NCV4269 [ONSEMI]

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output; 5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出
NCV4269
型号: NCV4269
厂家: ONSEMI    ONSEMI
描述:

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出

稳压器
文件: 总12页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4269  
5.0 V Micropower 150 mA  
LDO Linear Regulator with  
DELAY, Adjustable RESET,  
and Sense Output  
The NCV4269 is a 5.0 V precision micropower voltage regulator  
with an output current capability of 150 mA.  
The output voltage is accurate within 2.0% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low quiescent current is a feature  
drawing only 240 mA with a 1.0 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
http://onsemi.com  
MARKING DIAGRAMS  
8
8
4269  
ALYW  
1
Microprocessor control logic includes an active reset output RO  
with delay and a SI/SO monitor which can be used to provide an early  
warning signal to the microprocessor of a potential impending reset  
signal. The use of the SI/SO monitor allows the microprocessor to  
finish any signal processing before the reset shuts the microprocessor  
down.  
The active Reset circuit operates correctly at an output voltage as  
low as 1.0 V. The Reset function is activated during the power up  
sequence or during normal operation if the output voltage drops  
outside the regulation limits.  
SO8  
D SUFFIX  
CASE 751  
1
14  
14  
NCV4269  
AWLYWW  
1
1
The reset threshold voltage can be decreased by the connection of an  
SO14  
D SUFFIX  
CASE 751A  
external resistor divider to the R  
lead. The regulator is protected  
ADJ  
against reverse battery, short circuit, and thermal overload conditions.  
The device can withstand load dump transients making it suitable for  
use in automotive environments. The device has also been optimized  
for EMC conditions.  
20  
Features  
20  
5.0 V 2.0% Output  
Low 240 mA Quiescent Current  
NCV4269  
AWLYYWW  
1
Active Reset Output Low Down to V = 1.0 V  
Q
SO20L  
DW SUFFIX  
CASE 751D  
Adjustable Reset Threshold  
1
150 mA Output Current Capability  
Fault Protection  
+45 V Peak Transient Voltage  
40 V Reverse Voltage  
Short Circuit  
A
= Assembly Location  
= Year  
WL, L = Wafer Lot  
YY, Y  
WW, W = Work Week  
Thermal Overload  
Early Warning through SI/SO Leads  
Internally Fused Leads in SO14 and SO20L Packages  
Integrated Pullup Resistor at Logic Outputs (To Use External  
Resistors, Select the NCV4279)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
Very Low Dropout Voltage  
Electrical Parameters Guaranteed Over Entire Temperature Range  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
November, 2004 Rev. 5  
NCV4269/D  
NCV4269  
I
Q
Error  
Amplifier  
Current and  
Reference  
and Trim  
R
SO  
Saturation  
Control  
R
RO  
RO  
D
or  
Reference  
SO  
R
ADJ  
+
SI  
GND  
Figure 1. Block Diagram  
PIN CONNECTIONS  
1
20  
R
SI  
ADJ  
D
NC  
1
14  
I
R
ADJ  
SI  
1
8
NC  
D
I
I
Q
GND  
GND  
GND  
GND  
GND  
NC  
Q
GND  
GND  
GND  
GND  
RO  
GND  
GND  
GND  
Q
SI  
SO  
GND  
GND  
GND  
R
ADJ  
RO  
D
GND  
NC  
NC  
RO  
SO  
SO  
SO8  
SO14  
SO20L  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
SO8  
SO14  
SO20L  
Pin Symbol  
Function  
Reset Threshold Adjust; if not used to connect to GND.  
3
4
5
1
2
1
2
R
ADJ  
D
Reset Delay; To Set Time Delay, Connect to GND with Capacitor  
Ground  
3, 4, 5, 6,  
10, 11, 12  
4, 5, 6, 7, 14,  
15, 16, 17  
GND  
3, 8, 9, 13, 18  
10  
NC  
RO  
No connection to these pins from the IC.  
6
7
Reset Output; The OpenCollector Output has a 20 kW Pullup Resistor to  
Q. Leave Open if Not Used.  
7
8
11  
SO  
Sense Output; This OpenCollector Output is Internally Pulled Up by  
20 kW pullup resistor to Q. If not used, keep open.  
8
1
2
9
12  
19  
20  
Q
I
5 V Output; Connect to GND with a 10 mF Capacitor, ESR < 10 W.  
Input; Connect to GND Directly at the IC with a Ceramic Capacitor.  
Sense Input; If not used, Connect to Q.  
13  
14  
SI  
http://onsemi.com  
2
NCV4269  
MAXIMUM RATINGS (T = 40°C to 150°C)  
J
Parameter  
Symbol  
Min  
Max  
Unit  
Input to Regulator  
V
I
40  
45  
V
I
I
Internally Limited Internally Limited  
Sense Input  
V
SI  
40  
1  
45  
1
V
mA  
SI  
I
Reset Threshold Adjust  
Reset Delay  
V
0.3  
10  
7
V
RADJ  
RADJ  
I
10  
mA  
V
I
0.3  
7
V
D
Internally Limited Internally Limited  
D
Ground  
I
50  
mA  
V
q
Reset Output  
V
RO  
RO  
0.3  
7
I
Internally Limited Internally Limited  
Sense Output  
V
0.3  
7
V
SO  
SO  
I
Internally Limited Internally Limited  
Regulated Output  
V
Q
0.5  
10  
7.0  
V
mA  
Q
I
Junction Temperature  
Storage Temperature  
T
STG  
50  
150  
150  
°C  
°C  
J
T
Input Voltage Operating Range  
Junction Temperature Operating Range  
V
J
40  
45  
150  
V
°C  
I
T
JunctiontoAmbient Thermal Resistance  
SO8  
SO14  
R
200  
70  
k/W  
q
JA  
JP  
SO20L  
70  
JunctiontoPin 4, all GND Pins Grounded.  
SO14  
SO20L  
R
q
30  
30  
k/W  
Lead Temperature Soldering and MSL  
Parameter  
Symbol  
MSL  
Value  
MSL, 20Lead LS Temperature 260°C Peak (Note 3)  
MSL, 20Lead, LS Temperature 230°C Peak (Note 4)  
MSL, 8Lead, 14Lead, LS Temperature 260°C Peak (Note 3)  
3
1
1
MSL  
MSL  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. This device series incorporates ESD protection and exceeds the following ratings:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22–A114.  
Machine Model (MM) 200 V per JEDEC standard: JESD22–A115.  
2. Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78.  
3. +5°C/0°C, 40 Sec MaxatPeak, 60 150 Sec above 217°C.  
4. +5°C/0°C, 30 Sec MaxatPeak, 60 150 Sec above 183°C.  
http://onsemi.com  
3
 
