DESCRIPTION  
Integrator  
RF Power Detector  
It performs the amplitude demodulation of applied RF  
input signal. Its dynamic range fully covers the different  
GSM power levels. The requested biasing signals are  
internally generated. The power detector is designed to  
fulfill the GSM 05.05 standard providing good peak power  
control over a 40 dB linear range. The 43 dB detection range  
allows the Figure 20 template to be respected during  
rampup and ramp down. The very low outofburst noise  
floor can be achieved by apply level from DAC lower than  
75 mV to RAMP CTRL. The detector is designed to operate  
with a RF coupler providing a 18 dB attenuation in GSM  
mode and a 14 dB attenuation in DCS/PCS is recommended  
by Murata, for example. 8 bits DAC may be used as  
Reference signal generator. Nevertheless such low  
resolution DAC may result in a loss of accuracy at very low  
power levels (beginning of the ramp). The RF GSM and RF  
DCS inputs are both 50 W matched with DC coupling  
capacitor and provide a very good Voltage Standing Wave  
Radio (VSWR). Linearity detection versus frequency is  
The integrator performs two different functions. Due to its  
very high gain, it minimizes the error signal resulting from  
detector’s output and reference signal comparison,  
contributing to power control accuracy. Then, by the correct  
bandwidth setting, it guarantees the system stability and fits  
GSM time mask. Due to the system constraint, a fine  
frequency tuning is often requested. The NCS5021 circuit  
provides this flexibility by keeping the integrator capacitor  
external. To limit power consumption, the external capacitor  
charge and discharge current does not exceed 100 mA  
(typical). The minimal external capacitor should not be  
lower than 47 pF to guarantee loop stability and should not  
exceed 4.7 nF.  
Minimum Voltage Adder  
The power amplifier control input needs to reach a certain  
threshold before the output power begins to rise. Due to the  
integrator’s low bandwidth which has been chosen for  
stability reasons, an important delay may be present before  
the power begins to rise. Furthermore, some ringing may  
occur when the control loop switches from its inactive state,  
to normal, regulated state. An efficient way to solve these  
there by excellent and could allow use of  
a
frequencycorrecting table. Nevertheless the coupler may a  
have coupling factor variation and downgraded the linearity.  
problems is to raise the PA control voltage to a V  
voltage, very close to the emission threshold. V  
Preset  
Preset  
MIN  
Reference Signal Filter  
MIN  
If we consider a close loop operation and an infinite  
integrator gain, the reference voltage will be equal to the  
internal detector output voltage. So, knowing the transfer  
function characteristics (see Figure 8), it defines the PA  
output power. The reference signal varies during the burst to  
reach the requested Tx power, to stand at the nominal power  
level, and then return to the specified outofburst level.  
This signal is generated with a clocked DAC, whose steps  
have to be smoothed to minimize switching transients. The  
third order Bessel filter’s transfer function is defined to  
comply with GSM requirements in terms of switching  
transients and time and frequency masks. A systematic  
offset has been created on REF input to ensure that the loop  
remains closed even at very low output power whatever the  
internal offset voltages.  
signal is added to the integrator’s output signal through the  
output buffer amplified by two.  
Output Buffer  
The output buffer is providing the current capability to  
drive the PA control input. With Enable pin low, V  
APC  
remains low to make that sure RF power will not be supplied  
by the PA. So the device may be switched on typically by  
25 ms before the burst to rampup, to allow the internal  
calibration sequence.  
Powerdown Mode  
During the unused time slots in Time Division Multiple  
Access (TDMA) systems, the NCS5021 must be in low  
power mode by applying a zero logic level on pin ENABLE.  
This function saves power from battery and put PA in low  
power by supplying very low level to output buffer V  
.
APC  
Also when powerdown mode is active, the external  
capacitor is discharged to initial conditions for next burst.  
This input must be high typically by 25 ms before Ramp  
Control goes high.  
http://onsemi.com  
10  
NCS5021  
DEMO BOARD  
J5  
V
S1  
V
2
1
APC  
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
14  
16  
P
MIN  
STRAP  
RAMP C  
ENABLE  
EDGE S  
SYNCHRO  
BAND S  
PRESET  
TP8 V  
APC  
V
APCD  
V
APCG  
J7  
SMB M  
V CONTROL  
+5V  
HEADER 8X2  
TP3 V  
P
MIN  
U1  
NCS5021QFN12  
10  
11  
12  
RF GSM  
AGND  
J8  
V
P
7
MIN  
SMB F  
V
P
MIN  
C2  
10 n  
RF DCS  
TP5 CEXT  
1
TP1V  
CC  
V CONTROL  
J9  
SMB F  
8
V
CC  
CEXT  
3
C5  
C4  
C3  
1 n  
*pF  
1 nF  
2
5
9
4
TP7 EDGE  
TP2 RAMP C  
RAMP C  
TP4 ENABLE  
TP6 BAND S  
V CONTROL  
V CONTROL  
BAND S  
ENABLE  
J1  
1
1
R1  
100 k  
V CONTROL  
1
2
2
2
3
C1  
100 n  
3
Power  
J4  
J3  
Figure 21. Demo Board Schematic  
Figure 22. Silkscreen  
http://onsemi.com  
11  
NCS5021  
DEMO BOARD  
Figure 23. PCB Top View  
Figure 24. PCB Bottom View  
http://onsemi.com  
12  
NCS5021  
PACKAGE DIMENSIONS  
12 PIN, 3X3 QFN  
CASE 485N01  
ISSUE O  
A
D
B
E
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
0.75  
A
A1  
A2  
A3  
b
0.80  
0.00  
0.65  
0.20 REF  
0.20  
0.15  
C
0.15  
C
0.30  
D
D2  
E
3.00 BSC  
1.50  
1.80  
3.00 BSC  
0.10  
0.08  
C
E2  
e
K
1.50  
0.50 BSC  
0.20  
0.35  
1.80  
A2  
A
−−−  
0.45  
SEATING  
PLANE  
L
C
A3  
A1  
REF  
C
D2  
12 X L  
e
4
6
3
1
7
E2  
9
12 X b  
0.10 C A B  
0.05  
12  
10  
12 X K  
C
NOTE 3  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCS5021/D  

相关型号:

NCS510-600

Analog IC
ETC

NCS512-600

Analog IC
ETC

NCS512-800

Analog IC
ETC

NCS515-500

Analog IC
ETC

NCS55-750

Analog IC
ETC

NCS5650

2 Amp PLC Line Driver
ONSEMI

NCS5650MNTXG

2 Amp PLC Line Driver
ONSEMI

NCS5651

2 Amp PLC Line Driver
ONSEMI

NCS5651MNTXG

2 Amp PLC Line Driver
ONSEMI

NCS5651_17

2 Amp PLC Line Driver
ONSEMI

NCS5652

Dual Power Operational Amplifier
ONSEMI

NCS5652MUTWG

Dual Power Operational Amplifier
ONSEMI