NCV1406SNT1G [ONSEMI]

25 V/25 mA PFM Step−Up DC−DC Converter;
NCV1406SNT1G
型号: NCV1406SNT1G
厂家: ONSEMI    ONSEMI
描述:

25 V/25 mA PFM Step−Up DC−DC Converter

文件: 总23页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1406  
25 V/25 mA PFM Step−Up  
DC−DC Converter  
The NCP1406 is a monolithic PFM step−up DC−DC converter.  
This device is designed to boost single Lithium or two cells AA/AAA  
battery voltage up to 25 V (with internal MOSFET) output for  
handheld applications. A pullup Chip Enable feature is built−in with  
this device to extend battery−operating life. In addition to standard  
boost converter topologies, this device can be configured for  
voltage−inverting and step−down applications. This device is  
available in space−saving TSOP−5 package. With its small footprint,  
the device is also ideal for generating a boosted voltage from a 3.3 V  
or 5.0 V power rail.  
http://onsemi.com  
MARKING  
DIAGRAM  
5
5
1
DAMAYWG  
G
TSOP−5/SOT23−5/SC59−5  
SN SUFFIX  
1
Features  
CASE 483  
85% Efficiency at V  
= 25 V, I  
= 25 mA, V = 5.0 V  
OUT IN  
OUT  
Low Operating Current of 15 mA (Not Switching)  
Low Shutdown Current of 0.3 mA  
Low Startup Voltage of 1.8 V Typical at 0 mA  
Output Voltage up to 25 V with Built−in 26 V MOSFET Switch  
PFM Switching Frequency up to 1.0 MHz  
Chip Enable  
DAM = Device Marking  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
Output Voltage Soft−Start  
PIN CONNECTIONS  
Feedback Pin Open/Short Circuit Protection  
Input Undervoltage Lockout  
Thermal Shutdown  
Low Profile and Minimum External Parts  
Micro Miniature TSOP−5 Package  
Pb−Free Package is Available  
CE  
FB  
5
LX  
1
2
3
VDD  
4
GND  
(Top View)  
Typical Applications  
LCD Bias  
ORDERING INFORMATION  
White LED Driver  
OLED Driver  
Personal Digital Assistants (PDA)  
Digital Still Camera  
Cellular Telephone  
Hand−Held Games  
Hand−Held Instrument  
Device  
Package  
Shipping†  
NCP1406SNT1  
TSOP−5  
3000 Tape & Reel  
3000 Tape & Reel  
NCP1406SNT1G  
TSOP−5  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
February, 2006 − Rev. 2  
NCP1406/D  
NCP1406  
L1 8.2 mH  
D1  
MBR0530T1  
V
OUT  
V
IN  
25 V  
2.0 V to 5.5 V  
CE  
1
LX  
5
C
3.3 mF  
2
C
1
C
3
10 mF  
FB  
2
82 pF  
R
R
2.2 MW  
110 kW  
1
VDD  
3
GND  
4
Enable  
2
R
R
2
1
+ 1.19ǒ ) 1Ǔ  
V
OUT  
Figure 1. Typical 25 V Step−Up Application Circuit  
L1 8.2 mH  
D1  
MBR0520LT1  
V
OUT  
V
IN  
15 V  
2.0 V to 5.5 V  
CE  
1
LX  
5
C
4.7 mF  
2
C
1
C
3
10 mF  
FB  
2
68 pF  
R
R
1.3 MW  
1
VDD  
3
GND  
4
Enable  
110 kW  
2
R
1
+ 1.19ǒ ) 1Ǔ  
V
OUT  
R
2
Figure 2. Typical 15 V Step−Up Application Circuit  
L1 8.2 mH  
D1  
MBR0520LT1  
V
OUT  
V
IN  
8 V  
2.0 V to 5.5 V  
CE  
1
LX  
5
C
4.7 mF  
2
C
1
C
3
10 mF  
FB  
2
12 pF  
R
R
620 kW  
1
VDD  
3
GND  
4
Enable  
110 kW  
2
R
1
+ 1.19ǒ ) 1Ǔ  
V
OUT  
R
2
Figure 3. Typical 8.0 V Step−Up Application Circuit  
http://onsemi.com  
2
 
NCP1406  
LX  
VDD  
FB Fault  
Protection  
TSD  
UVLO  
PFM  
Comparator  
Driver  
PFM ON/OFF  
Timing  
+
FB  
Control  
+
Vref  
Soft−Start  
GND  
CE  
Figure 4. Representative Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin  
Symbol  
Description  
1
CE  
Chip Enable Pin  
(1) The chip is enabled if a voltage which is equal to or greater than 0.9 V is applied.  
(2) The chip is disabled if a voltage which is less than 0.3 V is applied.  
(3) The chip will be enabled if it is left floating.  
2
3
4
5
FB  
VDD  
GND  
LX  
PFM comparator inverting input, and is connected to off−chip resistor divider which sets output voltage.  
Power supply pin for internal circuit.  
Ground pin.  
External inductor connection pin.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage (Pin 3)  
VDD  
−0.3 to 6.0  
V
Input/Output Pin  
LX (Pin 5)  
LX Peak Sink Current  
FB (Pin 2)  
V
I
−0.3 to 27  
1.5  
−0.3 to 6.0  
V
A
V
LX  
LX  
V
FB  
CE (Pin 1)  
Input Voltage Range  
V
R
−0.3 to 6.0  
V
CE  
Power Dissipation and Thermal Characteristics  
Maximum Power Dissipation @ T = 25_C  
P
D
500  
250  
mW  
_C/W  
_C  
_C  
_C  
A
Thermal Resistance, Junction−to−Air  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
q
JA  
T
−40 to +85  
−40 to +150  
−55 to +150  
A
T
J
T
stg  
Maximumratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values  
(not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage  
may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) "2.0 kV per JEDEC standard: JESD22−A114 for all pins.  
Machine Model (MM) "200 V per JEDEC standard: JESD22−A115 for all pins.  
2. Latchup Current Maximum Rating: "150 mA per JEDEC standard: JESD78.  
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
http://onsemi.com  
3
 
NCP1406  
DISSIPATION RATINGS  
Power Rating  
Derating Factor  
Power Rating  
Power Rating  
@T  
255C  
@T  
255C  
@T = 705C  
@T = 855C  
Package  
A
A
A
A
TSOP−5  
500 mW  
4.0 mW/°C  
320 mW  
260 mW  
ELECTRICAL CHARACTERISTICS (V  
otherwise noted.)  
= 25 V, T = −40_C to +85_C for min/max values, typical values are at T = 25_C, unless  
OUT  
A
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON/OFF TIMING CONTROL  
Minimum Off Time (V = 3.0 V, V = 0 V)  
t
off  
0.08  
0.58  
84  
0.13  
0.90  
90  
0.20  
1.40  
96  
ms  
ms  
DD  
FB  
Maximum On Time (Current Not Asserted)  
Maximum Duty Cycle  
t
on  
D
MAX  
%
Minimum Startup Voltage (I  
= 0 mA)  
V
start  
1.8  
1.6  
1.7  
3.0  
2.0  
V
OUT  
Minimum Startup Voltage Temperature Coefficient (T = −40 to +85°C)  
DV  
mV/°C  
V
A
start  
Minimum Hold Voltage (I  
= 0 mA)  
V
hold  
1.9  
8.0  
OUT  
Soft−Start Time  
t
SS  
ms  
LX (PIN 5)  
Internal Switch Voltage (Note 4) (Note 5)  
LX Pin On−State Resistance (V = 0.4 V, V = 5.0 V)  
V
26  
V
W
A
LX  
R
sw(on)  
0.7  
0.80  
LX  
DD  
Current Limit (When I reaches I , the LX switch is turned off by the LX switch  
I
LIM  
LX  
LIM  
protection circuit) (Note 5)  
Off−State Leakage Current (V = 26 V)  
I
0.1  
1.0  
mA  
LX  
LKG  
CE (PIN 1)  
CE Input Voltage (V = 3.0 V, V = 0 V)  
DD  
FB  
High State, Device Enabled  
Low State, Device Disabled  
V
V
0.9  
0.3  
V
V
CE(high)  
CE(low)  
CE Input Current  
High State, Device Enabled (V = V = 5.5 V)  
I
−500  
10  
−150  
500  
nA  
nA  
DD  
CE  
CE(high)  
Low State, Device Disabled (V = 5.5 V, V = V = 0 V)  
I
CE(low)  
DD  
CE  
FB  
TOTAL DEVICE  
Supply Voltage  
V
1.4  
5.5  
1.3  
V
V
V
DD  
Undervoltage Lockout (V Falling)  
V
UVLO  
1.0  
DD  
Feedback Voltage  
T = 25°C  
A
V
1.178  
1.170  
1.190  
1.190  
1.202  
1.210  
A
FB  
T = −40 to +85°C  
Feedback Pin Bias Current (V = 1.19 V)  
I
15  
0.7  
15  
45  
1.5  
25  
1.3  
nA  
mA  
mA  
mA  
°C  
FB  
FB  
Operating Current 1 (V = 0 V, V = V = 3.0 V, Maximum Duty Cycle)  
I
I
I
FB  
DD  
CE  
DD1  
DD2  
OFF  
Operating Current 2 (V = V = V = 3.0 V, Not Switching)  
DD  
CE  
FB  
Off−State Current (V = 5.0 V, V = 0 V)  
0.3  
140  
10  
DD  
CE  
Thermal Shutdown (Note 5)  
T
SD  
Thermal Shutdown Hysteresis (Note 5)  
4. Recommended maximum V up to 25 V.  
T
°C  
SDHYS  
OUT  
5. Guaranteed by design, not tested.  
http://onsemi.com  
4
 
NCP1406  
TYPICAL CHARACTERISTICS  
26.0  
25.5  
25.0  
24.5  
24.0  
100  
5.0 V  
4.2 V  
3.7 V  
90  
5.0 V  
4.2 V  
V
= 25 V  
80  
70  
60  
OUT  
V
= 25 V  
OUT  
L1 = 8.2 mH, Sumida  
CR43−8R2MC  
C1 = 10 mF  
C2 = 3.3 mF  
C3 = 82 pF  
3.0 V  
L1 = 8.2 mH, Sumida  
CR43−8R2MC  
C1 = 10 mF  
C2 = 3.3 mF  
C3 = 82 pF  
3.0 V  
V
IN  
= 2.4 V  
V
IN  
= 2.4 V  
3.7 V  
T
A
= 25°C  
T
A
= 25°C  
Figure 1  
Figure 1  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 5. Output Voltage versus Output Current  
Figure 6. Efficiency versus Output Current  
(VOUT = 25 V, L = 8.2 H)  
(VOUT = 25 V, L = 8.2 H)  
16.0  
15.5  
15.0  
14.5  
14.0  
100  
90  
80  
70  
60  
V
= 15 V  
OUT  
L1 = 8.2 mH, Sumida  
CR43−8R2MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 68 pF  
5.0 V  
4.2 V  
3.7 V  
3.7 V  
3.0 V  
T
= 25°C  
A
Figure 2  
3.0 V  
V
= 15 V  
OUT  
2.4 V  
L1 = 8.2 mH, Sumida  
CR43−8R2MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 68 pF  
5.0 V  
2.4 V  
V
IN  
= 2.0 V  
V
IN  
= 2.0 V  
4.2 V  
T
A
= 25°C  
Figure 2  
0
20  
I
40  
60  
80  
0
20  
I
40  
60  
80  
, OUTPUT CURRENT (mA)  
, OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 7. Output Voltage versus Output Current  
Figure 8. Efficiency versus Output Current  
(VOUT = 15 V, L = 8.2 H)  
(VOUT = 15 V, L = 8.2 H)  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
V
= 8.0 V  
OUT  
L1 = 8.2 mH, Sumida CR43−8R2MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 12 pF  
5.0 V  
4.2 V  
T
= 25°C  
3.7 V  
A
3.0 V  
4.2 V 5.0 V  
3.7 V  
Figure 3  
2.4 V  
V
IN  
= 2.0 V  
V
= 8.0 V  
OUT  
L1 = 8.2 mH, Sumida  
CR43−8R2MC  
C1 = 10 mF  
2.4 V  
50  
V
= 2.0 V  
3.0 V  
C2 = 4.7 mF  
C3 = 12 pF  
= 25°C  
Figure 3  
IN  
T
A
0
25  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 10. Efficiency versus Output Current  
Figure 9. Output Voltage versus Output Current  
(VOUT = 8.0 V, L = 8.2 H)  
(VOUT = 8.0 V, L = 8.2 H)  
http://onsemi.com  
5
NCP1406  
TYPICAL CHARACTERISTICS  
26.0  
25.5  
25.0  
24.5  
24.0  
100  
V
= 25 V  
OUT  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 3.3 mF  
C3 = 150 pF  
90  
80  
70  
60  
5.0 V  
4.2 V  
3.7 V  
T
= 25°C  
A
Figure 1  
V
= 25 V  
OUT  
2.4 V  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 3.3 mF  
C3 = 150 pF  
3.7 V  
4.2 V  
5.0 V  
3.0 V  
3.0 V  
V
IN  
= 2.0 V  
2.4 V  
T
A
= 25°C  
Figure 1  
V
IN  
= 2.0 V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 11. Output Voltage versus Output Current  
Figure 12. Efficiency versus Output Current  
(VOUT = 25 V, L = 10 H)  
(VOUT = 25 V, L = 10 H)  
16.0  
15.5  
15.0  
14.5  
14.0  
100  
90  
80  
70  
60  
V
= 15 V  
OUT  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 120 pF  
5.0 V  
4.2 V  
3.7 V  
3.0 V  
T
= 25°C  
A
3.7 V  
3.0 V  
Figure 2  
V
= 15 V  
OUT  
2.4 V  
= 2.0 V  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 120 pF  
5.0 V  
4.2 V  
2.4 V  
V
IN  
V
IN  
= 2.0 V  
T
A
= 25°C  
Figure 2  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 13. Output Voltage versus Output Current  
Figure 14. Efficiency versus Output Current  
(VOUT = 15 V, L = 10 H)  
(VOUT = 15 V, L = 10 H)  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
V
= 8.0 V  
OUT  
L1 = 10 mH, Sumida CMD4D11−100MC  
C1 = 10 mF  
C2 = 4.7 mF  
C3 = 20 pF  
5.0 V  
4.2 V  
3.7 V  
T
= 25°C  
A
4.2 V  
5.0 V  
3.0 V  
2.4 V  
Figure 3  
3.7 V  
V
IN  
= 2.0 V  
V
= 8.0 V  
OUT  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
2.4 V  
3.0 V  
C2 = 4.7 mF  
C3 = 20 pF  
V
= 2.0 V  
IN  
T
= 25°C  
A
Figure 3  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 16. Efficiency versus Output Current  
Figure 15. Output Voltage versus Output Current  
(VOUT = 8.0 V, L = 10 H)  
(VOUT = 8.0 V, L = 10 H)  
http://onsemi.com  
6
NCP1406  
TYPICAL CHARACTERISTICS  
1.22  
1.20  
1.18  
1.16  
1.14  
100  
90  
80  
70  
V
V
= 3.0 V  
= 0 V  
DD  
FB  
V
= 3.0 V  
75  
DD  
60  
−50  
−50  
−25  
0
25  
50  
100  
100  
100  
−25  
0
25  
50  
75  
100  
100  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 17. Feedback Voltage versus  
Ambient Temperature  
Figure 18. Maximum Duty Cycle versus  
Ambient Temperature  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
V
DD  
= 3.0 V  
V
= 3.0 V  
DD  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 19. Maximum On Time versus  
Ambient Temperature  
Figure 20. Minimum Off Time versus  
Ambient Temperature  
1000  
900  
800  
700  
600  
500  
25  
20  
15  
10  
5
V
V
= V = 3.0 V  
DD  
FB  
CE  
= 0 V  
V
DD  
= V = V = 3.0 V  
CE FB  
0
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 22. Operating Current 2 versus  
Ambient Temperature  
Figure 21. Operating Current 1 versus  
Ambient Temperature  
http://onsemi.com  
7
NCP1406  
TYPICAL CHARACTERISTICS  
1000  
800  
600  
400  
200  
0
50  
40  
30  
20  
10  
V
V
= 5.0 V  
= 0 V  
DD  
CE  
V
= V = 5.5 V  
DD  
CE  
0
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 23. Off−State Current versus  
Ambient Temperature  
Figure 24. CE “High” Input Current versus  
Ambient Temperature  
−500  
−400  
−300  
−200  
−100  
0
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
V
V
= 5.5 V  
= 0 V  
DD  
CE  
I
= 0 mA  
OUT  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 25. CE “Low” Input Current versus  
Ambient Temperature  
Figure 26. Minimum Startup Voltage versus  
Ambient Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
6
5
4
3
2
1
0
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 28. Soft−start Time versus  
Ambient Temperature  
Figure 27. Undervoltage Lockout Voltage versus  
Ambient Temperature  
http://onsemi.com  
8
NCP1406  
TYPICAL CHARACTERISTICS  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.1  
V
= 25 V  
OUT  
L1 = 8.2 mH  
D1 = MBR0530LT1  
C1 = 10 mF  
C2 = 3.3 mF  
C3 = 82 pF  
R1 = 2.2 MW  
R2 = 110 kW  
1.0  
0.9  
0.8  
0.7  
0.6  
T = 25°C  
A
1
2
3
4
5
6
−50  
−25  
0
25  
50  
75  
100  
100  
100  
V
, INPUT VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
IN  
A
Figure 29. No Load Input Current versus  
Input Voltage  
Figure 30. Current Limit versus  
Ambient Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.8 V  
2.0 V  
2.4 V  
3.0 V  
3.7 V  
T = 85°C  
A
T = 25°C  
A
V
= 5.0 V  
DD  
T = −40°C  
A
1
2
3
4
5
−50  
−25  
0
25  
50  
6
75  
V
IN  
, INPUT VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 31. Switch−ON Resistance versus  
Input Voltage  
Figure 32. Switch−ON Resistance versus  
Ambient Temperature  
1000  
800  
600  
400  
200  
0
50  
40  
30  
20  
10  
0
V
DD  
V
LX  
V
CE  
= 3.0 V  
= 26 V  
= 0 V  
V
DD  
V
FB  
= 3.0 V  
= 1.19 V  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 34. Feedback Pin Bias Current versus  
Ambient Temperature  
Figure 33. LX Pin OFF−State Leakage Current  
versus Ambient Temperature  
http://onsemi.com  
9
NCP1406  
TYPICAL CHARACTERISTICS  
L1 = 8.2 mH, C1 = 10 mF, C2 = 3.3 mF, V = 3.7 V  
L1 = 8.2 mH, C1 = 10 mF, C2 = 4.7 mF, V = 3.7 V  
IN  
IN  
1. V  
= 25 V (AC Coupled), 100 mV/div  
1. V  
= 15 V (AC Coupled), 100 mV/div  
OUT  
OUT  
2. I  
= 1.0 mA to 15 mA, 20 mA/div  
2. I  
= 1.0 mA to 20 mA, 20 mA/div  
OUT  
OUT  
Figure 35. Load Transient Response (VOUT = 25 V)  
Figure 36. Load Transient Response (VOUT = 15 V)  
L1 = 8.2 mH, C1 = 10 mF, C2 = 3.3 mF, I  
= 15 mA  
L1 = 8.2 mH, C1 = 10 mF, C2 = 4.7 mF, I  
= 15 mA  
OUT  
OUT  
1. V  
= 25 V (AC Coupled), 100 mV/div  
1. V  
= 15 V (AC Coupled), 100 mV/div  
OUT  
OUT  
2. V = 3.0 V to 4.0 V, 2.0 V/div  
2. V = 3.0 V to 4.0 V, 2.0 V/div  
IN  
IN  
Figure 37. Line Transient Response (VOUT = 25 V)  
Figure 38. Line Transient Response (VOUT = 15 V)  
L1 = 8.2 mH, C1 = 10 mF, C2 = 3.3 mF, V = 4.2 V,  
L1 = 8.2 mH, C1 = 10 mF, C2 = 3.3 mF, V = 4.2 V,  
IN  
IN  
V
OUT  
= 25 V, I  
= 5.0 mA  
V
OUT  
= 25 V, I  
= 30 mA  
OUT  
OUT  
1. V , 10 V/div  
1. V , 10 V/div  
LX  
LX  
2. I , 200 mA/div  
2. I , 200 mA/div  
L
L
3. V , 50 mV/div  
ripple  
3. V , 50 mV/div  
ripple  
Figure 39. Operating Waveforms (Light Load)  
Figure 40. Operating Waveforms (Heavy Load)  
http://onsemi.com  
10  
NCP1406  
TYPICAL CHARACTERISTICS  
L1 = 8.2 mH, C1 = 10 mF, C2 = 3.3 mF, V = 4.2 V,  
L1 = 8.2 mH, C1 = 10 mF, C2 = 4.7 mF, V = 4.2 V,  
IN  
IN  
I
= 20 mA  
I
= 25 mA  
OUT  
OUT  
1. V , 0 V to 1.0 V to 0 V, 1.0 V/div  
1. V , 0 V to 1.0 V to 0 V, 1.0 V/div  
CE  
CE  
2. I , 500 mA/div  
2. I , 500 mA/div  
L
L
3. V , 10 mV/div  
OUT  
3. V , 10 mV/div  
OUT  
Figure 41. Startup/Shutdown Waveforms  
(VOUT = 25 V)  
Figure 42. Startup/Shutdown Waveforms  
(VOUT = 15 V)  
5.0  
4.0  
3.0  
2.0  
1.0  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0
V
= 25 V  
OUT  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 3.3 mF  
D1 = MBR0530LT1  
Figure 1  
V
= 15 V  
OUT  
L1 = 10 mH, Sumida  
CMD4D11−100MC  
C1 = 10 mF  
C2 = 4.7 mF  
D1 = MBR0520LT1  
Figure 2  
T = 25°C  
A
T = 25°C  
A
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 44. Startup Voltage versus Output Current  
(VOUT = 15 V)  
Figure 43. Startup Voltage versus Output Current  
(VOUT = 25 V)  
http://onsemi.com  
11  
NCP1406  
DETAILED OPERATING DESCRIPTION  
Current Limit  
Operation  
The NCP1406 is a monolithic DC−DC switching  
converter optimized for single Lithium or two cells  
AA/AAA size batteries powered portable products.  
The NCP1406 device consists of soft−start circuit, chip  
enable circuit, PFM comparator, voltage reference, PFM  
on/off timing control circuit, driver, current limit circuit,  
open−drain MOSFET switch, input voltage UVLO,  
thermal shutdown, and feedback pin short−circuit/  
open−circuit protection. The device operating current is  
typically 15 mA, and can be further reduced to about 0.3 mA  
The current limit circuit limits the maximum current  
flowing through the LX pin to typical 0.80 A during the  
MOSFET switch turn−on period. When the current limit is  
exceeded, the switch will be turned off. With the current  
limit circuit, the peak inductor current is limited to the  
current limit, saturation of inductor is prevented and output  
voltage over−shoot during startup can also be minimized.  
N−Channel MOSFET Switch  
The NCP1406 is built−in with a 26 V open drain  
N−Channel MOSFET switch which allows high output  
voltage up to 25 V to be generated from simple step−up  
topology.  
when the chip is disabled (V < 0.3 V).  
CE  
The operation of NCP1406 can be best understood by  
referring to the block diagram and typical application  
circuit in Figures 1 and 4. The PFM comparator monitors  
the output voltage via the external feedback resistor divider  
by comparing the feedback voltage with the reference  
voltage. When the feedback voltage is lower than the  
reference voltage, the PFM control and driver circuit turns  
on the N−Channel MOSFET switch and the current ramps  
up in the inductor. The switch will remain on for the  
maximum on−time, 0.90 ms, or until the current limit is  
reached, whichever occurs first. The MOSFET switch is  
then turned off and energy stored in the inductor will be  
discharged to the output capacitor and load through the  
Schottky diode. The MOSFET switch will be turned off for  
at least the minimum off−time, 0.13 ms, and will remain off  
if the feedback voltage is higher than the reference voltage  
and output capacitor will be discharged to sustain the  
output current, until the feedback voltage is again lower  
than reference voltage. This switching cycle is then  
repeated to attain voltage regulation.  
Input Voltage Undervoltage Lockout  
There is an undervoltage lockout circuit continuously  
monitoring the voltage at the VDD pin. The device will be  
disabled if the VDD pin voltage drops below the UVLO  
threshold voltage.  
FB Pin Short−Circuit/Open−Circuit Protection  
With the FB protection circuit, the drain−to−source  
leakage current of the N−Ch MOSFET is sensed. When the  
FB pin connection is shorted or opened, the converter  
switches at maximum duty cycle, the peak of V and the  
LX  
V
OUT  
will build up, and the leakage current will increase.  
When the leakage current increases to a certain level, the  
converter will stop switching with the protection circuit.  
Therefore, the peak of V will stop increasing at a certain  
LX  
level before the N−Ch MOSFET is damaged immediately.  
However, the sensing of the leakage current is not very  
accurate and cannot be too close to the normal 26 V  
maximum operating condition. Therefore, the V  
is  
LX  
around 30 V to 40 V during a FB pin protection fault.  
Soft−Start  
Thermal Shutdown  
There is a soft−start circuit in NCP1406. When power is  
applied to the device, the soft−start circuit limits the device  
to switch at a small duty cycle initially, the duty cycle is  
then increased gradually until the output voltage is in  
regulation. With the soft−start circuit, the output voltage  
over−shoot is minimized and the startup capability with  
heavy loads is also improved.  
When the chip junction temperature exceeds 140°C, the  
entire IC is shutdown. The IC will resume operation when  
the junction temperature drops below 130°C.  
Enable/Disable Operation  
The NCP1406 offers IC shutdown mode by the chip  
enable pin (CE pin) to reduce current consumption. An  
internal 150 nA pullup current source ties the CE pin to the  
VDD pin by default. Therefore, the user can float the CE  
pin for permanent “ON”. When the voltage at the CE pin  
is equal to or greater than 0.9 V, the chip will be enabled,  
which means the device is in normal operation. When the  
voltage at the CE pin is less than 0.3 V, the chip is disabled,  
which means IC is shutdown. During shutdown, the IC  
supply current reduces to 0.3 mA and the LX pin enters  
high impedance state. However, the input remains  
connected to the output through the inductor and the  
Schottky diode, keeping the output voltage one diode  
forward voltage drop below the input voltage.  
ON/OFF Timing Control  
The maximum on−time is typically 0.90 ms, whereas, the  
minimum off−time is typically 0.13 ms. The switching  
frequency can be up to 1.0 MHz.  
Voltage Reference and Output Voltage  
The internal bandgap voltage reference is trimmed to  
1.19 V at an accuracy of "1.0% at 25°C. The voltage  
reference is connected to the non−inverting input of the  
PFM comparator and the inverting input of the PFM  
comparator is connected to the FB pin. The output voltage  
can be set by connected an external resistor voltage divider  
from the VOUT to the FB pin. With the internal 26 V  
MOSFET switch, the output voltage can be set between VIN  
to 25 V.  
http://onsemi.com  
12  
NCP1406  
APPLICATIONS CIRCUIT INFORMATION  
External Component Selection  
increases above the maximum output current in DCM  
mode. However, stable operation in continuous conduction  
mode is hard to achieve, and double pulsing or group  
pulsing will occur which will lead to much larger inductor  
current ripple and result in larger output ripple voltage.  
If the current limit is used to turn off the MOSFET in  
order to maximize the output current, it is critical to make  
sure that the current limit has been reached before the  
maximum on−time is met. To ensure this condition is met,  
the inductance L should be selected according the  
following inequality:  
Inductor  
The NCP1406 is designed to work well with a range of  
inductance values; the actual inductance value depends on  
the specific application, output current, efficiency, and  
output ripple voltage. For step−up conversion, the device  
works well with inductance ranging from 1.0 mH to 47 mH.  
In general, an inductor with small DCR, usually less than  
1.0 W, should be used to minimize loss. It is necessary to  
choose an inductor with saturation current greater than the  
peak switching current in the application.  
V
NCP1406 is designed to operate in discontinuous  
conduction mode (DCM). Stable operation in continuous  
conduction mode is not guaranteed. For each switching  
cycle, if the internal MOSFET is switched on, it will be  
IN  
L t  
  t  
on(max)  
I
LIM  
Since there is 100 ns internal propagation delay between  
the time the current limit is reached and the time the  
MOSFET is switched off, the actual peak inductor current  
can be obtained from the equation below:  
switched off only when either the maximum on−time, t ,  
on  
of typical 0.9 ms is reached or the inductor current limit of  
0.8 A is met, whichever is earlier. Therefore, the designer  
can choose to use either the maximum on−time or the  
current limit to turn off the MOSFET switch. If the goal is  
targeted to minimize output ripple voltage, the maximum  
on−time of 0.9 ms should be used to turn off the MOSFET;  
however, the maximum output current will be reduced. If  
we target to maximize the output current, the current limit  
should be chosen to turn off the MOSFET, but this method  
will result in a larger output ripple voltage.  
V
L
IN  
I
+ I  
LIM  
)
  100 ns  
PK  
Where ILIM is the current limit which is typically 0.8 A,  
is the input voltage, L is the selected inductance.  
Then the maximum output current under the current limit  
control can be calculated by the equation below:  
V
IN  
V
IN  
  I  
PK  
I
+
  h  
OUT(max)  
2(V  
) V )  
OUT  
D
This method can achieve larger maximum output current  
in DCM mode. Since the current limit is reached in each  
switching cycle, the inductor current ripple is larger  
resulting in larger output voltage ripple. Two ceramic  
capacitors in parallel can be used at the output to keep the  
output ripple small.  
If the maximum on−time is used to turn off the MOSFET  
in order to achieve a smaller output ripple voltage, it is  
critical to ensure that the maximum on−time has been  
reached before the current limit is met. To ensure this  
condition is met, the inductance L should be selected  
according to the following inequality:  
Diode  
V
IN  
L u  
  t  
on(max)  
The diode is the main source of loss in DCDC  
converters. The key parameters which affect their  
efficiency are the forward voltage drop, V , and the reverse  
I
LIM  
Where VIN is the input voltage, ILIM is the current limit  
which is typically 0.8 A, and t is the maximum  
D
on(max)  
recovery time, trr. The forward voltage drop creates a loss  
just by having a voltage across the device while a current  
flowing through it. The reverse recovery time generates a  
loss when the diode is reverse biased, and the current  
appears to actually flow backwards through the diode due  
to the minority carriers being swept from the PN junction.  
A Schottky diode with the following characteristics is  
recommended:  
on−time which is typically 0.9 ms.  
The maximum output current under this maximum  
on−time control can be calculated from the equation below:  
2
IN  
V
  t  
on(max)  
I
+
  h  
OUT(max)  
2L(V  
) V )  
OUT  
D
Where V is the input voltage, t  
is the maximum  
IN  
on(max)  
on−time which is typically 0.9 ms, L is the selected  
inductance, VOUT is the desired output voltage, V is the  
1. Small forward voltage, V < 0.3 V.  
D
D
2. Small reverse leakage current.  
3. Fast reverse recovery time/switching speed.  
4. Rated current larger than peak inductor current,  
Schottky diode forward voltage, and h is the conversion  
efficiency which can be assumed typically 80% for better  
margin for estimation.  
The above equation for calculating IOUT(max) is for DCM  
mode operation only. In fact, the operation can go beyond  
the critical conduction mode if the current loading further  
I
> I  
.
rated  
PK  
5. Reverse voltage larger than output voltage,  
> V  
V
reverse  
.
OUT  
http://onsemi.com  
13  
NCP1406  
Input Capacitor  
1% tolerance resistors should be used for both R1 and R2  
for better VOUT accuracy.  
The input capacitor stabilizes the input voltage and  
minimizes peak current ripple from the power source. The  
capacitor should be connected directly to the inductor pin  
where the input voltage is applied in order to effectively  
smooth the input current ripple and voltage due to the  
inductor current ripple. The input capacitor is also used to  
decouple the high frequency noise from the VDD supply to  
the internal control circuit; therefore, the capacitor should  
be placed close to the VDD pin. For some particular  
applications, separate decoupling capacitors should be  
provided and connected directly to the VDD pin for better  
decoupling effect. A larger input capacitor can better  
reduce ripple current at the input. By reducing the ripple  
current at the input, the converter efficiency can be  
improved. In general, a 4.7 mF to 22 mF ceramic input  
capacitor is sufficient for most applications. X5R and X7R  
type ceramic capacitors are recommended due to their  
good capacitance tolerance and stable temperature  
behavior.  
Feedforward Capacitor  
A feedforward capacitor is required to add across the  
upper feedback resistor to avoid double pulsing or group  
pulsing at the switching node which will cause larger  
inductor ripple current and higher output voltage ripple.  
With adequate feedforward capacitance, evenly distributed  
single pulses at the switching node can be achieved. The  
range of the capacitor value is from 5.0 pF to 200 pF for  
most applications. For NCP1406, the lower the switching  
frequency, the larger the feedforward capacitance is  
needed; besides, the higher the output voltage, the larger  
the feedforward capacitance is required. For the initial trial  
value of the feedforward capacitor, the following equation  
can be used; however, the actual value needs fine tuning:  
1
C
FF  
[
f
SW(Load)  
2   p   
  R1  
20  
Output Voltage Higher than 25 V  
Output Capacitor  
The NCP1406 can be used to generate output voltage  
higher than 25 V by adding an external high voltage N−Ch  
MOSFET in series with the internal MOSFET switch as  
shown in Figure 51. The drain−to−source breakdown  
voltage of the external MOSFET must be at least 1.0 V  
higher than the output voltage. The diode D2 connected  
across the gate and the source of the external MOSFET  
helps the external MOSFET to turn off and ensures that  
most of the voltage drops across the external MOSFET  
during the switch−off period. Since the high voltage  
external MOSFET is in series with the internal MOSFET,  
higher break down voltage is achieved but the current  
capability is not increased.  
There is an alternative application circuit shown in  
Figure 53 which can output voltage up to 30 V. For this  
circuit, a diode−capacitor charge−pump voltage doubler  
constructed by D2, D3 and C1 is added. During the internal  
MOSFET switch−on time, the LX pin is shorted to ground  
and D2 will charge up C1 to the stepped up voltage at the  
cathode of D1. During the MOSFET switch−off time, the  
voltage at VOUT will be almost equal to the double of the  
voltage at the cathode of D1. The VOUT is monitored by the  
FB pin via the resistor divider and can be set by the resistor  
values. Since the maximum voltage at the cathode of D1 is  
15 V, the maximum VOUT is 30 V. The value of C1 can be in  
the range of 0.47 mF to 2.2 mF.  
The output capacitor is used for sustaining the output  
voltage when no current is delivering from the input, and  
smoothing the ripple voltage. Ceramic capacitors should  
be used for the output capacitor due to their low ESR at high  
switching frequency and low profile in physical size. In  
general, a 3.3 mF to 22 mF ceramic capacitor should be  
appropriate for most applications. X5R and X7R type  
ceramic capacitors are recommended due to their good  
capacitance tolerance and temperature coefficient, while  
Y5V type ceramic capacitors are not recommended since  
both their capacitance tolerance and temperature  
coefficient are too large. The output voltage ripple and  
switching frequency at nominal load current can be  
calculated by the following equations:  
I
C
I
  L  
OUT  
OUT SW(Load)  
1
PK  
ǒ
Ǔ
V
ripple  
+
*
f
V
) V −V  
IN  
OUT  
D
* (I −I  
PK OUT  
)   ESR  
2I  
(V  
) V −V  
)
IN  
OUT OUT  
2
D
f
+
SW(Load)  
I
  L  
PK  
Where I  
is the nominal load current, C  
is the  
OUT  
OUT  
selected output capacitance, I  
is the peak inductor  
PK  
current, L is the selected inductance, V  
is the output  
OUT  
voltage, V is the Schottky diode forward voltage, V is  
D
IN  
the input voltage, ESR is the ESR of the output capacitor.  
Negative Voltage Generation  
The NCP1406 can be used to produce a negative voltage  
output by adding a diode−capacitor charge−pump circuit  
(D2, D3, and C1) to the LX pin as shown in Figure 50. The  
feedback voltage resistor divider is still connected to the  
positive output to monitor the positive output voltage and  
a small value capacitor is used at C2. When the internal  
MOSFET switches off, the voltage at the LX pin charges  
up the capacitor through diode D2. When the MOSFET  
Feedback Resistors  
To achieve better efficiency at light load, a high  
impedance feedback resistor divider should be used.  
Choose the lower resistor R2 value from the range of 10 kW  
to 200 kW. The value of the upper resistor R1 can then be  
calculated from the equation below:  
V
1.19  
OUT  
+ R ǒ * 1Ǔ  
R
1
2
http://onsemi.com  
14  
NCP1406  
switches on, the capacitor C1 is effectively connected like  
a reversed battery and C1 discharges the stored charge  
through the R of the internal MOSFET and D3 to  
Moreover, the brightness of the LEDs can be adjusted by  
a DC voltage or a PWM signal with an additional circuit  
illustrated below:  
DS(on)  
charge up COUT and builds up a negative voltage at VOUT  
.
To FB Pin  
To LED  
D2  
Since the negative voltage output is not directly monitored  
by the NCP1406, the output load regulation of the negative  
output is not as good as the standard positive output circuit.  
The resistance values of the resistors of the voltage divider  
can be one−tenth of those used in the positive output circuit  
in order to improve the regulation at light load.  
The application circuit in Figure 54, is actually the  
combination of the application circuits in Figures 50 and  
51.  
R2  
R1  
100 kW  
C2  
DC/  
PWM  
Signal  
C1  
0.1 mF  
RS  
680 pF  
GND  
Step−Down Converter  
Figure 45.  
NCP1406 can be configured as a simple step−down  
converter by using the open−drain LX pin to drive an  
external P−Ch MOSFET as shown in Figure 52. The  
resistor RGS is used to switch off the P−Ch MOSFET during  
the switch−off period. Too small a resistance value should  
not be used for RGS, otherwise, the efficiency will be  
reduced. RGS should be in the range of 510 W to 5.1 kW.  
With this additional circuit, the maximum LED current  
is set by the above equation. The value of R2 can be  
obtained by the following equation:  
V
  D * V * 1.19  
CTL(MAX) D  
MAX  
(I  
R2 +  
*I  
) R  
S
LED(MAX) LED(MIN)  
R1  
ǒ
Ǔ
White LED Driver  
The NCP1406 can be used as a constant current LED  
driver which can drive up to 6 white LEDs in series as  
shown in Figure 57. The LED current can be set by the  
resistance value of RS. The desired LED current can be  
calculated by the equation below:  
VMAX is the maximum voltage of the control signal,  
DCTL(MAX) is the maximum duty cycle of the control signal,  
VD is the diode forward voltage, ILED(MAX) is the maximum  
LED current and ILED(MIN) is the minimum LED current. If  
a PWM control signal is used, the signal frequency can be  
in the range of 5.0 kHz to 30 kHz. It is recommended to  
keep the input PWM frequency about 15 kHz to avoid  
generating audio noise.  
1.19  
I
+
LED  
R
S
http://onsemi.com  
15  
NCP1406  
PCB Layout Guidelines  
PCB layout is very important for switching converter  
performance. All the converter’s external components  
should be placed closed to the IC. The schematic, PCB  
trace layout, and component placement of the step−up  
DC−DC converter demonstration board are shown in  
Figure 46 to Figure 49 for PCB layout design reference.  
The following guidelines should be observed:  
traces for connecting the inductor L can also reduce stray  
inductance). The path between C1, L1, D1, and C2 should  
be kept short. The trace from L to LX pin of the IC should  
also be kept short.  
3. External Feedback Components  
Feedback resistors R1 and R2, and feedforward  
capacitor C3 should be located as close to the FB pin as  
possible to minimize noise picked up by the FB pin. The  
ground connection of the feedback resistor divider should  
be connected directly to the GND pin.  
1. Grounding  
Single−point grounding should be used for the output  
power return ground, the input power return ground, and  
the device switch ground to reduce noise. The input ground  
and output ground traces must be thick and short enough for  
current to flow through. A ground plane should be used to  
reduce ground bounce.  
4. Input Capacitor  
The input capacitor should be located close to both the  
input to the inductor and the VDD pin of the IC.  
5. Output Capacitor  
2. Power Traces  
The output capacitor should be placed close to the  
output terminals to obtain better smoothing effect on output  
ripple voltage.  
Low resistance conducting paths (short and thick traces)  
should be used for the power carrying traces to reduce  
power loss so as to improve efficiency (short and thick  
L1 8.2 mH  
D1  
TP1  
TP3  
V
IN  
V
OUT  
1.8 V to 5.0 V  
25 V  
MBR0530T1  
R1  
R2  
CE  
1
LX  
5
C3  
FB  
2
C
2
C
1
3.3 mF  
10 mF  
VDD  
3
GND  
4
Enable  
TP4  
GND  
TP2  
GND  
Figure 46. Step−Up Converter Demonstration Board Schematic  
http://onsemi.com  
16  
 
NCP1406  
Figure 47. Step−Up Converter Demonstration Board Top Layer Component Silkscreen  
Figure 48. Step−Up Converter Demonstration Board Top Layer Copper  
Figure 49. Step−Up Converter Demonstration Board Bottom Layer Copper  
http://onsemi.com  
17  
NCP1406  
Components Supplier  
Output  
Voltage  
Parts  
Supplier  
Part Number  
Description  
Website  
C1  
Panasonic  
ECJ2FB0J106M  
ECJ3YB1E475M  
ECJ1VC1H560K  
MBR0520LT1  
Ceramic Capacitor 0805 10 mF/6.3 V  
Ceramic Capacitor 1206 4.7 mF/25 V  
Ceramic Capacitor 0603 56 pF/50 V  
www.panasonic.com  
www.panasonic.com  
www.panasonic.com  
www.onsemi.com  
C2  
Panasonic  
C3  
Panasonic  
D1  
ON Semiconductor  
Schottky Power Rectifier  
20 V/500 mA  
15 V  
L1  
R1  
R2  
U1  
C1  
C2  
C3  
D1  
Sumida Electric Co. Ltd CMD4D11−100MC  
Inductor 10 mH 1.2 mm Low Profile  
Resistor 0603 1.3 MW  
www.sumida.com  
www.panasonic.com  
www.panasonic.com  
www.onsemi.com  
Panasonic  
ERJ3GEYJ135V  
ERJ3GEYJ114V  
NCP1406SNT1  
ECJ2FB0J106M  
ECJ5YB1H335M  
ECJ1VC1H151K  
MBR0530LT1  
Panasonic  
Resistor 0603 110 kW  
ON Semiconductor  
Panasonic  
25 V Step−up DC−DC Converter  
Ceramic Capacitor 0805 10 mF/6.3 V  
Ceramic Capacitor 1812 3.3 mF/50 V  
Ceramic Capacitor 0603 150 pF/50 V  
www.panasonic.com  
www.panasonic.com  
www.panasonic.com  
www.onsemi.com  
Panasonic  
Panasonic  
ON Semiconductor  
Schottky Power Rectifier  
30 V/500 mA  
25 V  
L1  
Sumida Electric Co. Ltd CMD4D11−100MC  
Inductor 10 mH 1.2 mm Low Profile  
www.sumida.com  
R1  
R2  
U1  
Panasonic  
ERJ3GEYJ225V  
ERJ3GEYJ114V  
NCP1406SNT1  
Resistor 0603 2.2 MW  
www.panasonic.com  
www.panasonic.com  
www.onsemi.com  
Panasonic  
Resistor 0603 110 kW  
ON Semiconductor  
25 V Step−up DC−DC Converter  
OTHER APPLICATION CIRCUITS  
L 8.2 mH  
C1  
2.2 mF  
V
IN  
V
OUT  
−15 V  
2.0 V to 5.5 V  
D3  
C2  
C
4.7 mF  
25 V  
OUT  
6.0 mA at V = 2.0 V  
40 mA at V = 5.5 V  
IN  
D2  
IN  
D1  
CE  
1
LX  
5
C
IN  
10 mF  
C3  
1000 pF  
FB  
2
2.2 mF  
VDD  
3
GND  
4
R
1
R
1
[ * 1.19 ǒ ) 1Ǔ) 1  
V
OUT  
R
2
R
2
L: CR43−8R2MC, Sumida  
CIN: ECJ2FB0J106M, Panasonic  
COUT: ECJ3YB1E475M, Panasonic  
C1: ECJ2FB1C225K, Panasonic  
C2: ECJ2FB1C225K, Panasonic  
C3: ECJ1VC1H102J, Panasonic  
D1, D2: MBR0520LT1, ON Semiconductor  
D3: MBR0520LT1 x 2, ON Semiconductor  
Figure 50. Positive−to−Negative Output Converter for Negative LCD Bias  
http://onsemi.com  
18  
NCP1406  
L 8.2 mH  
D1  
V
OUT  
V
IN  
Up to 30 V  
3.0 V to 5.5 V  
C
3.3 mF  
50 V  
Q1  
OUT  
6.0 mA at V = 3.0 V  
35 mA at V = 5.5 V  
IN  
IN  
D2  
C1  
R
1
CE  
1
LX  
5
C
IN  
5 pF to  
1000 pF  
10 mF  
FB  
2
10 V  
R
2
VDD  
3
GND  
4
R
1
+ 1.19 ǒ ) 1Ǔ  
V
OUT  
R
2
L: CR43−8R2MC, Sumida  
CIN: ECJ2FB0J106M, Panasonic  
COUT: ECJ5YB1H335M, Panasonic  
Q1: MGSF1N03T1, ON Semiconductor /  
NTHS5402T1, ON Semiconductor  
D1: MBR0530T1, ON Semiconductor  
D2: MMSD914T1, ON Semiconductor  
Figure 51. Step−Up DC−DC Converter with 30 V Output Voltage  
L 10 mH  
Q1  
V
IN  
V
OUT  
1.6 V  
200 mA  
3.0 V to 5.5 V  
R
1 k  
GS  
C
22 mF  
6.3 V  
OUT  
C1  
1000 pF  
R
39 k  
CE  
1
LX  
5
1
C
IN  
D1  
10 mF  
FB  
2
6.3 V  
R
1
110 k  
VDD  
3
GND  
4
R
1
+ 1.19 ǒ ) 1Ǔ  
V
OUT  
R
2
L: CR43−100MC, Sumida  
CIN: ECJ2FB0J106M, Panasonic  
COUT: ECJHVB0J226M, Panasonic  
Q1: MGSF1P02LT1, ON Semiconductor  
D1: MBR0530T1, ON Semiconductor  
Figure 52. Step−Down DC−DC Converter with 1.6 V Output Voltage for DSP Circuit  
http://onsemi.com  
19  
NCP1406  
L 6.8 mH  
C1 1.0 mF  
D3  
V
OUT  
V
IN  
30 V  
2.0 V to 5.5 V  
C
OUT1  
2.0 mA at V = 2.0 V  
IN  
10 mF  
16 V  
35 mA at V = 5.5 V  
D2  
IN  
C
10 mF  
6.3 V  
IN  
CE  
1
LX  
5
C2  
7.0 pF  
R
1
2.2 MW  
D1  
FB  
2
C
OUT2  
10 mF  
16 V  
VDD  
3
GND  
4
R
91 kW  
2
R
1
+ 1.19 ǒ ) 1Ǔ  
V
OUT  
R
2
L: CR43−6R8MC, Sumida  
CIN: ECJ2FB0J106M, Panasonic  
COUT1, COUT2: ECJ3YB1C106M, Panasonic  
C1: ECJ2FB1C225K, Panasonic  
D1, D2, D3: MBR0540T1, ON Semiconductor  
Figure 53. Step−Up DC−DC Converter with 30 V Output Voltage  
D3  
D4  
V
OUT  
−28 V  
C2  
C3  
9.0 mA at V = 3.3 V  
3.3 mF  
50 V  
IN  
L 8.2 mH  
D2  
20 mA at V = 5.0 V  
IN  
2.2 mF/50 V  
V
IN  
3.3 V to 5.0 V  
C1  
1 mF  
50 V  
Q1  
CE  
1
LX  
5
D1  
C
10 mF  
6.3 V  
IN  
C4  
750 pF to  
2000 pF  
R
1
FB  
2
VDD  
3
GND  
4
R
2
R
1
[ * 1.19 ǒ ) 1Ǔ) 1  
V
OUT  
R
2
L: CR43−8R2MC, Sumida  
CIN: ECJ2FB0J106M, Panasonic  
C1: ECJGVB1C105M, Panasonic  
C2: ECJ5YB1H335M, Panasonic  
C3: ECJ4YB1H105M, Panasonic  
Q1: MGSF1N03T1, ON Semiconductor /  
NTHS5402T1, ON Semiconductor  
D1, D2: MMSD914T1, ON Semiconductor  
D3: MBR0530T1, ON Semiconductor  
D4: MBR0530T1 x 2, ON Semiconductor  
Figure 54. Voltage Inverting DC−DC Converter with −28 V Output Voltage  
http://onsemi.com  
20  
NCP1406  
D2  
D3  
V
OUT2  
−15 V  
C5  
2.0 mA at V = 2.0 V  
IN  
4.7 mF  
25 V  
C4  
5.0 mA at V = 2.4 V  
IN  
L1 10 mH  
2.2 mF  
10 mA at V = 3.0 V  
IN  
D1  
V
IN  
V
OUT1  
15 V  
2.0 V to 5.5 V  
5 pF to  
1000 pF  
C2  
4.7 mF  
25 V  
ON  
JP1  
OFF  
2.0 mA at V = 2.0 V  
5.0 mA at V = 2.4 V  
10 mA at V = 3.0 V  
IN  
C
1
CE  
1
LX  
5
IN  
10 mF  
6.3 V  
IN  
R1 FB  
C3  
2
R2  
VDD  
3
GND  
4
R
1
+ 1.19 ǒ ) 1Ǔ  
V
OUT1  
R
2
V
OUT2  
[ −V ) 0.3  
OUT1  
L: CR43−100MC, Sumida  
C1: ECJ2FB0J106M, Panasonic  
C2, C5: ECJ3YB1E475M, Panasonic  
C3: ECJ1VC1H102J, Panasonic  
C4: ECJ2FB1C225K, Panasonic  
D1: MBR0520LT1, ON Semiconductor  
D2, D3: MBR0520LT1 x 2, ON Semiconductor  
R1: 1.3 MW  
R2: 110 kW  
Figure 55. +15 V, −15 V Outputs Converter for LCD Bias Supply  
D4  
D5  
V
OUT2  
−7.5 V  
C7  
10 mA at V = 3.0 V  
IN  
10 mF  
C5  
16 V  
L1 10 mH  
2.2 mF  
C4  
2.2 mF  
D3  
V
IN  
V
OUT1  
3.0 V to 5.5 V  
15 V  
C6  
10 mF  
16 V  
820 pF  
C3  
ON  
JP1  
OFF  
10 mA at V = 3.0 V  
D2  
IN  
C
1
CE  
1
LX  
5
10 mF  
6.3 V  
D1  
R1 FB  
2
C2  
2.2 mF  
16 V  
R2  
VDD  
3
GND  
4
C9  
L: CR43−100MC, Sumida  
C1: ECJ2FB0J106M, Panasonic  
C6, C7: ECJ3YB1C106M, Panasonic  
C3: ECJ1VC1H821J, Panasonic  
C2, C4, C5: ECJ2FB1C225K, Panasonic  
R
1
+ 1.19 ǒ ) 1Ǔ  
V
V
OUT1  
R
2
V
OUT1  
2
[ −  
OUT2  
D1, D2, D3, D4, D5: MBR0520LT1, ON Semiconductor  
R1: 1.3 MW  
R2: 110 kW  
Figure 56. +15 V, −7.5 V Outputs Converter for CCD Supply Circuit  
http://onsemi.com  
21  
NCP1406  
L1 4.7 mH  
D1  
TP1  
TP3  
V
OUT  
I
LED  
V
IN  
JP1  
ON  
100 mA  
3.0 V to 5.5 V  
C1  
22 mF  
6.3 V  
C2  
TP2  
GND  
TP4  
GND  
CE  
1
LX  
5
CE  
10 mF  
16 V  
FB  
2
OFF  
White LED x 3  
Control  
Signal  
VDD  
3
GND  
4
R2  
100 kW  
U1: NCP1406, ON Semiconductor  
D1: MBR0520LT1, ON Semiconductor  
L1: CR43−4R7MC, Sumida  
R1  
12 W  
1.19 V  
R1  
I
+
LED(DC)  
C1: ECJHVB0J226M, Panasonic  
C2: ECJ3YB1C106M, Panasonic  
LED1, LED2, LED3: LWH1033 (Luxpia)  
R1: 12 W  
R2: 100 kW  
Figure 57. White LEDs Driver Circuit  
http://onsemi.com  
22  
NCP1406  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
CASE 483−02  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
D
5
4
3
B
C
S
1
2
L
MILLIMETERS  
INCHES  
MIN MAX  
0.1142 0.1220  
G
DIM  
A
B
C
D
G
H
J
K
L
MIN  
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
MAX  
3.10  
A
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
J
0.05 (0.002)  
H
M
K
M
S
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1406/D  

相关型号:

NCV1413B

High Voltage, High Current Darlington Transistor Arrays
ONSEMI

NCV1413BDR2

High Voltage, High Current Darlington Transistor Arrays
ONSEMI

NCV1413BDR2G

High Voltage, High Current Darlington Transistor Arrays
ONSEMI

NCV1455B

Timers
ONSEMI
ONSEMI
ONSEMI

NCV1729SN35T1G

Charge Pump, Switched Capacitor Voltage Inverter with Shutdown, 50 mA, 35 kHz
ONSEMI

NCV199A2SQT2G

Current-Shunt Monitor, Voltage Output Bi-Directional Zero-Drift
ONSEMI

NCV199A3SQT2G

Current-Shunt Monitor, Voltage Output Bi-Directional Zero-Drift
ONSEMI

NCV2001

0.9 V, Rail−to−Rail, Single Operational Amplifier
ONSEMI

NCV2001SN2T1G

0.9 V, Rail−to−Rail, Single Operational Amplifier
ONSEMI

NCV2001SQ2T2G

Operational Amplifier with sub-one volt operation, Rail to Rail I/O
ONSEMI