NCV4299CD250R2G [ONSEMI]

150 mA Low-Dropout Voltage Regulator;
NCV4299CD250R2G
型号: NCV4299CD250R2G
厂家: ONSEMI    ONSEMI
描述:

150 mA Low-Dropout Voltage Regulator

光电二极管 输出元件 调节器
文件: 总19页 (文件大小:146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4299C  
150 mA Low-Dropout  
Voltage Regulator  
The NCV4299C is a family of precision micropower voltage  
regulators with an output current capability of 150 mA. It is available in  
5.0 V or 3.3 V output voltage.  
The output voltage is accurate within 2% with a maximum dropout  
voltage of 0.5 V at 100 mA. Low Quiescent current is a feature  
drawing only 80 mA with a 100 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
www.onsemi.com  
MARKING  
DIAGRAMS  
8
The device features microprocessor interfaces including an  
adjustable reset output and adjustable system monitor to provide  
shutdown early warning. An inhibit function is available. With inhibit  
active, the regulator turns off and the device consumes less than  
1.0 mA of quiescent current.  
SO−8  
D1 SUFFIX  
CASE 751  
299Cx  
ALYW  
G
8
1
1
14  
The part can withstand load dump transients making it suitable for  
use in automotive environments.  
SO−14  
D2 SUFFIX  
CASE 751A  
V4299CxxG  
AWLYWW  
14  
Features  
1
1
5.0 V, 3.3 V 2%, 150 mA  
Extremely Low Current Consumption  
80 mA (Typ) in the ON Mode  
t1.0 mA in the Off Mode  
Early Warning  
x, xx  
A
= 3 or 33 (3.3 V Version)  
= 5 or 50 (5.0 V Version)  
= Assembly Location  
WL, L = Wafer Lot  
= Year  
Reset Output Low Down to V = 1.0 V  
Q
Y
WW, W = Work Week  
Adjustable Reset Threshold  
Wide Temperature Range  
G or G = Pb−Free Package  
(Note: Microdot may be in either location)  
Fault Protection  
60 V Peak Transient Voltage  
−40 V Reverse Voltage  
Short Circuit  
PIN CONNECTIONS  
1
14  
Thermal Overload  
RADJ  
D
SI  
Internally Fused Leads on SO−14 Package  
Inhibit Function with 1 mA Current Consumption in the Off Mode  
AEC−Q100 Grade 1 Qualified and PPAP Capable  
These are Pb−Free Devices  
I
1
8
Q
I
SI  
RADJ  
GND  
GND  
GND  
INH  
RO  
GND  
GND  
GND  
Q
SO  
RO  
GND  
D
SOIC−8  
SO  
SOIC−14  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
© Semiconductor Components Industries, LLC, 2014  
1
Publication Order Number:  
November, 2014 − Rev. 0  
NCV4299C/D  
NCV4299C  
Q
I
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
-
+
R
SO  
R
RO  
SO  
RO  
1.36 V  
+
SI  
7.1 mA  
+
+
-
-
+
RADJ  
1.85 V  
D
GND  
Figure 1. SO−8 Simplified Block Diagram  
PIN FUNCTION DESCRIPTION − SO−8 PACKAGE  
Pin  
1
Symbol  
Description  
Input. Battery Supply Input Voltage. Bypass directly to GND with ceramic capacitor.  
I
2
SI  
Sense Input. Can provide an early warning signal of an impending reset condition when used with SO.  
Connect to Q if not used.  
3
4
5
6
RADJ  
D
Reset Adjust. Use resistor divider to Q to adjust reset threshold lower. Connect to GND if not used.  
Reset Delay. Connect external capacitor to ground to set delay time.  
Ground.  
GND  
RO  
Reset Output. NPN collector output with internal 20 kW pullup to Q. Notifies user of out of regulation  
condition. Leave open if not used.  
7
8
SO  
Q
Sense Output. NPN collector output with internal 20 kW pullup to Q. Can be used to provide early warning  
of an impending reset condition. Leave open if not used.  
5.0 V, 3.3 V, 2%, 150 mA output. Use 22 mF, ESR t 4 W to ground.  
www.onsemi.com  
2
NCV4299C  
Q
I
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
-
+
R
SO  
R
RO  
INH  
SO  
RO  
1.36 V  
+
SI  
7.1 mA  
+
+
-
-
+
RADJ  
1.85 V  
D
GND  
Figure 2. Simplified Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
SOIC−14  
Symbol  
RADJ  
D
Description  
1
2
3
4
5
6
Reset Adjust. Use resistor divider to Q to adjust reset threshold lower. Connect to GND if not used.  
Reset Delay. Connect external capacitor to ground to set delay time.  
GND  
GND  
GND  
INH  
Ground  
Ground  
Ground  
Inhibit. Connect to I if not needed. A high turns the regulator on. Use a low pass filter if transients with slew rate in  
excess of 10 V/ms may be present on this pin during operation. See Figure 34 for details.  
7
8
RO  
SO  
Reset Output. NPN collector output with internal 20 kW pullup to Q. Notifies user of out of regulation condition.  
Sense Output. NPN collector output with internal 20 kW pullup to Q. Can be used to provide early warning of an  
impending reset condition.  
9
Q
GND  
GND  
GND  
I
5.0 V, 3.3 V, "2%, 150 mA output. Use 22 mF, ESR t 4 W to ground.  
10  
11  
12  
13  
14  
Ground  
Ground  
Ground  
Input. Battery Supply Input Voltage.  
SI  
Sense Input. Can provide an early warning signal of an impending reset condition when used with SO.  
www.onsemi.com  
3
NCV4299C  
MAXIMUM RATINGS  
Rating  
Symbol  
Min  
Max  
Unit  
Input Voltage to Regulator (DC)  
V
−40  
45  
60  
45  
45  
1.0  
7.0  
10  
7.0  
7.0  
20  
7.0  
16  
V
V
I
Input Peak Transient Voltage to Regulator wrt GND (Note 1)  
Inhibit (INH)  
V
INH  
−40  
−40  
−1.0  
−0.3  
−10  
−0.3  
−0.3  
−20  
−0.3  
−0.3  
−5.0  
2.0  
V
Sense Input (SI)  
V
SI  
V
Sense Input (SI)  
I
SI  
mA  
V
Reset Threshold (RADJ)  
Reset Threshold (RADJ)  
Reset Delay (D)  
V
RADJ  
RADJ  
I
mA  
V
V
D
Reset Output (RO)  
V
RO  
RO  
V
Reset Output (RO)  
I
mA  
V
Sense Output (SO)  
V
SO  
Output (Q)  
V
Q
V
Output (Q)  
I
Q
mA  
kV  
V
ESD Capability, Human Body Model (Note 3)  
ESD Capability, Machine Model (Note 3)  
ESD Capability, Charged Device Model (Note 3)  
Junction Temperature  
ESD  
HB  
MM  
CDM  
J
ESD  
200  
1.0  
ESD  
T
kV  
°C  
°C  
150  
150  
Storage Temperature  
T
stg  
−50  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING RANGE  
Input Voltage  
5.0 V Version  
3.3 V Version  
V
T
5.5  
4.4  
45  
45  
V
I
Junction Temperature  
−40  
150  
°C  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
LEAD TEMPERATURE SOLDERING REFLOW (Note 2)  
Reflow (SMD styles only), lead free 60 s−150 sec above 217, 40 sec max at peak  
T
265 Pk  
Level 1  
°C  
SLD  
Moisture Sensitivity Level  
SO−8  
MSL  
SO−14  
Level 1  
1. Load Dump Test B (with centralized load dump suppression) according to ISO16750−2 standard. Guaranteed by design. Not tested in  
production. Passed Class C according to ISO16750−1  
2. Per IPC / JEDEC J−STD−020C.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD HBM tested per AEC−Q100−002 (JS−001−2010)  
ESD MM tested per AEC−Q100−003 (EIA/JESD22−A115)  
ESD CDM tested per AEC−Q100−011 (EIA/JESD22−C101).  
THERMAL CHARACTERISTICS  
Test Conditions (Typical Value)  
Note 4  
Note 5  
Note 6  
Characteristic  
Unit  
Thermal Characteristics, SO−8  
Junction−to−Lead (y , q  
)
)
72  
198  
58  
150.7  
58.3  
124.5  
°C/W  
JLx JLx  
Junction−to−Ambient (R , q  
θ
JA JA  
Thermal Characteristics, SO−14  
Junction−to−Lead (y , q  
)
)
15.1  
142.7  
19.9  
101.2  
19.3  
86.1  
°C/W  
°C/W  
JLx JLx  
Junction−to−Ambient (R , q  
θ
JA JA  
Thermal Characteristics, TSSOP−14 EP  
Junction−to−Tab (y , q  
)
)
9.7  
111.6  
11.4  
78.7  
11.7  
53.7  
JLx JLx  
Junction−to−Ambient (R , q  
θ
JA JA  
4. 2 oz Copper, 50 mm sq Copper area, 1.5 mm thick FR4.  
5. 2 oz Copper, 150 mm sq Copper area, 1.5 mm thick FR4.  
6. 2 oz Copper, 500 mm sq Copper area, 1.5 mm thick FR4.  
www.onsemi.com  
4
 
NCV4299C  
ELECTRICAL CHARACTERISTICS (−40°C < T < 150°C; V = 13.5 V unless otherwise noted.)  
J
I
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT Q  
Output Voltage (5.0 V Version)  
Output Voltage (3.3 V Version)  
Current Limit  
V
V
1.0 mA < I < 150 mA, 6.0 V < V < 16 V  
4.9  
3.23  
250  
5.0  
3.3  
430  
80  
5.1  
3.37  
500  
90  
V
Q
Q
I
1.0 mA < I < 150 mA, 5.5 V < V < 16 V  
V
Q
Q
I
I
Q
V
Q
= 90% of V  
Qnom  
mA  
mA  
mA  
mA  
mA  
mA  
V
Quiescent Current (I = I – I )  
I
INH ON, I < 100 mA, T = 25°C  
Q J  
q
I
Q
q
q
q
q
q
Quiescent Current (I = I – I )  
I
I
I
I
INH ON, I < 100 mA, T 125°C  
80  
95  
q
I
Q
Q
J
Quiescent Current (I = I – I )  
INH ON, I = 10 mA  
200  
0.8  
500  
2.0  
1.0  
0.50  
30  
q
I
Q
Q
Quiescent Current (I = I – I )  
INH ON, I = 50 mA  
q
I
Q
Q
Quiescent Current (I = I – I )  
INH = 0 V, T = 25°C  
q
I
Q
J
Dropout Voltage (Note 7)  
Load Regulation  
V
dr  
I
= 100 mA  
0.26  
1.0  
2.0  
66  
Q
Q
DV  
DV  
I
= 1.0 mA to 100 mA  
mV  
mV  
dB  
Q
Line Regulation  
V = 6.0 V to 28 V, I = 1.0 mA  
25  
Q
I
Q
Power Supply Ripple Rejection  
INHIBIT (INH)  
PSRR  
ƒr = 100 Hz, Vr = 1.0 Vpp, I = 100 mA  
Q
Inhibit Off Voltage  
V
V
< 0.1 V  
0.8  
V
V
INHOFF  
Q
Inhibit On Voltage  
5.0 V Version  
V
INHON  
V
Q
V
Q
> 4.9 V  
> 3.23 V  
3.5  
3.5  
3.3 V Version  
Input Current  
I
INH = 5 V  
INH = 0 V  
3.8  
10  
mA  
INHON  
I
0.01  
2.0  
INHOFF  
RESET (RO)  
Switching Threshold  
5.0 V Version  
V
V
RT  
4.50  
2.96  
4.67  
3.07  
4.80  
3.16  
3.3 V Version  
Output Resistance  
R
V
10  
20  
40  
kW  
RO  
Reset Output Low Voltage  
5.0 V Version  
V
RO  
V
Q
V
Q
= 4.5 V, Internal R , I = −1.0 mA  
0.05  
0.05  
0.40  
0.40  
RO RO  
3.3 V Version  
= 2.96 V, Internal R , I = −1.0 mA  
RO RO  
Allowable External Reset Pullup Resistor  
Delay Upper Threshold  
V
External Resistor to Q  
5.6  
1.5  
0.4  
kW  
V
ROext  
V
1.85  
0.5  
2.2  
0.6  
UD  
Delay Lower Threshold  
V
V
LD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Only for 5 V version. Measured when the output voltage V has dropped 100 mV from the nominal value obtained at V = 13.5 V.  
Q
I
www.onsemi.com  
5
 
NCV4299C  
ELECTRICAL CHARACTERISTICS (continued) (−40°C < T < 150°C; V = 13.5 V unless otherwise noted.)  
J
I
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
RESET (RO)  
Delay Output Low Voltage  
5.0 V Version  
V
D,sat  
V
V
Q
V
Q
= 4.5 V, Internal R  
= 2.96 V, Internal R  
0.1  
0.1  
RO  
3.3 V Version  
0.017  
RO  
Delay Charge Current  
Power On Reset Delay Time  
Reset Reaction Time  
I
V
= 1.0 V  
4.0  
17  
7.1  
28  
12  
35  
mA  
ms  
ms  
V
D
D
t
C
C
= 100 nF  
d
D
D
t
= 100 nF  
0.5  
1.6  
4.0  
RR  
V
RADJ,TH  
Reset Adjust Switching Threshold  
5.0 V Version  
V
Q
V
Q
= 3.5 V  
= 2.3 V  
1.26  
1.26  
1.36  
1.36  
1.44  
1.44  
3.3 V Version  
INPUT VOLTAGE SENSE (SI and SO)  
Sense Input Threshold High  
Sense Input Threshold Low  
Sense Input Hysteresis  
V
1.34  
1.26  
50  
1.45  
1.36  
90  
1.54  
1.44  
130  
V
V
SI,High  
V
SI,Low  
(Sense Threshold High) −  
(Sense Threshold Low)  
mV  
Sense Input Current  
I
R
V
V
= 1.2 V  
−1.0  
10  
0.1  
20  
0.1  
1.0  
40  
0.4  
mA  
kW  
V
SI  
SI  
Sense Output Resistance  
Sense Output Low Voltage  
SO  
SO  
V
SI  
= 1.2 V, V = 5.5 V, I = 0 mA  
I
SO  
Allowable External Sense Out  
Pullup Resistor  
R
5.6  
kW  
SOext  
SI High to SO High Reaction Time  
SI Low to SO Low Reaction Time  
THERMAL SHUTDOWN  
t
R
R
= 5.6 kW  
= 5.6 kW  
1.3  
2.2  
8.0  
5.0  
ms  
ms  
PSOLH  
SOext  
SOext  
t
PSOHL  
Thermal Shutdown Temperature (Note 8)  
T
SD  
I
= 1 mA  
150  
200  
°C  
out  
8. Values based on design and/or characterization.  
I
I
I
Q
V
Q
V
I
I
Q
I
INH  
V
INH  
INH  
D
V
RO  
SO  
RO  
C
D
I
D
100 nF  
I
RADJ  
V
RADJ  
RADJ  
SI  
V
SO  
I
SI  
V
SI  
GND  
I
q
Figure 3. Measurement Circuit  
www.onsemi.com  
6
 
NCV4299C  
TYPICAL PERFORMANCE CHARACTERISTICS − 5.0 V OPTION  
5.1  
6
V = 13.5 V  
I
I
Q
= 100 mA  
5
4
3
5.0  
4.9  
2
I
Q
= 100 mA  
1
0
T = 25°C  
J
−40 −20  
0
20 40  
60 80 100 120 140 160  
0
2
4
6
8
10  
12  
14  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
I
Figure 5. Output Voltage vs. Input Voltage  
Figure 4. Output Voltage vs. Junction Temperature  
8.0  
500  
T = 150°C  
J
V = 13.5 V  
I
V
= 1 V  
= 100 mA  
D
400  
7.6  
7.2  
6.8  
6.4  
6.0  
I
Q
T = 25°C  
J
300  
200  
100  
0
T = −40°C  
J
−40 −20  
0
20 40  
60 80 100 120 140 160  
0
50  
100  
150  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
Q
Figure 6. Charge Current vs. Junction  
Temperature  
Figure 7. Drop Voltage vs. Output Current  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
1.5  
V = 13.5 V  
I
V = 13.5 V  
I
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.4  
0
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 8. Switching Voltage vs. Junction  
Temperature  
Figure 9. Reset Adjust Switching Threshold vs.  
Junction Temperature  
www.onsemi.com  
7
NCV4299C  
400  
350  
300  
250  
200  
150  
100  
50  
1.6  
1.5  
T = 125°C  
J
V
SI,Low  
T = 25°C  
J
1.4  
1.3  
1.2  
V
SI,High  
1.1  
1.0  
V
Q
= 0 V  
0
−40  
0
40  
120  
160  
0
10  
20  
30  
40  
80  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
I
Figure 11. Output Current vs. Input Voltage  
Figure 10. Sense Threshold vs. Junction  
Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000  
100  
V = 13.5 V  
I
V = 13.5 V  
T = 25°C  
J
I
I
Q
= 100 mA  
10  
1
−40 −20  
0
20 40 60 80 100 120 140 160  
0
40  
80  
120  
160  
I , OUTPUT CURRENT (mA)  
Q
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. Current Consumption vs. Junction  
Temperature  
Figure 13. Current Consumption vs. Output  
Current  
16  
14  
12  
10  
8
40  
35  
30  
T = 25°C  
J
I
Q
= 25 mA  
I
Q
= 150 mA  
I
Q
= 50 mA  
25  
20  
I
= 100 mA  
6
Q
4
15  
10  
2
0
0
10  
20  
V , INPUT VOLTAGE (V)  
30  
40  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
I
Figure 14. RRO, RSO Resistance vs. Junction  
Temperature  
Figure 15. Current Consumption vs. Input  
Voltage  
www.onsemi.com  
8
NCV4299C  
120  
110  
100  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T = 25°C  
J
T = 25°C  
J
90  
80  
70  
60  
I
Q
= 100 mA  
I
= 100 mA  
Q
I
Q
= 50 mA  
50  
40  
I
Q
= 10 mA  
6
8
10 12 14 16 18 20 22 24  
V , INPUT VOLTAGE (V)  
26  
6
8
10 12  
14 16 18  
20 22 24 26  
V , INPUT VOLTAGE (V)  
I
I
Figure 17. Current Consumption vs. Input  
Voltage  
Figure 16. Current Consumption vs. Input  
Voltage  
100  
V = 13.5 V  
T = 25°C  
J
I
Unstable Region  
10  
1
1 mF to 100 mF  
0.1  
0.01  
Stable Region  
0
25  
50  
75  
100  
125  
150  
I , OUTPUT CURRENT (mA)  
Q
Figure 18. Output Stability vs. Output Capacitor  
ESR  
www.onsemi.com  
9
NCV4299C  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
1000  
100  
5
V = 13.5 V  
I
V = 13.5 V  
I
I
Q
= 100 mA  
4
3
2
T = 150°C  
J
T = 25°C  
J
T = −40°C  
J
10  
1
1
0
−40 −20  
0
20 40 60 80 100 120 140 160  
0
20  
40  
60  
80  
100  
120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
Q
Figure 19. Current Consumption vs. Junction  
Temperature  
Figure 20. Current Consumption vs. Output  
Current  
12  
10  
8
3.40  
3.35  
3.30  
T = 25°C  
V = 13.5 V  
J
I
I
Q
= 100 mA  
I
Q
= 150 mA  
I
Q
= 100 mA  
6
I
Q
= 50 mA  
I = 25 mA  
Q
4
3.25  
3.20  
2
0
0
10  
20  
V , INPUT VOLTAGE (V)  
30  
40  
−40 −20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
I
Figure 21. Current Consumption vs. Input  
Voltage  
Figure 22. Output Voltage vs. Junction  
Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
400  
350  
T = 25°C  
J
T = 125°C  
J
300  
250  
200  
150  
100  
T = 25°C  
J
I
= 100 mA  
Q
I
= 50 mA  
= 10 mA  
Q
0.5  
0
V
Q
= 0 V  
30  
50  
0
I
Q
6
8
10 12  
14 16  
18 20  
22 24  
26  
0
10  
20  
V , INPUT VOLTAGE (V)  
40  
V , INPUT VOLTAGE (V)  
I
I
Figure 23. Current Consumption vs. Input  
Voltage  
Figure 24. Output Current vs. Input Voltage  
www.onsemi.com  
10  
NCV4299C  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
6
5
4
3
2
85  
T = 25°C  
V = 13.5 V  
T = 25°C  
J
J
I
80  
75  
I
Q
= 100 mA  
70  
65  
1
0
0
2
4
6
8
10  
12  
14  
6
8
10  
12 14 16 18 20 22 24 26  
V , INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
I
I
Figure 25. Output Voltage vs. Input Voltage  
Figure 26. Current Consumption vs. Input  
Voltage  
3.20  
3.15  
3.10  
3.05  
3.00  
1.6  
1.5  
1.4  
1.3  
1.2  
V = 13.5 V  
I
V
SI,High  
V
SI,Low  
V = 13.5 V  
I
2.95  
2.90  
1.1  
1.0  
I
Q
= 100 mA  
−40 −20  
0
20  
40 60 80 100 120 140 160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. Reset Trigger Threshold vs.  
Junction Temperature  
Figure 28. Sense Threshold vs. Junction  
Temperature  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
1.5  
V = 13.5 V  
I
V = 13.5 V  
I
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.4  
0
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. Switching Voltage vs. Junction  
Temperature  
Figure 30. Reset Adjust Switching Threshold  
vs. Junction Temperature  
www.onsemi.com  
11  
NCV4299C  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
40  
30  
8.0  
V = 13.5 V  
I
7.6  
7.2  
6.8  
V
D
= 1 V  
I
Q
= 100 mA  
20  
10  
6.4  
6.0  
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. Resistance vs. Junction  
Temperature  
Figure 32. Charge Current vs. Junction  
Temperature  
100  
V = 13.5 V  
T = 25°C  
J
I
Unstable Region  
10  
1
2.2 mF to 100 mF  
Stable Region  
0.1  
0.01  
0
20  
40  
60  
80  
100  
120  
140  
160  
I , OUTPUT CURRENT (mA)  
Q
Figure 33. Output Capacitor ESR vs. Output  
Current  
www.onsemi.com  
12  
NCV4299C  
APPLICATION DESCRIPTION  
NCV4299C  
Other features of the regulator include an undervoltage  
reset function and a sense circuit. The reset function has an  
adjustable time delay and an adjustable threshold level. The  
sense circuit trip level is adjustable and can be used as an  
early warning signal to the controller. An inhibit function  
that turns off the regulator and reduces the current  
consumption to less than 1.0 mA is a feature available in the  
14 pin package.  
The NCV4299C is a family of precision micropower  
voltage regulators with an output current capability of  
150 mA at 5.0 V and 3.3 V.  
The output voltage is accurate within "2% with a  
maximum dropout voltage of 0.5 V at 100 mA. Low  
quiescent current is a feature drawing only 80 mA with a  
100 mA load. This part is ideal for any and all battery  
operated microprocessor equipment.  
Output Regulator  
Microprocessor control logic includes an active reset  
output RO (with delay), and a SI/SO monitor which can be  
used to provide an early warning signal to the  
microprocessor of a potential impending reset signal. The  
use of the SI/SO monitor allows the microprocessor to finish  
any signal processing before the reset shuts the  
microprocessor down. Internal output resistors on the RO  
and SO pins pulling up to the output pin Q reduce external  
component count. An inhibit function is available on the  
14−lead part. With inhibit active, the regulator turns off and  
the device consumes less that 1.0 mA of quiescent current.  
The active reset circuit operates correctly at an output  
voltage as low as 1.0 V. The reset function is activated  
during the powerup sequence or during normal operation if  
the output voltage drops outside the regulation limits.  
The reset threshold voltage can be decreased by the  
connection of an external resistor divider to the RADJ lead.  
The regulator is protected against reverse battery, short  
circuit, and thermal overload conditions. The device can  
withstand load dump transients making it suitable for use in  
automotive environments.  
The output is controlled by a precision trimmed reference.  
The PNP output has saturation control for regulation while  
the input voltage is low, preventing oversaturation. Current  
limit and voltage monitors complement the regulator design  
to give safe operating signals to the processor and control  
circuits.  
Stability Considerations  
The input capacitor C is necessary for compensating  
I
input line reactance. Possible oscillations caused by input  
inductance and input capacitance can be damped by using a  
resistor of approximately 1.0 W in series with C .  
I
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (−25°C to −40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturer’s data sheet usually provides this information.  
NCV4299C Circuit Description  
The low dropout regulator in the NCV4299C uses a PNP  
pass transistor to give the lowest possible dropout voltage  
capability. The current is internally monitored to prevent  
oversaturation of the device and to limit current during over  
current conditions. Additional circuitry is provided to  
protect the device during overtemperature operation.  
The regulator provides an output regulated to 2%.  
The value for the output capacitor C shown in Figure 34  
Q
should work for most applications, however, it is not  
necessarily the optimized solution. Stability is guaranteed at  
values C 22 mF and an ESR 4 W within the operating  
Q
temperature range. Actual limits are shown in a graph in the  
typical performance characteristics section.  
www.onsemi.com  
13  
NCV4299C  
V
BAT  
I
Q
V
DD  
C *  
I
R
R
C **  
RADJ1  
RADJ2  
Q
0.1 mF  
22 mF  
RADJ  
D
C
D
R
S11  
SI  
R
S12  
R
***  
INH  
51kW  
INH  
INH  
SO  
C
***  
I/O  
RO  
INH  
GND  
I/O  
0.01 mF  
*C required if regulator is located far from the power supply filter.  
I
**C required for stability. Cap must operate at minimum temperature expected.  
Q
***This RC filter is only required when transients with slew rate in excess of 10 V/ms may be present on the INH  
voltage source during operation. The filter is not required when INH is connected to a noise−free DC voltage.  
Figure 34. Test and Application Circuit Showing all Compensation and Sense Elements  
V
BAT  
I
Q
V
DD  
C *  
I
R
R
C **  
RADJ1  
RADJ2  
Q
0.1 mF  
22 mF  
RADJ  
D
C
D
R
S11  
SI  
R
S12  
I/O  
SO  
RO  
GND  
I/O  
*C required if regulator is located far from the power supply filter.  
I
**C required for stability. Cap must operate at minimum temperature expected.  
Q
Figure 35. Test and Application Circuit Showing all Compensation and Sense Elements for 8 Pin Package Part  
www.onsemi.com  
14  
 
NCV4299C  
Reset Output (RO)  
threshold voltage V . When the voltage of the delay timer  
RT  
A reset signal, Reset Output (RO, low voltage) is  
(V ) drops below the lower threshold voltage V , the reset  
D
LD  
generated as the IC powers up. After the output voltage V  
output voltage V is brought low to reset the processor.  
Q
RO  
increases above the reset threshold voltage V , the delay  
The reset output RO is an open collector NPN transistor,  
controlled by a low voltage detection circuit. The circuit is  
functionally independent of the rest of the IC, thereby  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. D pin voltage in  
UD  
steady state is typically 2.5 V. A discharge of the delay timer  
guaranteeing that RO is valid for V as low as 1.0 V.  
Q
(V ) is started when V drops and stays below the reset  
D
Q
V
I
t
< t  
RR  
V
Q
V
RT  
t
t
dV  
dt  
I
C
D
D
+
V
D
V
UD  
V
LD  
t
t
d
RR  
V
RO  
V
RO,SAT  
t
Power−on−Reset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 36. Reset Timing Diagram  
Reset Adjust (RADJ)  
Reset Delay (D)  
The reset threshold V can be decreased from a typical  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output RO lead. The delay lead D  
RT  
value of 4.67 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin RADJ,  
as shown in Figure 34. The resistor divider keeps the voltage  
D
provides charge current I (typically 7.1 mA) to the external  
D
delay capacitor C during the following times:  
D
above the V  
, (typ. 1.36 V), for the desired input  
1. During Powerup (once the regulation threshold has  
been exceeded).  
2. After a reset event has occurred and the device  
is back in regulation. The delay capacitor is  
RADJ,TH  
voltages and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
set to discharge when the regulation (V , reset  
threshold voltage) has been violated. When  
RT  
V
+ V  
· (R  
) R  
)ńR  
ADJ2 ADJ2  
THRES  
RADJ, TH  
ADJ1  
(eq. 1)  
the delay capacitor discharges to down to V  
the reset signal RO pulls low.  
,
LD  
If the reset adjust option is not needed, the RADJ−pin  
should be connected to GND causing the reset threshold to  
go to its default value (typ. 4.67 V).  
www.onsemi.com  
15  
NCV4299C  
V
Q
Setting the Delay Time  
The delay time is set by the delay capacitor C and the  
D
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to the  
V
SI  
D,sat  
higher level V . The time delay follows the equation:  
V
SI,Low  
UD  
(eq. 2)  
t
d
+ [C (V −V )]ńI  
UD D, sat D  
D
V
RO  
Example:  
Using C = 100 nF.  
D
Use the typical value for V  
= 0.1 V.  
D,sat  
V
SO  
Use the typical value for V = 1.85 V.  
UD  
Use the typical value for Delay Charge Current I = 7.1 mA.  
D
T
WARNING  
(eq. 3)  
t
d
+ [100 nF(1.85−0.1 V)]ń7.1 mA + 24.6 ms  
Figure 37. SO Warning Timing Waveform  
When the output voltage V drops below the reset  
Q
threshold voltage V , the voltage on the delay capacitor V  
RT  
D
starts to drop. The time it takes to drop below the lower  
threshold voltage of V is the reset reaction time, t . This  
time is typically 1.6 ms for a delay capacitor of 0.1 mF. The  
reset reaction time can be estimated from the following  
relationship:  
Sense  
Input  
Voltage  
LD  
RR  
V
SI,High  
(eq. 4)  
t
+ 16 nsńnF   C  
D
RR  
V
SI,Low  
Sense Input (SI)/Sense Output (SO) Voltage Monitor  
An on−chip comparator is available to provide early  
warning to the microprocessor of a possible reset signal. The  
reset signal typically turns the microprocessor off  
instantaneously. This can cause unpredictable results with  
the microprocessor. The signal received from the SO pin will  
allow the microprocessor time to complete its present task  
before shutting down. This function is performed by a  
comparator referenced to the band gap voltage. The actual  
trip point can be programmed externally using a resistor  
divider to the input monitor (SI) (Figure 34). The typical  
threshold is 1.36 V on the SI Pin.  
t
Sense  
Output  
t
t
PSOHL  
PSOLH  
High  
Low  
t
Figure 38. Sense Timing Diagram  
Signal Output  
Figure 37 shows the SO Monitor waveforms as a result of  
the circuits depicted in Figure 34. As the output voltage V  
falls, the monitor threshold V  
voltage on the SO output to go low sending a warning signal  
to the microprocessor that a reset signal may occur in a short  
Calculating Power Dissipation in a Single Output  
Linear Regulator  
The maximum power dissipation for a single output  
regulator is:  
Q
is crossed. This causes the  
SI,Low  
P
+ [V  
−V  
] I  
) V  
Iq  
I(max)  
D(max)  
I(max) Q(min) Q(max)  
period of time. T  
is the time the microprocessor has  
WARNING  
(eq. 5)  
to complete the function it is currently working on and get  
ready for the reset shutdown signal. When the voltage on the  
SO goes low and the RO stays high the current consumption  
is typically 400 mA.  
where:  
V
V
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the application,  
I(max)  
Q(min)  
Q(max)  
I
and  
I is the quiescent current the regulator consumes at I  
.
Q(max)  
q
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
(eq. 6)  
R
+ (150° C−T )ńP  
qJA  
A
D
www.onsemi.com  
16  
 
NCV4299C  
Heatsinks  
The value of R  
can then be compared with those in the  
qJA  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
package section of the data sheet. Those packages with  
’s less than the calculated value in Equation 6 will keep  
the die temperature below 150°C. In some cases, none of the  
packages will be sufficient to dissipate the heat generated by  
the IC, and an external heatsink will be required. Thermal  
R
qJA  
Resistance R  
vs. Copper Area is shown in Figure 39.  
qJA  
determine the value of R  
:
qJA  
250  
(eq. 7)  
R
+ R  
) R  
) R  
qCS qSA  
qJA  
qJC  
1 oz SO−8  
where:  
2 oz SO−8  
200  
150  
100  
50  
R
R
R
= the junction−to−case thermal resistance,  
= the case−to−heatsink thermal resistance, and  
= the heatsink−to−ambient thermal resistance.  
qJC  
qCS  
qSA  
2 oz SO−14  
1 oz SO−14  
R
appears in the package section of the data sheet. Like  
qJC  
R
q
, it too is a function of package type. R  
and R  
are  
JA  
qCS  
qSA  
functions of the package type, heatsink and the interface  
between them. These values appear in heatsink data sheets of  
heatsink manufacturers. Thermal, mounting, and heatsinking  
are discussed in the ON Semiconductor application note  
AN1040/D, available on the ON Semiconductor website.  
0
0
100  
200  
300  
400  
500  
600 700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 39. Thermal Resistance RqJA vs. Copper Area  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCV4299CD133R2G  
SO−8  
(Pb−Free)  
2500 / Tape & Reel  
NCV4299CD150R2G  
NCV4299CD233R2G  
NCV4299CD250R2G  
SO−8  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
SO−14  
(Pb−Free)  
SO−14  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
17  
 
NCV4299C  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
18  
NCV4299C  
PACKAGE DIMENSIONS  
SOIC−14 NB  
CASE 751A−03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
0.25  
C A  
B
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV4299C/D  

相关型号:

NCV4299D1

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D1G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D1R2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D1R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D233G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D233R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2R2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV431

Low Voltage Precision Adjustable Shunt Regulator
ONSEMI

NCV431AIDMR2

PROGRAMMABLE PRECISION REFERENCES
ONSEMI