NCV21671DM050R2G [ONSEMI]

Current-Shunt Monitors, Zero-Drift, 40 V Common Mode, Bidirectional, Shutdown;
NCV21671DM050R2G
型号: NCV21671DM050R2G
厂家: ONSEMI    ONSEMI
描述:

Current-Shunt Monitors, Zero-Drift, 40 V Common Mode, Bidirectional, Shutdown

文件: 总21页 (文件大小:681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Current-Shunt Monitors,  
Zero-Drift, 40 V Common  
Mode, Bidirectional,  
Shutdown  
MARKING  
DIAGRAMS  
xxxx  
AYW  
NCS21671, NCV21671  
The NCS21671 and NCV21671 are a series of voltage output  
current sense amplifiers offered in gains of 25, 50, 100, and 200 V/V.  
These parts can measure voltage across shunts at common mode  
voltages from 0.1 V to 40 V, independent of supply voltage. The low  
offset of the zerodrift architecture enables current sensing with  
voltage drops across sense resistors as low as 10 mV fullscale. An  
optional enable function is available to reduce current drain through  
the input pins and power supply pins to negligible levels when  
disabled or if Vs is less than 1.5 V. Two optional pins are included to  
simplify input filtering. These devices can operate from a single  
+1.8 V to +5.5 V power supply, drawing a maximum of 80 mA of  
supply current. These parts are available in Micro10 and SC706  
packages.  
Micro10  
CASE 846B03  
XXXX = Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
6
XXXMG  
G
1
1
SC88/SC706  
/SOT363  
CASE 419B02  
XXX = Specific Device Code  
M
= Date Code*  
Features  
G
= PbFree Package  
Wide Common Mode Input Range: 0.1 V to 40 V  
Supply Voltage Range: 1.8 V to 5.5 V  
Low Offset Voltage: ±25 mV max  
RailtoRail Output Capability  
(Note: Microdot may be in  
either location)  
PIN CONNECTIONS  
Low Current Consumption: 80 mA max  
Enable Pin to Turn Off Input and Power Supply Currents  
See pin connections on page 2 of this datasheet.  
Optional Input Filtering Through C  
and C Pins  
IN−  
IN+  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Typical Applications  
Power Bus Monitoring  
Battery Current Monitor  
Lighting Ballast  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
May, 2023 Rev. 0  
NCS21671/D  
NCS21671, NCV21671  
1.8 V to 5.5 V  
Supply  
Reference  
Voltage  
R
fb  
NCS21671  
Enable HI  
EN  
Shutdown LOW  
R
R
in  
filt  
I
LOAD  
IN+  
+
R
SHUNT  
OUT  
VOUT  
IN  
R
R
in  
filt  
R
fb  
C
FILT  
V
OUT  
= (I  
x R ) * GAIN + V  
SHUNT REF  
LOAD  
Figure 1. Example Application Schematic of HighSide Current Sensing  
PIN FUNCTION DESCRIPTION  
10  
1
NC  
OUT  
GND  
REF  
EN  
C
2
3
4
5
9
8
IN+  
IN+  
IN−  
1
2
3
6
5
OUT  
REF  
IN−  
GND  
7
6
IN+  
4
V
S
V
S
C
IN  
Micro10  
SC706  
Figure 2. Pin Function Description  
PIN DESCRIPTION  
Pin Name  
Type  
Description  
This pin must be left not connected to external circuitry.  
NC  
No connect  
C
Input  
Input  
Input  
Input  
Supply  
Input  
Available on Micro10 packages only. An optional capacitor can be added between C  
to create a lowpass input filter.  
and C  
IN+ IN−  
IN+  
IN+  
This pin is connected to the positive side of the sense resistor or current shunt. This pin becomes  
high impedance when the part is in shutdown mode (EN = 0).  
IN−  
This pin is connected to the negative side of the sense resistor or current shunt. This pin becomes  
high impedance when the part is in shutdown mode (EN = 0).  
C
Available on Micro10 packages only. An optional capacitor can be added between C  
to create a lowpass input filter.  
and C  
IN+ IN−  
IN−  
V
This is the positive supply pin that provides power to the internal circuitry. An external bypass  
capacitor of 0.1 μF is recommended to be placed as close as possible to this pin.  
S
EN  
Available on Micro10 packages only. There is no pullup enable the part when this pin is open  
circuit. The enable pin can be connected to V or driven with a logic level to enable the part. If this  
S
pin is driven low the part enters a low power mode to conserve current consumption.  
REF  
Input  
This pin sets the reference voltage of the internal difference amplifier circuit, allowing for  
unidiretional or bidirectional current sensing. For unidirectional current sensing, connect this pin to  
GND. For bidirectional current sensing, connect this pin between the GND and V range.  
S
GND  
OUT  
Supply  
Output  
This is the negative supply rail of the circuit.  
The output pin provides a low impedance voltage output. This pin becomes high impedance when  
the part is in shutdown mode (EN = 0).  
www.onsemi.com  
2
NCS21671, NCV21671  
MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
0.3 to 6  
44  
Unit  
V
Supply Voltage (Note 1)  
V
S
IN+, IN, CIN+, CIN−  
Differential (V ) (V ) (Note 2)  
V V  
IN+, IN−  
V
IN+  
IN−  
CommonMode (Note 2)  
0.3 to +44  
REF Input  
V
GND0.3 to (V ) +0.3  
V
V
REF  
s
EN Input  
V
GND0.3 to (V ) +0.3  
s
EN  
Output (Note 2)  
V
OUT  
GND0.3 to (V ) +0.3  
V
s
Input Current into Any Pin (Note 2)  
Operating Temperature  
I
10  
40 to +150  
65 to +150  
+150  
mA  
°C  
°C  
°C  
V
IN  
T
A
Storage Temperature  
T
STG  
Junction Temperature  
T
J(max)  
ESD Capability, Human Body Model (Note 3)  
Charged Device Model (Note 3)  
Latchup Current (Note 4)  
HBM  
CDM  
2000  
1000  
V
100  
mA  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe  
operating parameters.  
2. Input voltage at any pin may exceed the voltage shown if current at that pin is limited to 10 mA.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard JS0012017  
ESD Charged Device Model tested per JEDEC standard JS0022014  
4. Latchup Current tested per JEDEC standard JESD78E  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Micro10 / MSOP10  
SC88 / SC706 / SOT363  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Junctiontoambient thermal resistance (Notes 5, 6)  
Junctiontocase thermal resistance (Notes 5, 6)  
Junctiontotop thermal characterization (Notes 5, 6)  
Junctiontoboard thermal characterization (Notes 5, 6)  
q
180  
71  
188  
128  
21  
JA  
q
JC(top)  
Y
Y
1.6  
98  
JT  
91  
JB  
5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe  
operating parameters.  
2
2
6. Values based on copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate. (reference JESD51).  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Conditions  
NCS prefix  
Min  
40  
40  
0.1  
1.8  
Max  
125  
125  
40  
Unit  
Operating Temperature  
T
A
°C  
NCV prefix  
Common Mode Input Voltage  
Supply Voltage  
V
CM  
Full temperature range  
Full temperature range  
V
V
V
S
5.5  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended  
Operating Ranges limits may affect device reliability.  
www.onsemi.com  
3
 
NCS21671, NCV21671  
ELECTRICAL CHARACTERISTICS  
At T = +25°C, V  
= (V ) (V ); V = 1.8 V to 5.5 V, V  
= 12 V, and V = V /2, unless otherwise noted. Boldface limits  
REF S  
A
SENSE  
IN+  
IN−  
S
IN+  
apply over the specified temperature range, T = 40 °C to 125 °C.  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT  
Common Mode Rejection  
Ratio, RTI (Note 7)  
CMRR  
V
V
= 0.1 V to 40 V,  
SENSE  
G = 25  
G = 50  
G = 100  
G = 200  
G = 25  
G = 50  
G = 100  
G = 200  
G = 25  
G = 50  
G = 100  
G = 200  
109  
109  
109  
109  
127  
127  
134  
134  
± 9  
dB  
IN+  
= 0 mV  
T = 40 °C to 125 °C  
A
Input Offset Voltage,  
RTI (Note 7)  
V
OS  
V
= 0 mV  
19  
12  
10  
10  
60  
40  
25  
25  
± ±0.  
mV  
mV  
SENSE  
± 4  
± 3  
± 2  
V
V
= 0.1 V to 40 V  
± 1  
IN+  
SENSE  
= 0 mV  
± 1  
± 1  
± 1  
Input Offset Voltage Drift vs.  
Temperature, RTI (Note 7)  
DV / dT  
V
= 0 mV  
± 0.1  
mV/°C  
mV/V  
OS  
SENSE  
Power Supply Rejection Ratio  
PSRR  
V = 1.8 V to 5.5 V,  
S
± 1.0  
± ±1  
V
V
V
= 0mV  
= 0 mV  
= 0mV  
SENSE  
SENSE  
SENSE  
Input Bias Current  
I
29  
35  
mA  
IB  
Input Bias Current in Shutdown  
(Note 10)  
I
I
140  
nA  
IBSD  
Input Bias Current in Shutdown  
(Note 10)  
T = 40 °C to 125 °C  
A
500  
nA  
IBSD  
Input Offset Current  
I
V
= 0 mV  
1.4  
± 0.3  
mA  
IO  
SENSE  
Enable Input Threshold Voltage  
V
Enabled  
Disabled  
V
th(EN)  
0.3  
Enable Input Leakage Current  
I
V
EN  
V
EN  
= V  
S
3
nA  
EN  
= GND  
3  
65  
20  
Enable Time (Note 8)  
Shutdown Time (Note 8)  
OUTPUT  
t
R = 10 kΩ to GND  
μs  
μs  
ON  
L
t
R = 10 kΩ to GND  
OFF  
L
Gain  
G
G = 25  
G = 50  
G = 100  
G = 200  
25  
V/V  
50  
100  
200  
Gain Error  
E
G
V
= 5 mV to + 5 mV, G = 25  
%
± 0.4  
± 0.4  
± 0.3  
± 0.5  
SENSE  
T = 40°C to 125°C  
A
G = 50  
G = 100  
G = 200  
Nonlinearity Error  
± 0.01  
%
Reference Voltage Rejection  
Ratio (Note 10)  
RVRR  
V
REF  
= 100 mV to  
G = 25  
G = 50  
G = 100  
G = 200  
1
27  
mV/V  
(V – 100 mV)  
S
15  
T = 40°C to 125°C  
A
V
S
= 5.5 V  
10  
10  
Maximum Capacitive Load  
C
No sustained oscillation  
nF  
L
www.onsemi.com  
4
NCS21671, NCV21671  
ELECTRICAL CHARACTERISTICS  
At T = +25°C, V  
= (V ) (V ); V = 1.8 V to 5.5 V, V  
= 12 V, and V = V /2, unless otherwise noted. Boldface limits  
REF S  
A
SENSE  
IN+  
IN−  
S
IN+  
apply over the specified temperature range, T = 40 °C to 125 °C.  
A
Parameter  
VOLTAGE OUTPUT  
Swing to VS Supply Rail  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OH  
R = 10 kW to GND  
V
20  
V 35  
S
mV  
mV  
L
A
S
T = 40°C to +125°C  
Swing to GND  
V
OL  
R = 10 kW to GND  
1
2.5  
L
T = 40°C to +125°C  
A
FREQUENCY RESPONSE  
Bandwidth (f  
)
BW  
C = 10pF  
G = 25  
G = 50  
G = 100  
G = 200  
40  
40  
35  
20  
0.3  
30  
kHz  
3dB  
L
Slew Rate  
SR  
V = 5.5 V  
S
V/μs  
μs  
Settling Time  
T
e
From current step to within 1% of final  
value  
S
NOISE  
Voltage Noise Density,  
RTI (Note 7)  
G = 25  
G = 50  
G = 100  
G = 200  
56  
46  
46  
46  
nV/Hz  
n
POWER SUPPLY  
Quiescent Current  
IQ  
V
V
V
= 0 mV  
= 0 mV  
= 0 mV  
45  
0.2  
40  
80  
0.5  
μA  
μA  
μs  
SENSE  
SENSE  
SENSE  
Quiescent Current in Shutdown  
Poweron Time (Note 9)  
I
t
QSD  
PON  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be  
indicated by the Electrical Characteristics if operated under different conditions.  
7. Referred to input.  
8. Shutdown Time (t  
) and Enable Time (t ) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output  
OFF  
ON  
voltage reaches within 10% of its final value. V  
= (0.75 * V V  
) / Gain.  
SENSE  
S
REF  
9. Time between V is application and Vout reaching 10% of final value.  
S
10. Guaranteed by characterization and/or design.  
www.onsemi.com  
5
 
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
= V /2, V  
=12 V, and all  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
CM  
gains unless otherwise noted.)  
Input Offset (μV)  
Input Offset (μV)  
Figure 3a. Input Offset Voltage Distribution,  
G25  
Figure 3b. Input Offset Voltage Distribution,  
G50  
Input Offset (μV)  
Input Offset (μV)  
Figure 3d. Input Offset Voltage Distribution,  
G200  
Figure 3c. Input Offset Voltage Distribution,  
G100  
VOS vs. Temperature  
50  
40  
30  
20  
10  
0
10  
20  
30  
40  
50  
50 25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
CMRR (μV/V)  
Figure 5a. Common Mode Rejection Ratio  
Distribution, G25  
Figure 5. Input Offset vs. Temperature, G100  
www.onsemi.com  
6
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ); V = V = 1.8 V, V  
= V /2, V  
=12 V, and all  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
CM  
gains unless otherwise noted.) (continued)  
CMRR (μV/V)  
CMRR (μV/V)  
Figure 5b. Common Mode Rejection Ratio  
Distribution, G50  
Figure 5c. Common Mode Rejection Ratio  
Distribution, G100  
CMRR vs. Temperature  
2
1.5  
1
0.5  
0
0.5  
1  
1.5  
2  
50  
25  
0
25  
50  
75  
100  
125  
150  
Temperture (°C)  
CMRR (μV/V)  
Figure 5d. Common Mode Rejection Ratio  
Distribution, G200  
Figure 6. Common Mode Rejection Ratio vs  
Temperature, G100  
Gain Error (%)  
Gain Error (%)  
Figure 7b. Gain Error Distribution, G50  
Figure 7a. Gain Error Distribution, G25  
www.onsemi.com  
7
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
= V /2, V  
=12 V, and all  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
CM  
gains unless otherwise noted.) (continued)  
Gain Error (%)  
Gain Error (%)  
Figure 7c. Gain Error Distribution, G100  
Figure 7d. Gain Error Distribution, G200  
Giant Error vs. Temperature  
VOS vs. VCM  
50  
40  
0.6  
0.5  
Vs = 1.8 V  
Vs = 5 V  
40  
0
25  
30  
85  
125  
20  
0.4  
0.3  
0.2  
10  
0
10  
20  
30  
40  
50  
0.1  
0
5  
0
5
10  
15  
20  
25  
30  
35  
40  
50  
25  
0
25  
50  
75  
100  
125  
150  
Common Mode Voltage (V)  
Temperature (°C)  
Figure 9. Zero VIN Output vs Common Mode  
Voltage, G100  
Figure 8. Gain Error vs Temperature, G100  
CMRR vs. Frequency  
PSRR vs. Frequency  
140  
140  
120  
100  
80  
Vs = 1.8 V  
Vs = 5 V  
120  
100  
80  
Vs = 1.8 V  
Vs = 5 V  
60  
60  
40  
40  
20  
20  
0
0
20  
20  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 10. Common Mode Rejection Ratio vs  
Frequency, G100  
Figure 11. Power Supply Rejection Ratio vs  
Frequency, G100  
www.onsemi.com  
8
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
= V /2, V =12 V, and all  
CM  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
gains unless otherwise noted.) (continued)  
Bandwidth vs. Frequency  
Output Impedance  
50  
40  
10k  
1k  
30  
20  
100  
10  
0
10  
1
10  
20  
30  
40  
50  
G200  
G100  
G50  
G25  
G50  
G100  
G200  
0.1  
G25  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Figure 12. Gain vs Frequency  
Figure 13. Output Impedance vs Frequency  
2.5  
1.5  
80  
60  
Source 40C  
Source 25C  
Source 125C  
Sink 40C  
Sink 25C  
0.5  
40  
20  
0
Sink 125C  
0.5  
40  
25C  
125C  
1.5  
20  
2.5  
0
5
10  
15  
20  
25  
30  
35  
40  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
Common Mode Voltage (V)  
Output Current (mA)  
Figure 14. Output Voltage Swing vs Current  
Figure 15. Input Bias Current vs Common  
Mode Voltage (Enabled)  
10  
8
0.6  
40°C  
0°C  
25°C  
85°C  
100°C  
125°C  
VS = 1.8 V  
VS = 5 V  
0.5  
0.4  
0.3  
0.2  
0.1  
6
4
2
0
0
2  
4  
0.1  
0.2  
10  
0
10  
20  
30  
40  
50  
0
30  
10  
20  
40  
Common Mode Voltage (V)  
Temperature (°C)  
Figure 17. Quiescent Current vs Common  
Mode Voltage (Enabled)  
Figure 16. Input Bias Current vs Common Mode  
Voltage (VS open circuit)  
www.onsemi.com  
9
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
= V /2, V  
=12 V, and all  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
CM  
gains unless otherwise noted.) (continued)  
Inout Voltage Noise Density  
10k  
10  
8
VS = 1.8 V  
VS = 5 V  
6
1k  
100  
10  
4
2
0
2  
4  
10  
0
10  
20  
30  
40  
50  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Common Mode Voltage (V)  
Figure 18. Quiescent Current vs Common Mode  
Voltage (Disabled)  
Figure 19. Voltage Noise Density  
(ReferredtoInput)  
300  
250  
200  
150  
100  
50  
0.01  
2.7  
Input (V)  
Output (V)  
2.6  
2.5  
2.4  
2.3  
0.005  
0
0
0.005  
0.01  
50  
100  
150  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
Time (s)  
Time (ms)  
Figure 20. 0.1Hz to 10Hz Voltage Noise  
(ReferredToInput)  
Figure 21. Step Response, G25 (10mV Input)  
0.01  
0.005  
0
5
50  
40  
30  
20  
10  
0
2.64  
2.6  
Input (V)  
Output (V)  
4.6  
4.2  
3.8  
3.4  
3.2  
2
2.56  
2.52  
2.2  
1.8  
1.4  
1
0.005  
0.01  
2.48  
VCM  
VOUT  
2.44  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
Time (ms)  
Time (ms)  
Figure 23a. Common Mode Voltage Step  
Figure 22. Step Response, G200 (10mV Input)  
Rising, G100 (10ms)  
www.onsemi.com  
10  
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
otherwise noted.) (continued)  
= V /2, V  
=12 V, and all gains unless  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
CM  
50  
50  
40  
30  
20  
10  
0
2.58  
2.54  
VCM  
VOUT  
40  
2.56  
2.54  
2.52  
2.5  
2.532  
30  
2.524  
20  
10  
0
2.516  
2.508  
2.5  
VCM  
VOUT  
2.48  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
100  
200  
300  
400  
500  
600  
Time (ms)  
Time (ms)  
Figure 23b. Common Mode Voltage Step  
Figure 23c. Common Mode Voltage Step  
Rising, G100 (100ms)  
Falling, G100 (10ms)  
50  
40  
30  
20  
10  
0
2.58  
2.56  
2.54  
2.52  
2.5  
120  
100  
80  
60  
40  
20  
0
VCM  
VOUT  
1 kHz  
10 kHz  
100 kHz  
2.48  
0
5
10  
15  
20  
25  
30  
35  
40  
0
20  
40  
60  
80 100 120 140 160 180 200  
VCM (V)  
Time (ms)  
Figure 24a. Common Mode Rejection Ratio  
vs Common mode Voltage, G25  
Figure 23d. Common Mode Voltage Step  
Falling, G100 (100ms)  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
1 kHz  
10 kHz  
100 kHz  
1 kHz  
10 kHz  
100 kHz  
20  
20  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
VCM (V)  
VCM (V)  
Figure 24b. Common Mode Rejection Ratio  
vs Common mode Voltage, G50  
Figure 24c. Common Mode Rejection Ratio  
vs Common mode Voltage, G100  
www.onsemi.com  
11  
NCS21671, NCV21671  
TYPICAL CHARACTERISTICS (At T = +25°C, V  
= (V ) – (V ).; V = V = 1.8 V, V  
= V /2, V =12 V, and all gains unless otherwise noted.)  
CM  
A
SENSE  
IN+  
IN−  
S
EN  
REF  
S
(continued)  
6
5
4
3
2
1
0
5
140  
120  
Vin (V)  
Vout (V)  
4.5  
4
3.5  
3
100  
80  
2.5  
2
60  
1.5  
1
40  
20  
0
0,5  
0
1 kHz  
10 kHz  
100 kHz  
0.5  
1  
0
50  
100  
150  
200  
0
5
10  
15  
20  
25  
30  
35  
40  
Time (ms)  
VCM (V)  
Figure 24d. Common Mode Rejection Ratio  
vs Common mode Voltage, G200  
Figure 25a. Positive Differential Input  
Overload, G100  
6
5
4
3
2
1
6
5
4
3
2
1
0
5
4.5  
4
3
Vin (V)  
Vout (V)  
VS  
VOUT  
3.5  
3
2
2.5  
2
1
1.5  
1
0.5  
0
0
0.5  
1  
0
50  
1  
0
50  
100  
0
100  
200  
Time (ms)  
Time (ms)  
Figure 25b. Negative Differential Input  
Overload, G100  
Figure 26a. VS Power Startup  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
6
5
4
3
2
1
0
Series 1  
Series 2  
VS  
VOUT  
0
0
50  
100  
150  
0
5
10  
15  
20  
Time (ms)  
Time (ms)  
Figure 26b. VS Power Shutdown  
Figure 27a. Enable Startup  
www.onsemi.com  
12  
NCS21671, NCV21671  
6
5
4
3
2
1
0
6
Series 1  
Series 2  
5
4
3
2
1
0
0
2
4
6
8
10  
Time (ms)  
Figure 27b. Enable Shutdown  
APPLICATION INFORMATION  
Current Sensing Techniques  
pin is connected to the midsupply voltage for bidirectional  
The NCS21671 and NCV21671 are current sense  
amplifiers featuring a wide common mode voltage range  
that spans from 0.1 V to 40 V independent of the supply  
voltage. These amplifiers can be configured for lowside  
and highside current sensing.  
At first glance, lowside sensing appears to have the  
advantage of being straightforward, inexpensive, and the  
ability to be implemented with a simple op amp circuit.  
However, the NCS21671 provides the full differential input  
necessary to get accurate shunt connections while also  
providing a builtin gain network with precision difficult to  
obtain with external resistors.  
While at times the application requires lowside sensing,  
only highside sensing can detect a short from the positive  
supply line to ground. Furthermore, highside sensing  
avoids adding resistance to the ground path of the load being  
measured.  
monitoring.  
Enable Pin  
The enable pin can be used to shut down the part and  
reduce current consumption. When the part is shut down,  
quiescent current drops to less than 1 mA and the inputs  
become high impedance. The output also becomes high  
impedance in the shutdown mode.  
Input Filtering  
Some applications may require filtering at the input of the  
current sense amplifier. Input filtering is simplified with the  
CIN+ and CINpins. Simply add an external capacitor  
across the pins to set the cutoff frequency, f .  
c
1
fc +  
(eq. 1)  
2p(2RFilt)CFilt  
Table 1. Internal Resistance Values  
Bidirectional Operation  
The NCS21671 can be configured to monitor  
unidirectional or bidirectional current flow.  
Gain (V/V)  
R
(kW)  
R
(kW)  
R (MW)  
fb  
filt  
in  
25  
50  
20  
20  
1
1
1
1
In unidirectional current sensing, the measured load  
current always flows in the same direction. Common  
applications for unidirectional operation include power  
supplies and load current monitoring. The NCS21671 can be  
set up for unidirectional monitoring by connecting the REF  
pin to ground. In this configuration, the IN+ pin should be  
connected to the high side of the sense resistor, while the IN−  
pin should be connected to the low side of the sense resistor.  
Bidirectional current sensing measures current flow in  
both directions. A common application for bidirectional  
current sensing is battery monitoring. While the battery is  
charging, current flows in one direction; while the battery is  
being used, current flows in the other direction. For  
bidirectional current flow, the REF pin can be connected to a  
voltage between GND and the Vs supply. Typically, the REF  
10  
5
10  
5
100  
200  
2.5  
2.5  
The internal filter resistance has a tolerance of 25%.  
If the filtering capacitor is not used, Cin+ and Cinpins  
should be left floating.  
As shunt resistors decrease in value, shunt inductance can  
significantly affect frequency response. At values below  
1 mW, the shunt inductance causes a zero in the transfer  
function that often results in corner frequencies in the low  
100’s of kHz. This inductance increases the amplitude of  
high frequency spike transient events on the current sensing  
www.onsemi.com  
13  
NCS21671, NCV21671  
line that can overload the front end of any shunt current  
sensing IC.  
For the most accurate measurements, use four terminal  
current sense resistors. It provides two terminals for the  
current path in the application circuit, and a second pair for  
the voltage detection path of the sense amplifier. This  
technique is also known as Kelvin Sensing. This ensures that  
the voltage measured by the sense amplifier is the actual  
voltage across the resistor and does not include the small  
resistance of a combined connection. When using  
nonKelvin shunts, follow manufacturer recommendations  
on how to lay out the sensing traces closely.  
This problem must be solved by filtering at the input of the  
amplifier. Note that all current sensing ICs are vulnerable to  
this problem, regardless of manufacturer claims. Filtering is  
required at the input of the device to resolve this problem,  
even if the spike frequencies are above the rated bandwidth  
of the device.  
Ideally, select the capacitor to exactly match the time  
constant of the shunt resistor and its inductance;  
alternatively, select the capacitor to provide a pole below  
that point. Make the input filter time constant equal to or  
larger than the shunt and its inductance time constant:  
Gain Options  
The gain is set by integrated, precision, ratiomatched  
resistors. The NCS21671 is available in gain options of  
25 V/V, 50 V/V, 100 V/V, and 200 V/V. Adding external  
resistors to adjust the gain can contribute to the overall  
system error and is not recommended.  
LSHUNT  
RSHUNT  
v RFILTCFILT  
(eq. 2)  
Selecting the Shunt Resistor  
.
.
PD Vin(IGND@Iout) ) Iout(Vin * Vout  
)
The desired accuracy of the current measurement  
determines the precision, shunt size, and the resistor value.  
The larger the resistor value, the more accurate the  
measurement possible, but a large resistor value also results  
in greater current loss.  
(eq. 3)  
PD(MAX) ) (Vout @ Iout  
)
Vin(MAX)  
(eq. 4)  
I
out ) IGND  
ORDERING INFORMATION  
Device  
Channels  
Package  
Gain  
OPN  
Marking  
Shipping  
INDUSTRIAL AND CONSUMER  
Filter  
Pins  
Package  
GAIN  
25  
Enable  
Part Number  
Marking  
AAC(M)  
\A/(YW)  
\A/(YW)  
R(YW)  
G025  
Shipping  
SC706  
No  
No  
NCS21671SQ025T2G  
NCS21671SQ050T2G  
NCS21671SQ100T2G  
NCS21671SQ200T2G  
NCS21671DM025R2G  
NCS21671DM050R2G  
NCS21671DM100R2G  
NCS21671DM200R2G  
Tape and Reel  
3000 / Reel  
50  
100  
200  
25  
Micro10  
Yes  
Yes  
Tape and Reel  
4000 / Reel  
50  
G050  
100  
200  
G100  
G200  
AUTOMOTIVE GRADE1 QUALIFIED  
Filter  
Pins  
Package  
GAIN  
25  
Enable  
Part Number  
Marking  
AAC(M)  
\A/(YW)  
\A/(YW)  
R(YW)  
G025  
Shipping  
SC706  
No  
No  
NCV21671SQ025T2G  
NCV21671SQ050T2G  
NCV21671SQ100T2G  
NCV21671SQ200T2G  
NCV21671DM025R2G  
NCV21671DM050R2G  
NCV21671DM100R2G  
NCV21671DM200R2G  
Tape and Reel  
3000 / Reel  
50  
100  
200  
25  
Micro10  
Yes  
Yes  
Tape and Reel  
4000 / Reel  
50  
G050  
100  
200  
G100  
G200  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
14  
NCS21671, NCV21671  
PACKAGE DIMENSIONS  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
2X  
aaa H D  
NOTES:  
D
H
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
A
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-  
SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.  
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF  
THE PLASTIC BODY AND DATUM H.  
5. DATUMS A AND B ARE DETERMINED AT DATUM H.  
6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE  
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-  
TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OF THE FOOT.  
D
GAGE  
PLANE  
6
1
5
2
4
3
L
L2  
E1  
E
DETAIL A  
aaa C  
2X  
2X 3 TIPS  
bbb H D  
e
MILLIMETERS  
DIM MIN NOM MAX  
−−−  
INCHES  
MIN  
−−−  
NOM MAX  
−−− 0.043  
−−− 0.004  
6X b  
B
TOP VIEW  
A
−−−  
−−−  
1.10  
A1 0.00  
A2 0.70  
0.10 0.000  
M
ddd  
C A-B D  
0.90  
0.20  
0.15  
2.00  
2.10  
1.25  
0.65 BSC  
0.36  
1.00 0.027 0.035 0.039  
0.25 0.006 0.008 0.010  
0.22 0.003 0.006 0.009  
2.20 0.070 0.078 0.086  
2.20 0.078 0.082 0.086  
1.35 0.045 0.049 0.053  
0.026 BSC  
b
C
D
E
0.15  
0.08  
1.80  
2.00  
A2  
DETAIL A  
A
E1 1.15  
e
L
0.26  
0.46 0.010 0.014 0.018  
0.006 BSC  
L2  
0.15 BSC  
0.15  
aaa  
bbb  
ccc  
ddd  
0.006  
0.012  
0.004  
0.004  
0.30  
0.10  
0.10  
6X  
ccc C  
A1  
SEATING  
PLANE  
c
C
SIDE VIEW  
END VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6X  
0.30  
6X  
0.66  
2.50  
0.65  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
www.onsemi.com  
15  
NCS21671, NCV21671  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
STYLE 1:  
PIN 1. EMITTER 2  
2. BASE 2  
STYLE 2:  
CANCELLED  
STYLE 3:  
CANCELLED  
STYLE 4:  
STYLE 5:  
STYLE 6:  
PIN 1. ANODE 2  
2. N/C  
PIN 1. CATHODE  
2. CATHODE  
3. COLLECTOR  
4. EMITTER  
5. BASE  
PIN 1. ANODE  
2. ANODE  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
3. COLLECTOR  
3. CATHODE 1  
4. ANODE 1  
5. N/C  
4. EMITTER  
5. BASE  
6. COLLECTOR 2  
6. ANODE  
6. CATHODE  
6. CATHODE 2  
STYLE 7:  
STYLE 8:  
CANCELLED  
STYLE 9:  
STYLE 10:  
STYLE 11:  
STYLE 12:  
PIN 1. SOURCE 2  
2. DRAIN 2  
3. GATE 1  
PIN 1. EMITTER 2  
2. EMITTER 1  
3. COLLECTOR 1  
4. BASE 1  
PIN 1. SOURCE 2  
2. SOURCE 1  
3. GATE 1  
PIN 1. CATHODE 2  
2. CATHODE 2  
3. ANODE 1  
PIN 1. ANODE 2  
2. ANODE 2  
3. CATHODE 1  
4. ANODE 1  
5. ANODE 1  
6. CATHODE 2  
4. SOURCE 1  
5. DRAIN 1  
6. GATE 2  
4. DRAIN 1  
5. DRAIN 2  
6. GATE 2  
4. CATHODE 1  
5. CATHODE 1  
6. ANODE 2  
5. BASE 2  
6. COLLECTOR 2  
STYLE 13:  
PIN 1. ANODE  
2. N/C  
STYLE 14:  
PIN 1. VREF  
2. GND  
STYLE 15:  
STYLE 16:  
STYLE 17:  
STYLE 18:  
PIN 1. VIN1  
2. VCC  
PIN 1. ANODE 1  
2. ANODE 2  
PIN 1. BASE 1  
2. EMITTER 2  
3. COLLECTOR 2  
4. BASE 2  
PIN 1. BASE 1  
2. EMITTER 1  
3. COLLECTOR 2  
4. BASE 2  
3. COLLECTOR  
4. EMITTER  
5. BASE  
3. GND  
3. ANODE 3  
3. VOUT2  
4. VIN2  
5. GND  
6. VOUT1  
4. IOUT  
5. VEN  
6. VCC  
4. CATHODE 3  
5. CATHODE 2  
6. CATHODE 1  
5. EMITTER 1  
6. COLLECTOR 1  
5. EMITTER 2  
6. COLLECTOR 1  
6. CATHODE  
STYLE 19:  
PIN 1. I OUT  
2. GND  
STYLE 20:  
STYLE 21:  
PIN 1. ANODE 1  
2. N/C  
STYLE 22:  
PIN 1. D1 (i)  
2. GND  
STYLE 23:  
PIN 1. Vn  
2. CH1  
3. Vp  
STYLE 24:  
PIN 1. CATHODE  
2. ANODE  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
3. GND  
3. ANODE 2  
4. CATHODE 2  
5. N/C  
3. D2 (i)  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
4. V CC  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
4. D2 (c)  
5. VBUS  
6. D1 (c)  
4. N/C  
5. V EN  
5. CH2  
6. N/C  
6. V REF  
6. CATHODE 1  
STYLE 30:  
STYLE 25:  
STYLE 26:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 27:  
PIN 1. BASE 2  
2. BASE 1  
STYLE 28:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
STYLE 29:  
PIN 1. ANODE  
2. ANODE  
PIN 1. SOURCE 1  
2. DRAIN 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 1  
PIN 1. BASE 1  
2. CATHODE  
3. COLLECTOR 2  
4. BASE 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 2  
3. COLLECTOR 1  
4. EMITTER 1  
5. EMITTER 2  
6. COLLECTOR 2  
3. COLLECTOR  
4. EMITTER  
5. BASE/ANODE  
6. CATHODE  
4. SOURCE  
5. DRAIN  
6. DRAIN  
5. EMITTER  
6. COLLECTOR 1  
6. DRAIN 1  
6. DRAIN 1  
Note: Please refer to datasheet for  
style callout. If style type is not called  
out in the datasheet refer to the device  
datasheet pinout or pin assignment.  
www.onsemi.com  
16  
NCS21671, NCV21671  
Micro10  
CASE 846B03  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
A−  
4. DIMENSION “B” DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846B01 OBSOLETE. NEW STANDARD  
846B02  
B−  
K
G
MILLIMETERS  
INCHES  
PIN 1 ID  
D 8 PL  
DIM MIN  
MAX  
3.10  
3.10  
MIN  
MAX  
0.122  
0.122  
0.043  
0.012  
M
S
S
A
0.08 (0.003)  
T B  
A
B
C
D
G
H
J
2.90  
2.90  
0.95  
0.20  
0.114  
0.114  
1.10 0.037  
0.30 0.008  
0.50 BSC  
0.020 BSC  
0.05  
0.10  
4.75  
0.40  
0.15 0.002  
0.21 0.004  
5.05 0.187  
0.70 0.016  
0.006  
0.008  
0.199  
0.028  
K
L
C
0.038 (0.0015)  
T−  
SEATING  
PLANE  
L
H
J
SOLDERING FOOTPRINT  
1.04  
0.041  
0.32  
0.0126  
10X  
10X  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.50  
mm  
inches  
ǒ
Ǔ
8X0.0196  
SCALE 8:1  
Micro10  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
1
DATE 11 DEC 2012  
SCALE 2:1  
2X  
aaa H  
D
NOTES:  
D
H
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
A
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-  
SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.  
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF  
THE PLASTIC BODY AND DATUM H.  
5. DATUMS A AND B ARE DETERMINED AT DATUM H.  
6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE  
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-  
TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OF THE FOOT.  
D
GAGE  
PLANE  
6
1
5
2
4
3
L
L2  
E1  
E
DETAIL A  
aaa  
C
2X  
2X 3 TIPS  
bbb H  
D
e
MILLIMETERS  
DIM MIN NOM MAX  
−−−  
INCHES  
MIN  
−−−  
NOM MAX  
−−− 0.043  
−−− 0.004  
6X b  
B
TOP VIEW  
A
−−−  
−−−  
1.10  
A1 0.00  
A2 0.70  
0.10 0.000  
M
ddd  
C A-B D  
0.90  
0.20  
0.15  
2.00  
2.10  
1.25  
0.65 BSC  
0.36  
1.00 0.027 0.035 0.039  
0.25 0.006 0.008 0.010  
0.22 0.003 0.006 0.009  
2.20 0.070 0.078 0.086  
2.20 0.078 0.082 0.086  
1.35 0.045 0.049 0.053  
0.026 BSC  
b
C
D
E
0.15  
0.08  
1.80  
2.00  
A2  
DETAIL A  
A
E1 1.15  
e
L
0.26  
0.46 0.010 0.014 0.018  
0.006 BSC  
L2  
0.15 BSC  
0.15  
aaa  
bbb  
ccc  
ddd  
0.006  
0.012  
0.004  
0.004  
0.30  
0.10  
0.10  
6X  
ccc C  
A1  
SEATING  
PLANE  
c
C
SIDE VIEW  
END VIEW  
GENERIC  
MARKING DIAGRAM*  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6
6X  
0.30  
XXXMG  
6X  
0.66  
G
1
2.50  
XXX = Specific Device Code  
M
= Date Code*  
G
= PbFree Package  
0.65  
(Note: Microdot may be in either location)  
PITCH  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42985B  
SC88/SC706/SOT363  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
DATE 11 DEC 2012  
STYLE 1:  
PIN 1. EMITTER 2  
2. BASE 2  
STYLE 2:  
CANCELLED  
STYLE 3:  
CANCELLED  
STYLE 4:  
STYLE 5:  
STYLE 6:  
PIN 1. ANODE 2  
2. N/C  
PIN 1. CATHODE  
2. CATHODE  
3. COLLECTOR  
4. EMITTER  
5. BASE  
PIN 1. ANODE  
2. ANODE  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
3. COLLECTOR  
3. CATHODE 1  
4. ANODE 1  
5. N/C  
4. EMITTER  
5. BASE  
6. COLLECTOR 2  
6. ANODE  
6. CATHODE  
6. CATHODE 2  
STYLE 7:  
STYLE 8:  
CANCELLED  
STYLE 9:  
STYLE 10:  
STYLE 11:  
STYLE 12:  
PIN 1. SOURCE 2  
2. DRAIN 2  
3. GATE 1  
PIN 1. EMITTER 2  
2. EMITTER 1  
3. COLLECTOR 1  
4. BASE 1  
PIN 1. SOURCE 2  
2. SOURCE 1  
3. GATE 1  
PIN 1. CATHODE 2  
2. CATHODE 2  
3. ANODE 1  
PIN 1. ANODE 2  
2. ANODE 2  
3. CATHODE 1  
4. ANODE 1  
5. ANODE 1  
6. CATHODE 2  
4. SOURCE 1  
5. DRAIN 1  
6. GATE 2  
4. DRAIN 1  
5. DRAIN 2  
6. GATE 2  
4. CATHODE 1  
5. CATHODE 1  
6. ANODE 2  
5. BASE 2  
6. COLLECTOR 2  
STYLE 13:  
PIN 1. ANODE  
2. N/C  
STYLE 14:  
PIN 1. VREF  
2. GND  
STYLE 15:  
STYLE 16:  
STYLE 17:  
STYLE 18:  
PIN 1. VIN1  
2. VCC  
PIN 1. ANODE 1  
2. ANODE 2  
PIN 1. BASE 1  
2. EMITTER 2  
3. COLLECTOR 2  
4. BASE 2  
PIN 1. BASE 1  
2. EMITTER 1  
3. COLLECTOR 2  
4. BASE 2  
3. COLLECTOR  
4. EMITTER  
5. BASE  
3. GND  
3. ANODE 3  
3. VOUT2  
4. VIN2  
5. GND  
6. VOUT1  
4. IOUT  
5. VEN  
6. VCC  
4. CATHODE 3  
5. CATHODE 2  
6. CATHODE 1  
5. EMITTER 1  
6. COLLECTOR 1  
5. EMITTER 2  
6. COLLECTOR 1  
6. CATHODE  
STYLE 19:  
PIN 1. I OUT  
2. GND  
STYLE 20:  
STYLE 21:  
PIN 1. ANODE 1  
2. N/C  
STYLE 22:  
PIN 1. D1 (i)  
2. GND  
STYLE 23:  
PIN 1. Vn  
2. CH1  
3. Vp  
STYLE 24:  
PIN 1. CATHODE  
2. ANODE  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
3. GND  
3. ANODE 2  
4. CATHODE 2  
5. N/C  
3. D2 (i)  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
4. V CC  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
4. D2 (c)  
5. VBUS  
6. D1 (c)  
4. N/C  
5. V EN  
5. CH2  
6. N/C  
6. V REF  
6. CATHODE 1  
STYLE 30:  
STYLE 25:  
STYLE 26:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 27:  
PIN 1. BASE 2  
2. BASE 1  
STYLE 28:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
STYLE 29:  
PIN 1. ANODE  
2. ANODE  
PIN 1. SOURCE 1  
2. DRAIN 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 1  
PIN 1. BASE 1  
2. CATHODE  
3. COLLECTOR 2  
4. BASE 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 2  
3. COLLECTOR 1  
4. EMITTER 1  
5. EMITTER 2  
6. COLLECTOR 2  
3. COLLECTOR  
4. EMITTER  
5. BASE/ANODE  
6. CATHODE  
4. SOURCE  
5. DRAIN  
6. DRAIN  
5. EMITTER  
6. COLLECTOR 1  
6. DRAIN 1  
6. DRAIN 1  
Note: Please refer to datasheet for  
style callout. If style type is not called  
out in the datasheet refer to the device  
datasheet pinout or pin assignment.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42985B  
SC88/SC706/SOT363  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
Micro10  
CASE 846B03  
ISSUE D  
DATE 07 DEC 2004  
SCALE 2:1  
NOTES:  
A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
4. DIMENSION “B” DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846B01 OBSOLETE. NEW STANDARD  
846B02  
B−  
K
G
PIN 1 ID  
D 8 PL  
M
S
S
A
0.08 (0.003)  
T B  
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
3.10  
3.10  
1.10  
0.30  
MIN  
MAX  
0.122  
0.122  
0.043  
0.012  
C
0.038 (0.0015)  
A
B
C
D
G
H
J
2.90  
2.90  
0.95  
0.20  
0.114  
0.114  
0.037  
0.008  
T−  
SEATING  
PLANE  
L
H
J
0.50 BSC  
0.020 BSC  
0.05  
0.10  
4.75  
0.40  
0.15  
0.21  
5.05  
0.70  
0.002  
0.004  
0.187  
0.016  
0.006  
0.008  
0.199  
0.028  
SOLDERING FOOTPRINT  
K
L
1.04  
0.041  
0.32  
0.0126  
10X  
10X  
GENERIC  
MARKING DIAGRAM*  
xxxx  
AYW  
3.20  
0.126  
4.24  
0.167 0.208  
5.28  
xxxx  
= Device Code  
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
A
Y
W
G
0.50  
mm  
inches  
ǒ
Ǔ
8X0.0196  
SCALE 8:1  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Micro10  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON03799D  
Micro10  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2000  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY