NCV4276BDTADJRKG [ONSEMI]

400 mA Low-Drop Voltage Regulator; 400毫安低压差稳压器
NCV4276BDTADJRKG
型号: NCV4276BDTADJRKG
厂家: ONSEMI    ONSEMI
描述:

400 mA Low-Drop Voltage Regulator
400毫安低压差稳压器

线性稳压器IC 调节器 电源电路 输出元件
文件: 总12页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4276B  
400 mA Low-Drop Voltage  
Regulator  
The NCV4276B is a 400 mA output current integrated low dropout  
regulator family designed for use in harsh automotive environments.  
It includes wide operating temperature and input voltage ranges. The  
device is offered with adjustable voltage versions available in 2%  
output voltage accuracy. It has a high peak input voltage tolerance  
and reverse input voltage protection. It also provides overcurrent  
protection, overtemperature protection and inhibit for control of the  
state of the output voltage. The NCV4276B is available in DPAK  
surface mount package. The output is stable over a wide output  
capacitance and ESR range. The NCV4276B has improved startup  
behavior during input voltage transients.  
http://onsemi.com  
MARKING  
DIAGRAM  
DPAK  
5PIN  
DT SUFFIX  
76BAJG  
ALYWW  
1
CASE 175AA  
5
Features  
1
Adjustable Voltage Version (from 2.5 V to 20 V) ±2% Output  
Voltage  
400 mA Output Current  
500 mV (max) Dropout Voltage (5.0 V Output)  
Inhibit Input  
Very Low Current Consumption  
A
L
Y
= Assembly Location  
= Wafer Lot  
= Year  
WW  
G
= Work Week  
= PbFree Device  
*Tab is connected to Pin 3.  
Fault Protection  
+45 V Peak Transient Voltage  
42 V Reverse Voltage  
Short Circuit  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 11 of this data sheet.  
Thermal Overload  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Change Controls  
These are PbFree Devices  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
INH  
GND  
VA  
Figure 1. Block Diagram  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
June, 2010 Rev. 0  
NCV4276B/D  
NCV4276B  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
Description  
1
2
3
4
5
I
Input; Battery Supply Input Voltage.  
INH  
GND  
VA  
Inhibit; Set lowto inhibit.  
Ground; Pin 3 internally connected to heatsink.  
Voltage Adjust Input; use an external voltage divider to set the output voltage  
Q
Output: Bypass with a capacitor to GND. See Figures NO TAG to 3 and Regulator Stability Considerations sec-  
tion.  
MAXIMUM RATINGS*  
Rating  
Symbol  
Min  
42  
Max  
45  
Unit  
V
Input Voltage  
V
I
V
I
Input Peak Transient Voltage  
Inhibit INH Voltage  
45  
V
V
42  
0.3  
1.0  
45  
V
INH  
Voltage Adjust Input VA  
Output Voltage  
V
10  
V
VA  
V
40  
V
Q
Ground Current  
I
100  
40  
mA  
V
q
Input Voltage Operating Range  
V
V
Q
+ 0.5 V or 4.5 V  
(Note 1)  
I
ESD Susceptibility  
(Human Body Model)  
(Machine Model)  
4.0  
250  
kV  
V
Junction Temperature  
Storage Temperature  
T
40  
50  
150  
150  
°C  
°C  
J
T
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal  
dissipation must be observed closely.  
LEAD TEMPERATURE SOLDERING REFLOW (Note 2)  
Lead Temperature Soldering  
T
SLD  
°C  
Reflow (SMD styles only), Leaded, 60150 s above 183, 30 s max at peak  
Reflow (SMD styles only), Lead Free, 60150 s above 217, 40 s max at peak  
Wave Solder (through hole styles only), 12 sec max  
240  
265  
310  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Value)  
Unit  
Min Pad Board (Note 3)  
1, Pad Board (Note 4)  
JunctiontoTab (psiJLx, y  
)
4.2  
4.7  
C/W  
C/W  
JLx  
JunctiontoAmbient (R , q  
)
100.9  
46.8  
q
JA JA  
1. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
2. Per IPC / JEDEC JSTD020C.  
2
2
2
3. 1 oz. copper, 0.26 inch (168 mm ) copper area, 0.062thick FR4.  
2
4. 1 oz. copper, 1.14 inch (736 mm ) copper area, 0.062thick FR4.  
http://onsemi.com  
2
 
NCV4276B  
ELECTRICAL CHARACTERISTICS (V = 13.5 V; 40°C < T < 150°C; unless otherwise noted.)  
I
J
Characteristic  
OUTPUT  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
AV  
5.0 mA < I < 400 mA  
2%  
+2%  
V
Q
Q
V +1 < V < 40 V  
Q
I
V > 4.5 V  
I
Output Current Limitation  
I
V
V
= 90% V  
(V = 2.5 V)  
QTYP  
400  
700  
1100  
10  
mA  
Q
Q
QTYP  
Quiescent Current (Sleep Mode)  
I
= 0 V  
mA  
q
INH  
I = I I  
q
I
Q
Quiescent Current, I = I I  
I
I
I
I
I
I
= 1.0 mA  
= 250 mA  
= 400 mA  
130  
10  
200  
15  
mA  
q
I
Q
Q
Q
q
q
q
Q
Q
Q
Q
Q
Quiescent Current, I = I I  
I
I
mA  
mA  
mV  
mV  
mV  
q
I
Quiescent Current, I = I I  
25  
35  
q
I
Dropout Voltage  
Load Regulation  
Line Regulation  
V
DR  
= 250 mA, V = V V , V > 4.5 V  
250  
3.0  
4.0  
500  
20  
DR  
I
Q
I
DV  
= 5.0 mA to 400 mA  
Q,LO  
DV  
DV = 12 V to 32 V,  
15  
Q
I
I
Q
= 5.0 mA  
Power Supply Ripple Rejection  
Temperature Output Voltage Drift  
PSRR  
f = 100 Hz, V = 0.5 V  
70  
dB  
r
r
PP  
d
0.5  
mV/K  
VQ/dT  
INHIBIT  
Inhibit Voltage, Output High  
V
V
V
V
V
w V  
QMIN  
2.3  
2.2  
10  
2.8  
V
V
INH  
INH  
INH  
Q
Inhibit Voltage, Output Low (Off)  
Input Current  
v 0.1 V  
1.8  
5.0  
Q
I
= 5.0 V  
20  
mA  
INH  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature*  
T
SD  
I
Q
= 5.0 mA  
150  
210  
°C  
*Guaranteed by design, not tested in production.  
V
Q
= [(R1 + R2) * V ] / R2  
ref  
Output  
I
I
I
Q
I 1  
5 Q  
Input  
C
I1  
C
I2  
C
Q
C *  
b
1.0 mF  
100 nF  
22 mF  
R
R
1
NCV4276B  
INH  
VA  
R
L
2
4
3
I
INH  
GND  
2
C * Required if usage of low ESR output capacitor C is demand, see Regulator Stability Considerations section  
b
Q
Figure 2. Applications Circuit  
http://onsemi.com  
3
 
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
10  
C
Q
= 22 mF for these  
Output Voltages  
Unstable Region  
12 V  
6 V  
1
2.5 V  
Stable Region  
0.1  
0.01  
Unstable Region  
C capacitor not connected  
b
0
50  
100  
150 200  
250  
300  
350 400  
OUTPUT CURRENT (mA)  
Figure 3. Output Stability with Output Capacitor ESR  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
5.0  
4.5  
T = 25°C  
R = 20 W  
L
J
V = 13.5 V, R = 1 kW  
I
L
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.46  
2.45  
0.5  
0
40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
I
Figure 4. Output Voltage vs. Junction  
Temperature  
Figure 5. Current Consumption vs. Input Voltage  
4
3.5  
3
2
0
T = 25°C  
R = 20 W  
L
J
2  
4  
2.5  
2
6  
8  
10  
12  
14  
1.5  
1
T = 25°C  
R = 6.8 kW  
L
J
0.5  
0
16  
18  
50  
25  
0
25  
50  
0
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 6. Low Voltage Behavior  
Figure 7. High Voltage Behavior  
http://onsemi.com  
4
 
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS  
600  
500  
400  
300  
200  
800  
700  
600  
T = 125°C  
J
500  
400  
T = 25°C  
J
V
Q
= 0 V  
T = 25°C  
J
300  
200  
100  
0
100  
0
0
50  
100  
150 200  
250 300  
350 400  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 9. Maximum Output Current vs.  
Input Voltage  
Figure 8. Dropout Voltage vs. Output Current,  
Regulator Set at 5.0 V  
60  
50  
40  
30  
20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T = 25°C  
V = 13.5 V  
I
T = 25°C  
V = 13.5 V  
I
J
J
10  
0
0.2  
0
0
100  
200  
300  
400  
500  
600  
0
10  
20  
30  
40  
50  
60  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 11. Current Consumption vs. Output  
Current (Low Load)  
Figure 10. Current Consumption vs.  
Output Current (High Load)  
http://onsemi.com  
5
NCV4276B  
Circuit Description  
ESR characteristics were measured with ceramic  
capacitors and additional series resistors to emulate ESR.  
Low duty cycle pulse load current technique has been used  
to maintain junction temperature close to ambient  
temperature.  
The NCV4276B is an integrated low dropout regulator  
that provides a regulated voltage at 400 mA to the output.  
It is enabled with an input to the inhibit pin. The regulator  
voltage is provided by a PNP pass transistor controlled by  
an error amplifier with a bandgap reference, which gives it  
the lowest possible dropout voltage. The output current  
capability is 400 mA, and the base drive quiescent current  
is controlled to prevent oversaturation when the input  
voltage is low or when the output is overloaded. The  
regulator is protected by both current limit and thermal  
shutdown. Thermal shutdown occurs above 150°C to  
protect the IC during overloads and extreme ambient  
temperatures.  
Calculating Bypass Capacitor  
If usage of low ESR ceramic capacitors is demanded,  
connect the bypass capacitor C between Voltage Adjust  
b
pin and Q pin according to Applications circuit at Figure 4.  
Parallel combination of bypass capacitor C with the  
b
feedback resistor R contributes in the device transfer  
1
function as an additional zero and affects the device loop  
stability, therefore its value must be optimized. Attention  
to the Output Capacitor value and its ESR must be paid. See  
also Stability in High Speed Linear LDO Regulators  
Application Note, AND8037/D for more information.  
Optimal value of bypass capacitor is given by following  
expression  
Regulator  
The error amplifier compares the reference voltage to a  
sample of the output voltage (V ) and drives the base of a  
Q
PNP series pass transistor via a buffer. The reference is a  
bandgap design to give it a temperaturestable output.  
Saturation control of the PNP is a function of the load  
current and input voltage. Oversaturation of the output  
power device is prevented, and quiescent current in the  
ground pin is minimized. See Figure 2, Test Circuit, for  
circuit element nomenclature illustration.  
1
C
b
+
@ (F)  
2   p   f   R  
z
1
where  
R = the upper feedback resistor  
1
f = the frequency of the zero added into the device  
z
transfer function by R and C external components.  
1
b
Set the R resistor according to output voltage  
1
Regulator Stability Considerations  
requirement. Chose the f with regard on the output  
z
The input capacitors (C and C ) are necessary to  
I1  
I2  
capacitance C , refer to the table below.  
Q
stabilize the input impedance to avoid voltage line  
influences. Using a resistor of approximately 1.0 W in  
C
Q
(mF)  
10  
22  
47  
100  
series with C can stop potential oscillations caused by  
stray inductance and capacitance.  
I2  
f Range (kHz)  
z
20 - 50  
14 - 35  
10 - 20  
7 – 14  
The output capacitor helps determine three main  
characteristics of a linear regulator: startup delay, load  
transient response and loop stability. The capacitor value  
and type should be based on cost, availability, size and  
temperature constraints. The aluminum electrolytic  
capacitor is the least expensive solution, but, if the circuit  
operates at low temperatures (25°C to 40°C), both the  
value and ESR of the capacitor will vary considerably. The  
capacitor manufacturer’s data sheet usually provides this  
information.  
Ceramic capacitors and its part numbers listed bellow  
have been used as low ESR output capacitors C from the  
Q
table above to define the frequency ranges of additional  
zero required for stability.  
GRM31CR71C106KAC7 (10 mF, 16 V, X7R, 1206)  
GRM32ER71C226KE18 (22 mF, 16 V, X7R, 1210)  
GRM32ER61C476ME15 (47 mF, 16 V, X5R, 1210)  
GRM32ER60J107ME20 (100 mF, 6.3 V, X5R, 1210)  
Inhibit Input  
The value for the output capacitor C , shown in Figure 2,  
Q
The inhibit pin is used to turn the regulator on or off. By  
holding the pin down to a voltage less than 1.8 V, the output  
of the regulator will be turned off. When the voltage on the  
Inhibit pin is greater than 2.8 V, the output of the regulator  
will be enabled to power its output to the regulated output  
voltage. The inhibit pin may be connected directly to the  
input pin to give constant enable to the output regulator.  
should work for most applications; see also Figure 3 for  
output stability at various load and Output Capacitor ESR  
conditions. Stable region of ESR in Figure 3 shows ESR  
values at which the LDO output voltage does not have any  
permanent oscillations at any dynamic changes of output  
load current. Marginal ESR is the value at which the output  
voltage waving is fully damped during four periods after  
the load change and no oscillation is further observable.  
http://onsemi.com  
6
NCV4276B  
Setting the Output Voltage  
Use R2 < 50 k to avoid significant voltage output errors  
due to VA bias current.  
Connecting VA directly to Q without R1 and R2 creates  
an output voltage of 2.5 V.  
Designers should consider the tolerance of R1 and R2  
during the design phase.  
The input voltage range for operation (pin 1) of the  
The output voltage range can be set between 2.5 V and  
20 V. This is accomplished with an external resistor divider  
feeding back the voltage to the IC back to the error  
amplifier by the voltage adjust pin VA. The internal  
reference voltage is set to a temperature stable reference of  
2.5 V.  
The output voltage is calculated from the following  
adjustable version is between (V + 0.5 V) and 40 V.  
Q
formula. Ignoring the bias current into the VA pin:  
Internal bias requirements dictate a minimum input voltage  
of 4.5 V. The dropout voltage for output voltages less than  
V
Q
+ [(R1 ) R2) * V ]ńR2  
ref  
4.0 V is (4.5 V V ).  
Q
http://onsemi.com  
7
NCV4276B  
Calculating Power Dissipation  
Heatsinks  
in a Single Output Linear Regulator  
The maximum power dissipation for a single output  
regulator (Figure 12) is:  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and  
the outside environment will have a thermal resistance.  
Like series electrical resistances, these resistances are  
P
+ [V  
I(max)  
* V  
]I  
(1)  
D(max)  
Q(min) Q(max)  
) V  
I
I(max) q  
summed to determine the value of R  
:
JA  
where  
q
(3)  
R
+ R  
qJC  
) R ) R  
qCS qSA  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
application,  
qJA  
I(max)  
Q(min)  
Q(max)  
where  
R
R
R
is the junctiontocase thermal resistance,  
is the casetoheatsink thermal resistance,  
is the heatsinktoambient thermal  
resistance.  
JC  
q
q
q
CS  
SA  
I
is the quiescent current the regulator  
q
consumes at I  
.
Q(max)  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
R
q
appears in the package section of the data sheet.  
JC  
can be calculated:  
JA  
q
Like R , it too is a function of package type. R  
and  
JA  
CS  
q
q
o
T
150 C *  
A
R
qJA  
+
R
are functions of the package type, heatsink and the  
interface between them. These values appear in data sheets  
of heatsink manufacturers.  
(2)  
SA  
q
P
D
The value of R  
can then be compared with those in the  
JA  
q
package section of the data sheet. Those packages with  
Thermal, mounting, and heatsinking considerations are  
discussed in the ON Semiconductor application note  
AN1040/D.  
R
less than the calculated value in Equation 2 will keep  
JA  
q
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
Q
I
I
SMART  
REGULATOR®  
V
I
V
Q
Control  
Features  
}
Iq  
Figure 12. Single Output Regulator with Key  
Performance Parameters Labeled  
http://onsemi.com  
8
 
NCV4276B  
Thermal Model  
A discussion of thermal modeling is in the ON Semiconductor web site: http://www.onsemi.com/pub/collateral/BR1487D.PDF.  
Table 1. DPAK 5Lead Thermal RC Network Models  
2
2
2
2
Drain Copper Area (1 oz thick)  
(SPICE Deck Format)  
168 mm  
736 mm  
168 mm  
736 mm  
Cauer Network  
Foster Network  
2
2
168 mm  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
4.36E04  
6.77E02  
1.51E01  
4.80E01  
3.740  
736 mm  
Units  
Tau  
Tau  
Units  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
C_C1  
C_C2  
C_C3  
C_C4  
C_C5  
C_C6  
C_C7  
C_C8  
C_C9  
C_C10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
3.64E04  
1.92E02  
1.27E01  
1.018  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
1.36E08  
7.41E07  
1.04E05  
3.91E05  
1.80E03  
3.77E01  
3.79E+00  
2.65E+01  
8.71E+01  
1.361E08  
7.411E07  
1.029E05  
3.737E05  
1.376E03  
2.851E02  
9.475E01  
1.173E+01  
8.59E+01  
2.955  
10.322  
0.438  
2
2
168 mm  
736 mm  
R’s  
R’s  
R_R1  
R_R2  
R_R3  
R_R4  
R_R5  
R_R6  
R_R7  
R_R8  
R_R9  
R_R10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
0.015  
0.08  
0.015  
0.08  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.0123  
0.0585  
0.0304  
0.3997  
3.115  
0.0123  
0.0585  
0.0287  
0.3772  
2.68  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.4  
0.4  
0.2  
0.2  
2.97519  
8.2971  
25.9805  
46.5192  
17.7808  
0.1  
2.6171  
1.6778  
7.4246  
14.9320  
19.2560  
0.1758  
3.571  
1.38  
12.851  
35.471  
46.741  
5.92  
7.39  
28.94  
NOTE: Bold face items represent the package without the external thermal system.  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
3
C
n
Time constants are not simple RC products. Amplitudes  
of mathematical solution are not the resistance values.  
Ambient  
(thermal ground)  
Figure 13. Grounded Capacitor Thermal Network (“Cauer” Ladder)  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
3
C
n
Each rung is exactly characterized by its RCproduct  
time constant; amplitudes are the resistances.  
Ambient  
(thermal ground)  
Figure 14. NonGrounded Capacitor Thermal Ladder (“Foster” Ladder)  
http://onsemi.com  
9
NCV4276B  
110  
100  
90  
80  
70  
1 oz  
60  
2 oz  
50  
40  
30  
150 200 250 300 350 400 450 500 550 600 650 700 750  
2
COPPER AREA (mm )  
Figure 15. qJA vs. Copper Spreader Area  
100  
10  
2
Cu Area 167 mm  
2
Cu Area 736 mm  
1.0  
0.1  
sqrt(t)  
0.01  
0.0000001  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
TIME (sec)  
Figure 16. SinglePulse Heating Curves  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
1.0  
0.1  
Nonnormalized Response  
0.01  
0.0000001  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
PULSE WIDTH (sec)  
Figure 17. Duty Cycle for 1, Spreader Boards  
http://onsemi.com  
10  
NCV4276B  
ORDERING INFORMATION  
Device  
Output Voltage Accuracy  
2%  
Output Voltage  
Package  
Shipping  
NCV4276BDTADJRKG  
Adjustable  
DPAK, 5Pin  
(PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
11  
NCV4276B  
PACKAGE DIMENSIONS  
DPAK 5, CENTER LEAD CROP  
DT SUFFIX  
CASE 175AA01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
SEATING  
T−  
PLANE  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
R1  
Z
A
K
S
4.56 BSC  
1 2 3 4  
5
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
1.14 BSC  
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
F
J
R1 0.185 0.210  
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
L
H
D 5 PL  
M
G
0.13 (0.005)  
T
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCV4276B/D  

相关型号:

NCV4276B_14

400 mA Low‐Drop Voltage Regulator
ONSEMI

NCV4276C

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDS33R4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDS50R4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDSADJR4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDT33RKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDT50RKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDTADJRKG

LDO Regulator, 400 mA, Low Dropout Adjustable, 2%, 2500-REEL
ONSEMI

NCV4276DS18

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS18G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS18R4

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS18R4G

400 mA Low−Drop Voltage Regulator
ONSEMI