NCV4269  
ELECTRICAL CHARACTERISTICS (T = 40°C T 125°C, V = 13.5 V unless otherwise specified)  
J
J
I
Characteristic  
REGULATOR  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Current Limit  
V
1 mA v I v 100 mA 6 V v V v 16 V  
4.90  
150  
5.00  
200  
240  
250  
2.0  
5.10  
500  
250  
450  
3.0  
0.5  
20  
V
Q
Q
I
I
mA  
mA  
mA  
mA  
V
Q
Current Consumption; I = I – I  
I
I
Q
= 1 mA, RO, SO High  
= 10 mA, RO, SO High  
= 50 mA, RO, SO High  
q
I
Q
Q
Q
q
q
q
Current Consumption; I = I – I  
I
I
I
I
q
I
Q
Q
Current Consumption; I = I – I  
q
I
Dropout Voltage  
Load Regulation  
Line Regulation  
V
V = 5 V, I = 100 mA  
0.25  
10  
dr  
I
Q
D
D
I
= 5 mA to 100 mA  
mV  
mV  
VQ  
VQ  
Q
V = 6 V to 26 V I = 1 mA  
10  
30  
I
Q
RESET GENERATOR  
Reset Switching Threshold  
V
4.50  
1.26  
10  
4.65  
1.35  
20  
4.80  
1.44  
40  
V
V
RT  
Reset Adjust Switching Threshold  
Reset Pullup Resistance  
Reset Output Saturation Voltage  
Upper Delay Switching Threshold  
Lower Delay Switching Threshold  
Saturation Voltage on Delay Capacitor  
Charge Current  
V
V
> 3.5 V  
Q
RAD,JTH  
R
kW  
V
SO,INT  
V
V
< V , R  
0.1  
1.8  
0.45  
0.4  
2.2  
0.60  
0.1  
9.5  
RO,SAT  
Q
RT RO, INT  
V
1.4  
0.3  
V
UD  
V
V
LD  
V
V
< V  
RT  
V
D,SAT  
Q
I
V
= 1 V  
D
3.0  
17  
6.5  
28  
mA  
ms  
ms  
D
Delay Time L ³ H  
t
C
D
C
D
= 100 nF  
= 100 nF  
d
Delay Time H ³ L  
t
1.0  
t
INPUT VOLTAGE SENSE  
Sense Threshold High  
V , High  
1.24  
1.16  
1.31  
1.20  
0.1  
1.38  
1.28  
0.4  
V
V
SI  
Sense Threshold Low  
V , Low  
SI  
Sense Output Saturation Voltage  
Sense Resistor Pullup  
V
, Low  
SO  
V
< 1.20 V; V > 3 V; R  
V
SI  
Q
SO  
R
SO,INT  
10  
20  
40  
kW  
mA  
Sense Input Current  
I
1.0  
0.1  
1.0  
SI  
http://onsemi.com  
4
NCV4269  
I
I
Q
I
I
Q
C
I
C
Q
22 mF  
RADJ1  
1000 mF  
470 nF  
I
I
RADJ  
SI  
SI  
RADJ  
V
Q
D
GND  
RO  
SO  
V
I
I
I
V
V
SO  
D
q
RO  
V
SI  
V
RADJ  
V
D
C
D
RADJ2  
100 nF  
Figure 2. Measuring Circuit  
V
I
t
< t  
RR  
V
Q
V
RT  
t
t
dV  
dt  
I
D
C
D
V
+
D
V
UD  
V
LD  
t
RR  
t
d
V
RO  
V
ROSAT  
t
PoweronReset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary Overload  
Spike at Output  
Figure 3. Reset Timing Diagram  
http://onsemi.com  
5
NCV4269  
Sense Input Voltage  
V
SLHIGH  
V
SLLOW  
t
Sense Output Voltage  
t
t
PDSOLH  
PDSOHL  
HIGH  
LOW  
t
Figure 4. Sense Timing Diagram  
http://onsemi.com  
6
NCV4269  
APPLICATION DESCRIPTION  
OUTPUT REGULATOR  
If the reset adjust option is not needed, the R  
pin  
ADJ  
The output is controlled by a precision trimmed reference.  
The PNP output has base drive quiescent current control for  
regulation while the input voltage is low, preventing over  
saturation. Current limit and voltage monitors complement  
the regulator design to give safe operating signals to the  
processor and control circuits.  
should be connected to GND causing the reset threshold to  
go to its default value (typically 4.65 V).  
RESET DELAY (D)  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output lead RO. The delay lead D  
D
provides charge current I (typically 6.5 mA) to the external  
D
RESET OUTPUT (RO)  
A reset signal, Reset Output, RO, (low voltage) is  
delay capacitor C during the following times:  
D
1. During Powerup (once the regulation threshold has  
been exceeded).  
2. After a reset event has occurred and the device is  
back in regulation. The delay capacitor is set to  
generated as the IC powers up. After the output voltage V  
Q
increases above the reset threshold voltage V , the delay  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. A discharge of  
UD  
discharge when the regulation (V , reset  
RT  
the delay timer V is started when V drops and stays below  
D
Q
threshold voltage) has been violated. When the  
the reset threshold voltage V . When the voltage of the  
RT  
delay capacitor discharges to V , the reset signal  
LD  
delay timer V drops below the lower threshold voltage V  
D
LD  
RO pulls low.  
the reset output voltage V is brought low to reset the  
RO  
SETTING THE DELAY TIME  
processor.  
The delay time is set by the delay capacitor C and the  
D
The reset output RO is an open collector NPN transistor  
with an internal 20 kW pullup resistor connected to the  
output Q, controlled by a low voltage detection circuit. The  
circuit is functionally independent of the rest of the IC,  
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to  
DSAT  
the higher level V . The time delay follows the equation:  
UD  
(eq. 2)  
t
d
+ [C (V  
* V  
)]ńI  
DSAT D  
thereby guaranteeing that RO is valid for V as low as 1.0 V.  
D
UD  
Q
Example:  
Using C = 100 nF.  
RESET ADJUST (RADJ  
The reset threshold V can be decreased from a typical  
)
D
RT  
Use the typical value for V  
= 0.1 V.  
value of 4.65 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin RADJ,  
as shown in Figure 5. The resistor divider keeps the voltage  
DSAT  
Use the typical value for V = 1.8 V.  
UD  
Use the typical value for Delay Charge Current I = 6.5 mA.  
D
above the V  
(typical 1.35 V) for the desired input  
RADJ,TH  
(eq. 3)  
+ [100 nF(1.8 * 0.1 V)]ń6.5 mA + 26.2 ms  
t
d
voltages, and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
V
RT  
+ V  
@ (R  
) R )ńR  
ADJ2 ADJ2  
(eq. 1)  
RADJ, TH  
ADJ1  
V
I
BAT  
Q
V
DD  
C **  
10 mF  
R
R
Q
ADJ1  
C *  
0.1 mF  
I
R
ADJ  
ADJ2  
NCV4269  
R
R
SI1  
D
SI  
SI2  
C
D
RO  
I/O  
SO  
I/O  
GND  
*C required if regulator is located far from the power supply filter.  
I
** C required for Stability. Cap must operate at minimum temperature expected.  
Q
Figure 5. Application Diagram  
http://onsemi.com  
7
 
NCV4269  
SENSE INPUT (SI) / SENSE OUTPUT (SO) VOLTAGE  
MONITOR  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (25°C to 40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturer’s data sheet usually provides this information.  
An onchip comparator is available to provide early  
warning to the microprocessor of a possible reset signal. The  
output is from an open collector driver with an internal  
20 kW pull up resistor to output Q. The reset signal typically  
turns the microprocessor off instantaneously. This can cause  
unpredictable results with the microprocessor. The signal  
received from the SO pin will allow the microprocessor time  
to complete its present task before shutting down. This  
function is performed by a comparator referenced to the  
band gap voltage. The actual trip point can be programmed  
externally using a resistor divider to the input monitor SI  
The value for the output capacitor C shown in Figure 5  
Q
should work for most applications; however, it is not  
necessarily the optimized solution. Stability is guaranteed at  
values C = 10 mF and an ESR = 10 W within the operating  
Q
temperature range. Actual limits are shown in a graph in the  
typical data section.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
The maximum power dissipation for a single output  
regulator (Figure 5) is:  
(Figure 5). The values for R and R are selected for a  
SI1  
SI2  
typical threshold of 1.20 V on the SI Pin.  
SIGNAL OUTPUT  
Figure 6 shows the SO Monitor timing waveforms as a  
result of the circuit depicted in Figure 5. As the output  
P
+ [V  
I(max)  
) V  
]I  
) V  
I
(eq. 4)  
D(max)  
Q(min) Q(max)  
I(max) q  
where:  
V
I(max)  
is the maximum input voltage,  
voltage (V ) falls, the monitor threshold (V  
), is  
Q
SILOW  
V
Q(min)  
is the minimum output voltage,  
crossed. This causes the voltage on the SO output to go low  
sending a warning signal to the microprocessor that a reset  
I
is the maximum output current for the application,  
Q(max)  
and I is the quiescent current the regulator consumes at  
signal may occur in a short period of time. T  
is the  
q
WARNING  
I
.
time the microprocessor has to complete the function it is  
currently working on and get ready for the reset  
shutdown signal.  
Q(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
= (150°C – T ) / P  
D
R
q
JA  
(eq. 5)  
A
V
Q
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with  
R
’s less than the calculated value in equation 2 will keep  
qJA  
SI  
the die temperature below 150°C. In some cases, none of the  
packages will be sufficient to dissipate the heat generated by  
the IC, and an external heatsink will be required. The current  
V
SILOW  
flow  
and  
voltages  
are  
shown  
in  
the  
V
RO  
Measurement Circuit Diagram.  
HEATSINKS  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
SO  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
T
WARNING  
Figure 6. SO Warning Waveform Time Diagram  
determine the value of R  
:
qJA  
R
qJA  
+ R  
) R ) R  
qCS qSA  
(eq. 6)  
qJC  
STABILITY CONSIDERATIONS  
The input capacitor C in Figure 5 is necessary for  
where:  
I
compensating input line reactance. Possible oscillations  
caused by input inductance and input capacitance can be  
damped by using a resistor of approximately 1.0 W in series  
R
R
R
= the junctiontocase thermal resistance,  
qJC  
= the casetoheat sink thermal resistance, and  
= the heat sinktoambient thermal resistance.  
appears in the package section of the data sheet. Like  
qCS  
qSA  
R
with C  
I.  
qJC  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
R
, it too is a function of package type. R  
and R  
are  
qJA  
qCS  
qSA  
functions of the package type, heatsink and the interface  
between them. These values appear in data sheets of  
heatsink manufacturers. Thermal, mounting, and  
heatsinking considerations are discussed in the  
ON Semiconductor application note AN1040/D, available  
on the ON Semiconductor website.  
http://onsemi.com  
8
 
NCV4269  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4269D1  
98 Units/Rail  
SO8  
NCV4269D1R2  
NCV4269D2  
2500 Tape & Reel  
55 Units/Rail  
5.0 V  
SO14  
NCV4269D2R2  
NCV4269DW  
2500 Tape & Reel  
38 Units/Rail  
SO20L  
NCV4269DWR2  
1000 Tape & Reel  
http://onsemi.com  
9
NCV4269  
PACKAGE DIMENSIONS  
SO8  
D SUFFIX  
CASE 75107  
ISSUE AD  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
RECOMMENDED FOOTPRINT  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
http://onsemi.com  
10  
NCV4269  
PACKAGE DIMENSIONS  
SO14  
D SUFFIX  
CASE 751A03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
B−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
0.337  
0.150  
0.054  
0.014  
0.016  
T−  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
K
M
P
R
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
SO20L  
DW SUFFIX  
CASE 751D05  
ISSUE G  
D
A
q
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
E
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF B  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
10  
MILLIMETERS  
B
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
20X B  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
M
S
S
B
T
0.25  
A
A
e
1.27 BSC  
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
L
18X e  
q
_
_
A1  
C
T
http://onsemi.com  
11  
NCV4269  
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLIC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
291 Kamimeguro, Meguroku, Tokyo, Japan 1530051  
Phone: 81357733850  
For additional information, please contact your  
local Sales Representative.  
NCV4299/D  

相关型号:

NCV4269A

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD133R2G

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269AD150G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269A_15

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269C

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI