NCV21673SN2G020T1G [ONSEMI]

Current-Shunt Monitors, 40 V Common Mode, Unidirectional, Single, Dual, Quad;
NCV21673SN2G020T1G
型号: NCV21673SN2G020T1G
厂家: ONSEMI    ONSEMI
描述:

Current-Shunt Monitors, 40 V Common Mode, Unidirectional, Single, Dual, Quad

文件: 总16页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Current-Shunt Monitors,  
40 V Common Mode,  
Unidirectional, Single, Dual,  
Quad  
MARKING  
DIAGRAMS  
5
XXAYWG  
1
G
TSOP5  
CASE 483  
NCS21673, NCV21673,  
NCS21674, NCV21674,  
NCS21675, NCV21675  
8
XXXX  
AYW  
G
Micro8  
CASE 846A02  
The NCS21673, NCS21674, and NCS21675 are a series of current  
sense amplifiers offered in gains of 20, 50, 100, and 200 V/V. These  
parts can measure voltage across shunts at common mode voltages  
from 0.1 V to 40 V, independent of supply voltage. This helps  
measuring of fast transients and allows the same type of part to be used  
for high side and low side current sensing. These devices can operate  
from a single 2.7 V to 5.5 V power supply. With a 3 dB BW of up to  
350 kHz and a Slew Rate of 2 V/ms typical , the fast detection of  
current changes is ensured. These parts are available in SOT235,  
Micro8, and TSSOP14 packages. The multichannel versions (dual  
and quad) make current sensing in multiple points of a system both  
space and cost effective.  
1
14  
14  
XX  
ALYWG  
G
1
TSSOP14 WB  
CASE 948G  
1
XX  
A
L
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
Y
= Year  
W
G
= Work Week  
= PbFree Package  
Features  
Wide Common Mode Input Range: 0.1 V to 40 V  
Supply Voltage Range: 2.7 V to 5.5 V  
Low Offset Voltage: 100 mV  
Low Offset Drift: 1 mV/°C max  
Low Gain Error: 1% max  
Low Current Consumption: 300 mA max per channel  
NCV Prefix for Automotive Grade 1 and Other Applications  
Requiring Unique Site and Control Change Requirements;  
AECQ100 Qualified and PPAP Capable  
(Note: Microdot may be in either location)  
PIN CONNECTIONS  
See pin connections on page 2 of this data sheet.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 3 of  
this data sheet.  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
Applications  
HighSide Current Sensing  
LowSide Current Sensing  
Power Management  
Automotive  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
August, 2021 Rev. 0  
NCS21673/D  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
Supply  
Supply  
Load  
RSHUNT  
0.01 μF  
to 0.1 μF  
VS  
NCS21673  
R1  
R3  
IN  
Output  
OUT  
+
IN+  
R4  
R2  
GND  
V
OUT  
= (I  
x R  
) * GAIN  
LOAD  
SHUNT  
Figure 1. Example Application Schematic of HighSide Current Sensing  
PIN CONNECTIONS  
OUT 1  
IN1  
IN+ 1  
GND  
1
2
3
4
8
7
6
5
V
S
OUT  
GND  
IN+  
1
2
3
V
S
5
4
OUT 2  
IN2  
IN+ 2  
+
+
IN  
Single Channel  
Dual Channel  
1
2
3
4
5
6
7
OUT 1  
IN1  
IN+ 1  
14  
OUT 4  
IN4  
IN+ 4  
13  
12  
11  
10  
9
+
+
GND  
V
S
IN+ 3  
IN3  
OUT 3  
IN+ 2  
IN2  
+
+
8
OUT 2  
Quad Channel  
Figure 2. Pin Connections  
www.onsemi.com  
2
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
ORDERING INFORMATION  
Device  
Channels  
Package  
Gain  
OPN  
Marking  
Shipping  
Industrial and Consumer  
NCS21673  
NCS21674  
NCS21675  
Single  
TSOP5  
20  
50  
NCS21673SN2G020T1G**  
NCS21673SN2G050T1G**  
NCS21673SN2G100T1G**  
NCS21673SN2G200T1G**  
NCS21674DMG020R2G**  
NCS21674DMG050R2G**  
NCS21674DMG100R2G**  
NCS21674DMG200R2G  
NCS21675DTBG020R2G**  
NCS21675DTBG050R2G**  
NCS21675DTBG100R2G**  
NCS21675DTBG200R2G**  
TBD  
TBD  
TBD  
TBD  
G020  
G050  
G100  
G200  
TBD  
TBD  
TBD  
TBD  
Tape and Reel  
3000/reel  
100  
200  
20  
Dual  
Micro8  
Tape and Reel  
4000/reel  
50  
100  
200  
20  
Quad  
TSSOP14  
Tape and Reel  
2500/reel  
50  
100  
200  
Automotive Qualified  
NCV21673*  
NCV21674*  
NCV21675*  
Single  
TSOP5  
Micro8  
20  
50  
NCV21673SN2G020T1G**  
NCV21673SN2G050T1G**  
NCV21673SN2G100T1G**  
NCV21673SN2G200T1G**  
NCV21674DMG020R2G**  
NCV21674DMG050R2G**  
NCV21674DMG100R2G**  
NCV21674DMG200R2G**  
NCV21675DTBG020R2G**  
NCV21675DTBG050R2G**  
NCV21675DTBG100R2G**  
NCV21675DTBG200R2G**  
TBD  
TBD  
TBD  
TBD  
G020  
G050  
G100  
G200  
TBD  
TBD  
TBD  
TBD  
Tape and Reel  
3000/reel  
100  
200  
20  
Dual  
Tape and Reel  
4000/reel  
50  
100  
200  
20  
Quad  
TSSOP14  
Tape and Reel  
2500/reel  
50  
100  
200  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable  
**In Development  
www.onsemi.com  
3
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
0.3 to 5.5  
42  
Unit  
V
Supply Voltage (Note 1)  
Analog Inputs  
V
S
Differential (V )(V ) (Note 2)  
V V  
IN+, IN−  
V
IN+  
IN−  
CommonMode (Note 2)  
0.3 to +42  
Output (Note 2)  
V
GND0.3 to (V ) +0.3  
V
mA  
°C  
°C  
V
OUT  
s
Input Current into Any Pin (Note 2)  
Maximum Junction Temperature  
Storage Temperature Range  
I
10  
+150  
IN  
T
J(max)  
T
STG  
65 to +150  
2000  
ESD Capability, Human Body Model (Note 3)  
Charged Device Model (Note 3)  
Latchup Current (Note 4)  
HBM  
CDM  
1000  
V
100  
mA  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe  
operating parameters  
2. Input voltage at any pin may exceed the voltage shown if current at that pin is limited to 10 mA  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard JS0012017  
ESD Charged Device Model tested per JEDEC standard JS0022014  
4. Latchup Current tested per JEDEC standard: JESD78E  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Package  
TSOP5 / SOT235  
Micro8 / MSOP8  
TSSOP14  
Value  
210  
Unit  
Thermal Resistance, JunctiontoAir (Notes 5, 6)  
q
°C/W  
JA  
195  
TBD  
5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe  
operating parameters  
2
2
6. Values based on copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate  
RECOMMENDED OPERATING RANGES  
Parameter  
Ambient Temperature  
Symbol  
Conditions  
NCS prefix  
Min  
40  
40  
–0.1  
2.7  
Max  
125  
150*  
40  
Unit  
T
A
°C  
NCV prefix  
Common Mode Input Voltage  
Supply Voltage  
V
CM  
Ta = 40°C to +125°C  
Ta = 40°C to +125°C  
Ta = 0°C to +85°C  
V
V
V
S
5.5  
1.8  
5.5  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
*During operation at Ta = 150°C, also the limitation for junction temperature (Tj(max) = 150°C) has to be considered.  
www.onsemi.com  
4
 
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
ELECTRICAL CHARACTERISTICS  
At T = +25°C, V  
= (V ) – (V ) V = 5 V, V  
= 12 V, unless otherwise noted. Boldface limits apply over the specified  
A
SENSE  
IN+  
IN.;  
S
IN+  
temperature range, T = –40°C to 125°C unless otherwise noted, guaranteed by characterization and/or design.  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
100  
100  
100  
100  
Max  
Unit  
Input  
Common Mode Rejection  
Ratio  
CMRR  
V
V
= 0.1 V to 40 V,  
G = 20  
G = 50  
84  
84  
84  
84  
84  
84  
84  
84  
dB  
IN+  
SENSE  
= 0 mV  
G = 100  
G = 200  
Input Offset Voltage  
V
T = 25°C, V  
= 12 V  
= 0 V  
G = 20  
G = 50  
100  
100  
100  
100  
25  
500  
500  
500  
500  
TBD  
TBD  
TBD  
210  
1
mV  
OS  
A
IN+  
G = 100  
G = 200  
G = 20  
T = 25°C, V  
A
IN+  
G = 50  
25  
G = 100  
G = 200  
25  
25  
Input Offset Voltage Drift  
vs. Temperature  
dV /dT  
OS  
T = 40°C to +125°C  
A
0.2  
mV/°C  
mV/V  
mA  
Power Supply Rejection  
Ratio  
PSRR  
V
V
= 2.7 V to 5.5 V,  
SENSE  
8
+ 40  
S
= 10 mV  
Input Bias Current  
I
V
V
= 0 V  
1
IB  
IN+  
IN+  
IN+  
= 12 V  
100  
15  
Input Offset Current  
I
IO  
V
V
= 12 V,  
mA  
= 10 mV  
SENSE  
Output  
Gain  
G
G = 20  
G = 50  
G = 100  
G = 200  
20  
50  
V/V  
100  
200  
0.1  
Gain Error  
T = 25°C  
A
%
T = 40°C to +125°C  
A
+ 1  
Gain Error vs Temperature  
Nonlinearity Error  
T = 40°C to +125°C  
1.5  
0.01  
1
20  
ppm/°C  
%
A
Maximum Capacitive Load  
Settling Time to 1%  
Voltage Output  
C
No sustained oscillation  
nF  
L
5
ms  
Output Voltage High,  
V
V  
0.02  
V
V
R = 10 kW to GND, T = 25°C  
S
OH  
L
A
Swing from V Supply Rail  
S
R = 10 kW to GND,  
0.03  
L
T = 40°C to 125°C  
A
Output Voltage Low,  
Swing from GND  
V
OL  
GND  
0.0005  
R = 10 kW to GND, T = 25°C  
L
A
R = 10 kW to GND,  
0.005  
L
T = 40°C to 125°C  
A
www.onsemi.com  
5
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
ELECTRICAL CHARACTERISTICS (continued)  
At T = +25°C, V = (V ) – (V ) V = 5 V, V = 12 V, unless otherwise noted. Boldface limits apply over the specified  
IN+  
A
SENSE  
IN+  
IN.;  
S
temperature range, T = –40°C to 125°C unless otherwise noted, guaranteed by characterization and/or design.  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Frequency Response  
Bandwidth (f  
)
BW  
C = 25 pF  
L
G = 20  
G = 50  
350  
210  
150  
105  
2
kHz  
3dB  
G = 100  
G = 200  
Slew Rate  
SR  
V/ms  
Noise  
Voltage Noise Density  
e
n
G = 50 or higher  
G = 20  
40  
nV/Hz  
TBD  
Power Supply  
Quiescent Current per  
Channel  
I
Q
T = 25°C  
195  
260  
mA  
A
T = 40°C to +125°C  
A
300  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
TYPICAL CHARACTERISTICS (T = 25°C, VS = 5 V, and VIN+ = 12 V unless otherwise noted)  
A
Figure 3. Input Offset Production Distribution G200  
Figure 4. Offset Voltage vs. Temperature  
Figure 5. CMRR Production Distribution G200  
Figure 6. CMRR vs. Temperature  
Figure 7. Gain Error Production Distribution G200  
Figure 8. Gain Error vs. Temperature  
www.onsemi.com  
7
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
TYPICAL CHARACTERISTICS (T = 25°C, VS = 5 V, and VIN+ = 12 V unless otherwise noted) (continued)  
A
Figure 10. Power Supply Rejection Ration  
vs. Frequency  
Figure 9. Gain vs. Frequency  
Figure 12. Output High Swing vs. Output  
Current  
Figure 11. Common Mode Rejection Ratio  
vs. Frequency  
Figure 14. Input Bias Current vs. CommonMode  
Figure 13. Output Low Swing vs. Output Current  
Voltage  
www.onsemi.com  
8
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
TYPICAL CHARACTERISTICS (T = 25°C, VS = 5 V, and VIN+ = 12 V unless otherwise noted) (continued)  
A
Figure 15. Input Bias Current vs. Temperature  
Figure 16. Quiescent Current vs. Temperature  
Figure 18. 0.1Hz to 10Hz Voltage Noise  
(ReferredtoInput)  
Figure 17. InputReferred Voltage Noise  
vs. Frequency  
Figure 20. CommonMode Voltage Transient  
Figure 19. Input Signal Step response  
Response  
www.onsemi.com  
9
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
TYPICAL CHARACTERISTICS (T = 25°C, VS = 5 V, and VIN+ = 12 V unless otherwise noted) (continued)  
A
Figure 21. Inverting Differential Input Overload  
Figure 22. Noninverting Differential Input Overload  
Figure 24. Brownout Recovery  
Figure 23. StartUp Response  
Figure 25. Output Impedance vs. Frequency  
Figure 26. Channel Separation vs. Frequency  
www.onsemi.com  
10  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
TYPICAL CHARACTERISTICS (T = 25°C, VS = 5 V, and VIN+ = 12 V unless otherwise noted) (continued)  
A
Figure 27. Output Voltage vs. CommonMode  
Voltage  
www.onsemi.com  
11  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
APPLICATION INFORMATION  
Current Sensing Techniques  
Selecting the Shunt Resistor  
NCS(V)21673, NCS(V)21674, and NCS(V)21675 are  
current sense amplifiers featuring a wide common mode  
voltage range that spans from 0.1 V to 40 V independent of  
the supply voltage. These amplifiers can be configured for  
lowside and highside current sensing.  
The desired accuracy of the current measurement  
determines the precision, shunt size, and the resistor value.  
The larger the resistor value, the more accurate the  
measurement possible, but a large resistor value also results  
in greater current loss.  
For the most accurate measurements, use fourterminal  
current sense resistors. They provide two terminals for the  
current path in the application circuit, and a second pair for  
the voltage detection path of the sense amplifier. This  
technique is also known as Kelvin Sensing. This insures that  
the voltage measured by the sense amplifier is the actual  
voltage across the resistor and does not include the small  
resistance of a combined connection. When using  
nonKelvin shunts, follow manufacturer recommendations  
on how to lay out the sensing traces closely.  
Unidirectional Operation  
These current sense amplifiers monitor unidirectional  
current flow. In unidirectional current sensing, the measured  
load current always flows in the same direction. Common  
applications for unidirectional operation include power  
supplies and load current monitoring. In this configuration,  
the IN+ pin should be connected to the high side of the sense  
resistor, while the INpin should be connected to the low  
side of the sense resistor.  
Input Filtering  
Gain Options  
As shunt resistors decrease in value, shunt inductance can  
significantly affect frequency response. At values below  
1 mW, the shunt inductance causes a zero in the transfer  
function that often results in corner frequencies in the low  
100’s of kHz. This inductance increases the amplitude of  
high frequency spike transient events on the current sensing  
line that can overload the front end of any shunt current  
sensing IC. This problem must be solved by the external  
filtering at the input of the amplifier. Note that all current  
sensing IC’s are vulnerable to this problem, regardless of  
manufacturer claims. Filtering is required at the input of the  
device to resolve this problem, even if the spike frequencies  
are above the rated 3 dB bandwidth of the device.  
Ideally, select the capacitor to exactly match the time  
constant of the shunt resistor and its inductance;  
alternatively, select the capacitor to provide a pole below  
that point. Make the input filter time constant equal to or  
larger than the shunt and its inductance time constant:  
The gain is set by integrated, precision, ratiomatched  
resistors. These current sense amplifiers are available in gain  
options of 20 V/V, 50 V/V, 100 V/V, and 200 V/V. Adding  
external resistors to adjust the gain can contribute to the  
overall system error and is not recommended for multiple  
reasons. First, the series resistors mismatch increase the  
overall gain error and temperature coefficient, and lower the  
CMRR. Second, the IIB flowing through the external  
resistors change the differential voltage seen by the opamp’s  
input. Last but not least, while the internal resistors are well  
matched in terms of ratio, they have a high tolerance in their  
absolute value so the resulting gain value may not match the  
expectations.  
Shutdown  
While the NCS21673/4/5 series do not include a  
shutdown feature, a simple MOSFET, power switch, or logic  
gate can be used to switch off power and eliminate quiescent  
current. Note that the input pins connected to the shunt  
resistor will always have a current flow via the input and  
feedback resistors (total resistance of each leg always is  
approx. 400 kW). Also note that when powered, the shunt  
input pins will exhibit the specified and wellmatched bias  
current. The shunt input pins support the rated common  
mode voltage even when the power is not applied.  
LSHUNT  
v RFILTCFILT  
RSHUNT  
While this time constant can be the product of any R  
FILT  
and C  
values, the designer needs to take into account that  
resistors are connected in series with the internal  
FILT  
the R  
FILT  
feedback resistors R3 and R4, hence changing the  
amplifier’s overall gain. Also, the opamp’s input currents  
(IIB) create a voltage drop across the filtering resistors,  
which is added to the differential voltage seen by the  
opamp’s inputs and modifies the output value. A good  
practice is to keep the filtering resistors in the range of a few  
ohms then size the filtering capacitor accordingly.  
www.onsemi.com  
12  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A02  
ISSUE J  
D
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
E
MIN  
−−  
NOM  
−−  
MAX  
MIN  
−−  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
e
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
b 8 PL  
0.05  
0.25  
0.13  
2.90  
2.90  
0.08  
0.002  
0.010  
0.005  
0.114  
0.114  
0.33  
M
S
S
0.08 (0.003)  
T
B
A
0.18  
3.00  
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
SEATING  
PLANE  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
T−  
H
E
A
0.038 (0.0015)  
L
A1  
c
RECOMMENDED  
SOLDERING FOOTPRINT*  
8X  
8X  
0.48  
0.80  
5.25  
0.65  
PITCH  
DIMENSION: MILLIMETERS  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
14  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
PACKAGE DIMENSIONS  
TSSOP14 WB  
CASE 948G  
ISSUE C  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
S
0.15 (0.006) T  
U
N
0.25 (0.010)  
14  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T  
U
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
A
B
C
D
F
G
H
J
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION NN  
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
J1  
K
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
15  
NCS21673, NCV21673, NCS21674, NCV21674, NCS21675, NCV21675  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY