NCV7357MW3R2G [ONSEMI]

CAN FD Transceiver, High Speed;
NCV7357MW3R2G
型号: NCV7357MW3R2G
厂家: ONSEMI    ONSEMI
描述:

CAN FD Transceiver, High Speed

文件: 总15页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV7357  
CAN FD Transceiver, High  
Speed  
Description  
The NCV7357 CAN transceiver is the interface between  
a controller area network (CAN) protocol controller and the physical  
bus. The transceiver provides differential transmit capability to the bus  
and differential receive capability to the CAN controller.  
The NCV7357 is an addition to the CAN highspeed transceiver  
family complementing NCV7344 CAN standalone transceivers and  
previous generations such as AMIS42665, AMIS3066x, etc.  
The NCV7357 guarantees additional timing parameters to ensure  
robust communication at data rates beyond 1 Mbps to cope with CAN  
flexible data rate requirements (CAN FD). These features make the  
NCV7357 an excellent choice for all types of HSCAN networks, in  
nodes that require only a basic CAN capability.  
www.onsemi.com  
SOIC8  
DFNW8  
D SUFFIX  
CASE 751AZ  
MW SUFFIX  
CASE 507AB  
MARKING DIAGRAM  
Features  
8
1
Compatible with ISO 118982:2016  
NV7357X  
ALYWG  
G
NV7357X  
ALYWG  
G
CAN FD Timing Specified up to 5 Mbps  
V Pin on NCV73573 Version Allowing Direct Interfacing with  
IO  
1
3 V to 5 V Microcontrollers  
Low Current, Listen Only Silent Mode  
NV7357X = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
Low Electromagnetic Emission (EME) and High Electromagnetic  
Immunity  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
Very Low EME without Commonmode (CM) Choke  
No Disturbance of the Bus Lines with an Unpowered Node  
Transmit Data (TxD) Dominant Timeout Function  
Under All Supply Conditions the Chip Behaves Predictably  
Very High ESD Robustness of Bus Pins, >8 kV System ESD Pulses  
Thermal Protection  
PIN ASSIGNMENT  
1
8
TxD  
S
Bus Pins Short Circuit Proof to Supply Voltage and Ground  
GND  
VCC  
CANH  
EP  
Bus Pins Protected Against Transients in an Automotive  
CANL  
Environment  
RxD  
NC (0)  
VIO (3)  
These are Pbfree Devices  
Quality  
NCV7357D1x  
(Top View)  
Wettable Flank Package for Enhanced Optical Inspection  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
1
8
S
TxD  
2
3
4
7
GND  
VCC  
CANH  
Typical Applications  
6
5
Automotive  
Industrial Networks  
CANL  
RxD  
NC (0)  
VIO (3)  
NCV7357MWx  
(Top View)  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 11 of this data sheet.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
March, 2019 Rev. 0  
NCV7357/D  
NCV7357  
V
CC  
NC  
5
3
NCV73570  
V
CC  
7
6
CANH  
CANL  
Thermal  
Shutdown  
1
Timer  
TxD  
V
CC  
Mode  
Driver  
8
4
control  
control  
S
2
RxD  
GND  
COMP  
Figure 1. NCV73570 Block Diagram  
V
IO  
V
CC  
5
3
NCV73573  
V
IO  
7
6
CANH  
CANL  
Thermal  
Shutdown  
1
TxD  
Timer  
V
IO  
8
Mode  
control  
Driver  
control  
S
2
4
GND  
RxD  
COMP  
Figure 2. NCV73573 Block Diagram  
www.onsemi.com  
2
NCV7357  
VBAT  
IN  
OUT  
5V reg  
VCC  
NC  
5
VCC  
3
RLT = 60 W  
CANH  
7
S
8
1
4
CAN  
BUS  
Micro−  
controller  
TxD  
RxD  
CANL  
RLT = 60 W  
6
.
2
GND  
GND  
Figure 3. Application Diagram NCV73570  
VBAT  
IN  
IN  
OUT  
OUT  
5V reg  
3V reg  
VIO  
VCC  
5
3
RLT = 60 W  
CANH  
S
7
8
1
4
CAN  
BUS  
Micro−  
controller  
TxD  
RxD  
CANL  
RLT = 60 W  
6
.
2
GND  
GND  
Figure 4. Application Diagram NCV73573  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
TxD  
Description  
Transmit data input; low input Ù dominant driver; internal pullup current  
2
GND  
Ground  
3
V
CC  
Supply voltage  
4
RxD  
Receive data output; dominant transmitter Ù low output  
Not connected. On NCV73570 only  
Digital Input / Output pins supply voltage. On NCV73573 only  
5
5
NC  
V
IO  
6
7
8
CANL  
CANH  
S
Lowlevel CAN bus line (low in dominant mode)  
Highlevel CAN bus line (high in dominant mode)  
Silent mode control input; internal pullup current  
Exposed Pad. Recommended to connect to GND or left floating in application  
(DFNW8 package only).  
EP  
www.onsemi.com  
3
 
NCV7357  
FUNCTIONAL DESCRIPTION  
High speed CAN FD transceiver  
NCV7357 implements highspeed physical layer CAN  
FD transceiver compatible with ISO118982, implementing  
following optional features or alternatives:  
Extended bus load range  
Transmit dominant timeout, long  
Support of bit rates up to 5 Mbps  
Normal Bus biasing  
Operating Modes  
NCV7357 provides two modes of operation as illustrated  
in Table 2. These modes are selectable through pin S.  
Table 2. OPERATING MODES  
Pin S  
Mode  
Pin TxD  
BUS  
Pin RxD  
0
1
Dominant  
Recessive  
0
1
Low  
Normal  
Dominant  
(1)  
X
X
0
1
High  
Silent  
Recessive  
1. CAN BUS driven by another transceiver on the BUS  
2. ’X’ = don’t care  
Poweroff  
Overtemperature Detection  
This virtual mode is entered as soon as the V or V  
undervoltage condition is detected. The internal logic is  
reset and the transceiver is disabled. CAN bus pins are kept  
A thermal protection circuit protects the IC from damage  
by switching off the transmitter if the junction temperature  
CC  
IO  
exceeds T  
value. Because the transmitter dissipates most  
J(sd)  
floating. As soon as both V and V voltages rise above  
of the power, the power dissipation and temperature of the  
IC is reduced. All other IC functions continue to operate.  
The transmitter offstate resets when the temperature  
decreases below the shutdown threshold and pin TxD goes  
high. The thermal protection circuit is particularly needed  
when a bus line short circuits.  
CC  
IO  
corresponding undervoltage recovery thresholds, the device  
proceeds to Normal or Silent mode, depending on S pin  
state.  
Normal Mode  
In the normal mode, the transceiver is able to  
communicate via the bus lines. The signals are transmitted  
and received to the CAN controller via the pins TxD and  
RxD. The slopes on the bus lines outputs are optimized to  
give low EME.  
TxD Dominant Timeout Function  
A TxD dominant timeout timer circuit prevents the bus  
lines being driven to a permanent dominant state (blocking  
all network communication) if pin TxD is forced  
permanently low by a hardware and/or software application  
failure. The timer is triggered by a negative edge on pin TxD.  
If the duration of the lowlevel on pin TxD exceeds the  
Silent Mode  
In the silent mode, the transmitter is disabled. The bus pins  
are in recessive state independent of TxD input. Transceiver  
listens to the bus and provides data to controller, but  
controller is prevented from sending any data to the bus.  
internal timer value t  
, the transmitter is disabled,  
dom(TxD)  
driving the bus into a recessive state. The timer is reset by a  
positive edge on pin TxD.  
This TxD dominant timeout time t  
minimum possible bit rate to 17 kbps.  
defines the  
dom(TxD)  
Poweroff  
CAN: off (no bias)  
RxD: HighZ  
Any  
UV  
mode detected  
Fail Safe Features  
TxD, S: HighZ  
A currentlimiting circuit protects the transmitter output  
stage from damage caused by accidental short circuit  
to either positive or negative supply voltage, although  
power dissipation increases during this fault condition.  
Detection of undervoltage on supply pin (V or V )  
No UV  
and S = Low  
No UV  
and S = High  
Normal mode  
Silent mode  
S = High  
CC  
IO  
causes switching off device. After supply voltage is  
recovered TxD pin must be first released to high to allow  
sending dominant bits again.  
The pins CANH and CANL are protected from  
automotive electrical transients (according to ISO 7637; see  
S = Low  
S = High  
CAN: Tx/Rx  
CAN bias: VCC/2  
CAN: Rx only  
CAN bias: VCC/2  
S = Low  
Notes:  
NCV73570  
UV detected: VCC < VUVDVCC  
NCV73573  
UV detected: VCC < VUVDVCC and/or VIO < VUVDVIO  
No UV: VCC > VUVDVCC and VIO > VUVDVIO  
No UV:  
VCC > VUVDVCC  
www.onsemi.com  
4
 
NCV7357  
Figure 7). Pins TxD and S are biased internally should the  
between microcontroller and transceiver are properly  
adjusted. See Figure 4.  
input become disconnected. Pins TxD, S and RxD will be  
floating, preventing reverse supply should the VCC supply  
be removed.  
Definitions  
All voltages are referenced to GND (pin 2). Positive  
currents flow into the IC. Sinking current means the current  
is flowing into the pin; sourcing current means the current  
is flowing out of the pin.  
VIO Supply Pin  
The V pin (available only on NCV73573 version)  
IO  
should be connected to microcontroller supply pin. By using  
V
IO  
supply pin shared with microcontroller the I/O levels  
ABSOLUTE MAXIMUM RATINGS  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Supply voltage V , V  
Conditions  
Min.  
0.3  
42  
42  
42  
0.3  
6  
Max.  
+6.0  
+42  
+42  
+42  
+6.0  
+6  
Unit  
V
V
SUP  
CC  
IO  
V
CANH  
DC voltage at pin CANH  
0 < V < 5.5 V; no time limit  
V
CC  
V
DC voltage at pin CANL  
0 < V < 5.5 V; no time limit  
V
CANL  
CANH CANL  
CC  
V
DC voltage between CANH and CANL  
DC voltage at pin TxD, RxD, S  
V
V
I/O  
V
V
Electrostatic discharge voltage at all  
pins, Component HBM  
(Note 3)  
(Note 4)  
(Note 5)  
kV  
esdHBM  
V
Electrostatic discharge voltage at all  
pins, Component CDM  
esdCDM  
750  
+750  
+8  
V
V
Electrostatic discharge voltage at pins  
CANH and CANL,  
System HBM (Note 6)  
esdIEC  
8  
kV  
V
Voltage transients, pins CANH, CANL.  
According to ISO76373, Class C  
(Note 6)  
test pulses 1  
test pulses 2a  
test pulses 3a  
test pulses 3b  
(Note 7)  
100  
V
V
schaff  
+75  
150  
V
+100  
150  
V
Latchup  
Static latchup at all pins  
mA  
°C  
°C  
T
Storage temperature  
55  
40  
+150  
+170  
stg  
T
J
Maximum junction temperature  
Moisture sensitivity level for SOIC8  
Moisture sensitivity level for DFNW8  
MSL  
2
1
SOIC  
MSL  
DFN  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. Standardized human body model electrostatic discharge (ESD) pulses in accordance to EIAJESD22. Equivalent to discharging a 100 pF  
capacitor through a 1.5 kW resistor  
4. Standardized charged device model ESD pulses when tested according to AECQ100011  
5. System human body model electrostatic discharge (ESD) pulses in accordance to IEC 6100042. Equivalent to discharging a 150 pF  
capacitor through a 330 W resistor referenced to GND  
6. Results were verified by external test house  
7. Static latchup immunity: Static latchup protection level when tested according to EIA/JESD78  
www.onsemi.com  
5
 
NCV7357  
Table 4. THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Value  
Unit  
Thermal characteristics SOIC8 (Note 8)  
Thermal Resistance JunctiontoAir, Free air, 1S0P PCB (Note 9)  
Thermal Resistance JunctiontoAir, Free air, 2S2P PCB (Note 10)  
R
R
131  
81  
°C/W  
°C/W  
q
JA  
JA  
q
Thermal characteristics DFNW8 (Note 8)  
Thermal Resistance JunctiontoAir, Free air, 1S0P PCB (Note 9)  
Thermal Resistance JunctiontoAir, Free air, 2S2P PCB (Note 10)  
R
R
125  
58  
°C/W  
°C/W  
q
JA  
JA  
q
8. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters  
9. Values based on test board according to EIA/JEDEC Standard JESD513, signal layer with 10% trace coverage  
10.Values based on test board according to EIA/JEDEC Standard JESD517, signal layers with 10% trace coverage  
Table 5. ELECTRICAL CHARACTERISTICS (V = 4.75 V to 5.25 V; V = 2.8 V to 5.25 V; for typical values T = 25°C, for  
CC  
IO  
A
min/max values T = 40 to +150°C; R = 60 W, C = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2).  
J
LT  
RxD  
Positive currents flow into the respective pin; (Notes 11))  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY (Pin V  
)
CC  
V
Power supply voltage  
(Note 12)  
4.75  
30  
5.0  
45  
5.0  
5.25  
55  
V
CC  
CC  
I
Supply current in Normal mode  
Dominant; V  
= Low  
mA  
mA  
TxD  
TxD  
Recessive; V  
= High  
2.0  
2.0  
10  
Normal mode, Dominant; V  
= 0  
TxD  
V; one of bus wires shorted  
3 V (V , V ) +18 V  
mA  
mA  
mA  
V
105  
1.3  
CANH  
CANL  
I
Supply current in silent mode  
NCV73573 version  
0.1  
0.1  
3.5  
CCS  
Supply current in silent mode  
NCV73570 version  
1.5  
4.3  
V
Undervoltage detection on V pin  
4.0  
UVDVCC  
CC  
V
IO  
SUPPLY VOLTAGE (Pin V ) Only for NCV73573 version  
IO  
V
Supply voltage on pin V  
2.8  
5.5  
200  
900  
600  
2.6  
V
IO  
IO  
I
Supply current on pin V in silent mode  
V = VIO  
TxD  
120  
700  
460  
2.3  
mA  
IOS  
IO  
Dominant; V  
Recessive; V  
= Low  
TxD  
TxD  
Supply current on pin V during normal  
IO  
I
mA  
IONM  
mode  
= High  
V
Undervoltage detection voltage on V  
pin  
2.0  
V
UVDVIO  
IO  
TRANSMITTER DATA INPUT (Pin TxD)  
V
Highlevel input voltage  
Lowlevel input voltage  
Highlevel input current  
Lowlevel input current  
Input capacitance  
Output recessive  
Output dominant  
2.0  
0.3  
5.0  
300  
V
IH  
V
0.8  
5.0  
75  
10  
V
IL  
I
IH  
V
TxD  
= V V  
CC / IO  
0
mA  
mA  
pF  
I
IL  
V
TxD  
= 0 V  
150  
5
C
(Note 13)  
i
TRANSMITTER DATA INPUT (Pin S)  
V
Highlevel input voltage  
Lowlevel input voltage  
Highlevel input current  
Lowlevel input current  
Input capacitance  
Silent mode  
2.0  
0.3  
1.0  
15  
0
5
V
IH  
V
Normal mode  
0.8  
1.0  
1.0  
10  
V
IL  
I
IH  
V
S
= V / V  
IO  
mA  
mA  
pF  
CC  
I
IL  
V = 0 V  
S
C
(Note 13)  
i
www.onsemi.com  
6
 
NCV7357  
Table 5. ELECTRICAL CHARACTERISTICS (V = 4.75 V to 5.25 V; V = 2.8 V to 5.25 V; for typical values T = 25°C, for  
CC  
IO  
A
min/max values T = 40 to +150°C; R = 60 W, C = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2).  
J
LT  
RxD  
Positive currents flow into the respective pin; (Notes 11))  
RECEIVER DATA OUTPUT (Pin RxD)  
I
Highlevel output current  
Normal mode  
8.0  
3.0  
1.0  
mA  
mA  
OH  
V
RxD  
= V / V – 0.4 V  
CC  
IO  
I
Lowlevel output current  
V
RxD  
= 0.4 V  
1.0  
6.0  
12  
OL  
CAN TRANSMITTER (PINS CANH AND CANL)  
V
Dominant output voltage at pin CANH  
Normal mode; V  
dom(TxD)  
= Low;  
LT  
o(dom)(CANH)  
TxD  
2.75  
0.5  
3.5  
1.5  
4.5  
V
V
t < t  
; 50 W < R < 65 W  
V
Dominant output voltage at pin CANL  
Normal mode; V  
= Low;  
LT  
o(dom)(CANL)  
TxD  
2.25  
t < t ; 50 W < R < 65 W  
dom(TxD)  
V
o(rec)  
Recessive output voltage at pins CANH  
and CANL  
Normal or Silent mode;  
= High  
V
TxD  
2.0  
2.5  
3.0  
V
or V  
= Low and t > t  
no load  
;
TxD  
dom(TxD)  
V
Differential dominant output voltage  
Normal mode; V  
dom(TxD)  
= Low;  
LT  
o(dom)(diff)  
TxD  
1.5  
1.5  
2.25  
3.0  
5.0  
V
V
(V  
V  
)
t < t  
; 45 W < R < 65 W  
CANH  
CANL  
V
Normal mode; V  
= Low;  
o(dom)(diff)_ARB  
TxD  
t < t  
; R = 2 240 W  
dom(TxD)  
LT  
(Note 13)  
V
Differential recessive output voltage  
(V V  
Normal or Silent mode;  
o(rec)(diff)  
)
V
= High  
CANH  
CANL  
TxD  
50  
0
+50  
mV  
or V  
= Low and t > t  
;
dom(TxD)  
TxD  
no load  
V
Dominant output voltage driver symmetry  
= V  
o(CANL)(dom)  
TxD = square wave up to 1 MHz;  
= 4.7 nF  
o(dom)(sym)  
V
+
C
ST  
0.9  
100  
1.0  
5.0  
1.0  
70  
+70  
1.1  
V
CC  
o(dom)(sym)  
o(CANH)(dom)  
V
I
Short circuit output current at pin CANH  
in dominant  
Normal mode; TxD = Low,  
t < t ; 3 V V  
o(sc)(CANH)  
+1.0  
+100  
+5.0  
mA  
dom(TxD)  
CANH  
+18 V  
I
Short circuit output current at pin CANL in  
dominant  
Normal mode; TxD = Low,  
o(sc)(CANL)  
t < t ; 3 V V  
mA  
mA  
dom(TxD)  
CANL  
+36 V  
I
Short circuit output current at pins CANH  
and CANL in recessive  
Normal or Silent mode;  
TxD = High,  
o(sc)(rec)  
27 V < V  
, V  
CANL  
< + 32 V  
CANH  
CAN RECEIVER (Pins CANH and CANL)  
I
Input leakage current  
0 W < R(V to GND) < 1 MW  
LEAK(off)  
CC  
5.0  
5.0  
0
0
+5.0  
+5.0  
mA  
mA  
V
= V  
= 5 V  
CANH  
CANL  
V
CANH  
= V = 0 V  
IO  
CC  
V
= V  
= 5 V  
CANL  
V
Differential input voltage range  
recessive state  
Normal or Silent mode;  
i(rec)(diff)_NM  
12 V V  
, V  
+12 V;  
3.0  
0.9  
0.5  
8.0  
0.9  
V
V
V
CANH  
CANL  
no load  
V
Differential input voltage range  
dominant state  
Normal or Silent mode;  
i(dom)(diff)_NM  
12 V V  
, V  
+12 V;  
CANH  
CANL  
no load  
V
Differential receiver threshold voltage  
voltage  
Normal or Silent mode;  
i(th)(diff)_NM  
12 V V  
, V  
+12 V;  
0.5  
CANH  
CANL  
no load  
V
Normal or Silent mode; extended,  
i(th)(diff)_NM_E  
30 V V  
, V  
+35 V;  
0.4  
15  
1.0  
37  
V
CANH  
CANL  
no load  
, V  
CANL  
R
Commonmode input resistance at pins  
CANH and CANL  
2 V V  
+7 V  
i(cm)  
CANH  
25  
kW  
www.onsemi.com  
7
NCV7357  
Table 5. ELECTRICAL CHARACTERISTICS (V = 4.75 V to 5.25 V; V = 2.8 V to 5.25 V; for typical values T = 25°C, for  
CC  
IO  
A
min/max values T = 40 to +150°C; R = 60 W, C = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2).  
J
LT  
RxD  
Positive currents flow into the respective pin; (Notes 11))  
R
Matching between pin CANH and pin  
CANL common mode input resistance  
V
= V  
= + 5 V  
i(cm)(m)  
CANH  
CANL  
1  
0
+1  
75  
%
R
Differential input resistance  
R
= R  
+
i(diff)  
i(diff)  
i(cm)(CANH)  
R
25  
50  
kW  
i(cm)(CANL)  
2 V V  
, V  
+ 7 V  
CANH  
CANL  
C
Input capacitance at pins CANH and  
CANL  
V
= High; (Note 13)  
= High; (Note 13)  
i
TxD  
7.5  
20  
10  
pF  
pF  
C
Differential input capacitance  
V
TxD  
3.75  
i(diff)  
TIMING CHARACTERISTICS (see Figure 5, Figure 6 and Figure 8)  
t
t
Propagation delay TxD to bus active  
Propagation delay TxD to bus inactive  
Propagation delay bus active to RxD  
Propagation delay bus inactive to RxD  
Normal mode (Note 14)  
Normal mode (Note 14)  
75  
85  
24  
32  
ns  
ns  
ns  
ns  
d(TxDBUSon)  
d(TxDBUSoff)  
d(BUSonRxD)  
d(BUSoffRxD)  
t
t
Normal or Silent mode (Note 14)  
Normal or Silent mode (Note 14)  
Normal mode (Note 14)  
t
Propagation delay TxD to RxD dominant  
to recessive transition  
pd_dr  
50  
50  
100  
120  
210  
210  
ns  
ns  
t
Propagation delay TxD to RxD recessive  
to dominant transition  
Normal mode (Note 14)  
pd_rd  
t
Operating mode change delay  
TxD dominant timeout  
Bit time on RxD pin  
Silent mode to Normal mode  
5.0  
1.0  
11  
50  
10  
ms  
ms  
ns  
ns  
d(snm)  
t
Normal mode; V  
= Low  
dom(TxD)  
TxD  
t
t
= 500 ns (Note 14)  
= 200 ns (Note 14)  
= 500 ns (Note 14)  
400  
120  
550  
220  
bit(RxD)  
bit(TxD)  
t
bit(TxD)  
t
Bit time on bus (CANH CANL pin)  
t
435  
155  
530  
210  
ns  
ns  
bit(Vi(diff))  
bit(TxD)  
bit(TxD)  
t
= 200 ns (Note 14)  
Receiver timing symmetry  
t
= 500 ns (Note 14)  
= 200 ns (Note 14)  
65  
45  
40  
15  
ns  
ns  
bit(TxD)  
Dt  
rec  
Δt  
t
t  
rec = bit(RxD) bit(Vi(diff))  
t
bit(TxD)  
THERMAL SHUTDOWN  
Shutdown junction temperature  
T
J(sd)  
Junction temperature rising  
160  
180  
200  
°C  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
11. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
12.In the range between VUVDVCC and 4.75 V and from 5.25 V to 6 V the chip is fully functional; some parameters may be outside of the  
specification  
13.Values based on design and characterization, not tested in production  
14.C = 100 pF, C not present, C = 15 pF  
LT  
ST  
RxD  
www.onsemi.com  
8
 
NCV7357  
MEASUREMENTS SETUPS AND DEFINITIONS  
recessive  
dominant  
recessive  
0.7 x VIO*  
TxD  
0.3 x VIO*  
CANH  
CANL  
900 mV  
Vi(diff)  
=
V
CANH V  
CANL  
500 mV  
0.7 x VIO*  
RxD  
0.3 x VIO*  
td(TxDBUSon)  
td(TxDBUSoff)  
td(BUSoffRXD)  
td(BUSonRXD)  
Edge length below 10 ns  
*On NCV7357−0 version VIO is replaced by VCC  
Figure 5. Transceiver Timing Diagram Propagation Delays  
0.7 x VIO*  
TxD  
0.3 x VIO*  
0.3 x VIO*  
tpd_rd  
5 x tbit(TxD)  
tbit(TxD)  
Vi(diff)  
VCANH V  
=
900 mV  
CANL  
500 mV  
tbit(Vi(diff))  
0.7 x VIO*  
RxD  
0.3 x VIO*  
tpd_dr  
tbit(RxD)  
Edge length below 10 ns  
*On NCV7357−0 version VIO is replaced by VCC  
Figure 6. Transceiver Timing Diagram Loop Delay and Recessive Bit Time  
www.onsemi.com  
9
NCV7357  
+5 V  
+5 V  
100nF  
100 nF  
VCC  
V
IO  
VCC  
VIO  
3
5
3
5
CANH  
CANH  
7
6
7
TxD  
1
TxD  
1
RLT /2  
1 nF  
CLT  
Transient  
Generator  
CST  
RLT /2  
100 pF  
RxD  
4
1 nF  
CANL  
RxD  
4
6
CANL  
2x 30 W  
8
2
8
2
15 pF  
S
GND  
15 pF  
S
GND  
Figure 7. Test Circuit for Automotive Transients  
Figure 8. Test Circuit for Timing Characteristics  
www.onsemi.com  
10  
NCV7357  
Table 6. ISO 118982:2016 Parameter CrossReference Table  
ISO 118982:2016 Specification  
NCV7357 Datasheet  
Symbol  
Parameter  
Notation  
DOMINANT OUTPUT CHARACTERISTICS  
Single ended voltage on CAN_H  
V
V
o(dom)(CANH)  
CAN_H  
Single ended voltage on CAN_L  
V
CAN_L  
V
o(dom)(CANL)  
Differential voltage on normal bus load  
Differential voltage on effective resistance during arbitration  
Differential voltage on extended bus load range (optional)  
DRIVER SYMMETRY  
V
Diff  
V
Diff  
V
Diff  
V
o(dom)(diff)  
o(dom)(diff)_ARB  
V
V
o(dom)(diff)  
Driver symmetry  
V
V
SYM  
o(dom)(sym)  
I
o(SC)(CANH)  
DRIVER OUTPUT CURRENT  
Absolute current on CAN_H  
I
CAN_H  
Absolute current on CAN_L  
I
I
o(SC)(CANL)  
CAN_L  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
NA  
NA  
NA  
CAN_H  
V
CAN_L  
V
Diff  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING INACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
V
o(off) (CANH)  
CAN_H  
V
V
o(off) (CANL)  
CAN_L  
V
Diff  
V
o(off) (diff)  
OPTIONAL TRANSMIT DOMINANT TIMEOUT  
Transmit dominant timeout, long  
t
t
t
dom(TxD)  
dom  
Transmit dominant timeout, short  
NA  
dom  
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING ACTIVE/ INACTIVE  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
RECEIVER INPUT RESISTANCE  
V
V
V
i(rec)(diff)_NM  
Diff  
V
Diff  
i(dom)(diff)_NM  
Differential internal resistance  
R
R
Diff  
i(diff)  
R
R
R
R
CAN_H  
CAN_L  
i(cm)  
i(cm)  
Single ended internal resistance  
RECEIVER INPUT RESISTANCE MATCHING  
Matching a of internal resistance  
m
R
R
i(cm)(m)  
IMPLEMENTATION LOOP DELAY REQUIREMENT  
t
t
pd_rd  
pd_dr  
Loop delay  
t
Loop  
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS FOR USE WITH BIT RATES ABOVE 1 MBIT/S AND UP  
TO 2 MBIT/S  
Transmitted recessive bit width @ 2 Mbit/s  
Received recessive bit width @ 2 Mbit/s  
Receiver timing symmetry @ 2 Mbit/s  
t
t
bit(Vi(diff))  
Bit(Bus)  
t
t
bit(RxD)  
Bit(RXD)  
Dt  
Rec  
Dt  
rec  
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS FOR USE WITH BIT RATES ABOVE 2 MBIT/S AND UP  
TO 5 MBIT/S  
Transmitted recessive bit width @ 5 Mbit/s  
Transmitted recessive bit width @ 5 Mbit / s  
t
t
bit(Vi(diff))  
Bit(Bus)  
t
t
bit(RxD)  
Bit(RXD)  
www.onsemi.com  
11  
NCV7357  
Received recessive bit width @ 5 Mbit / s  
Dt  
Rec  
Dt  
rec  
MAXIMUM RATINGS OF V  
, V AND V  
CAN_L DIFF  
CAN_H  
Maximum rating V  
V
Diff  
V
CANH CANL  
Diff  
V
V
CANH  
CANL  
CAN_H  
CAN_L  
General maximum rating V  
and V  
CAN_L  
CAN_H  
V
V
V
CAN_H  
CAN_L  
Optional: Extended maximum rating V  
and V  
NA  
CAN_H  
CAN_L  
V
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED  
I
,
CAN_H  
Leakage current on CAN_H, CAN_L  
I
LEAK(off)  
I
CAN_L  
BUS BIASING CONTROL TIMINGS  
CAN activity filter time, long  
t
t
NA  
NA  
NA  
NA  
NA  
NA  
Filter  
CAN activity filter time, short  
Filter  
Wakeup timeout, short  
t
Wake  
Wake  
Wakeup timeout, long  
t
Timeout for bus inactivity (Required for selective wakeup implementation only)  
Bus Bias reaction time (Required for selective wakeup implementation only)  
t
Silence  
t
Bias  
Table 7. ORDERING INFORMATION  
Part Number  
Description  
Temperature Range  
Package  
Shipping  
High Speed CAN FD  
Transceiver  
NCV7357D10R2G  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
SOIC 150 8 GREEN  
(Matte Sn, JEDEC  
MS012) (PbFree)  
40°C to +150°C  
High Speed CAN FD  
NCV7357D13R2G  
NCV7357MW0R2G  
NCV7357MW3R2G  
Transceiver with V pin  
IO  
High Speed CAN FD  
Transceiver  
DFNW8  
Wettable Flank  
(PbFree)  
40°C to +150°C  
High Speed CAN FD  
Transceiver with V pin  
IO  
www.onsemi.com  
12  
NCV7357  
PACKAGE DIMENSIONS  
SOIC8  
CASE 751AZ  
ISSUE B  
NOTES 4&5  
0.10 C D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE PROTRUSION SHALL BE 0.004 mm IN EXCESS OF  
MAXIMUM MATERIAL CONDITION.  
455CHAMFER  
D
h
NOTE 6  
D
A
2X  
H
8
5
4. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS  
SHALL NOT EXCEED 0.006 mm PER SIDE. DIMENSION E1 DOES  
NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD  
FLASH OR PROTRUSION SHALL NOT EXCEED 0.010 mm PER SIDE.  
5. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOT­  
TOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTER­  
MOST EXTREMES OF THE PLASTIC BODY AT DATUM H.  
6. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM H.  
7. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.  
0.10 C D  
NOTES 4&5  
E
E1  
L2  
SEATING  
L
C
PLANE  
DETAIL A  
1
4
0.20 C D  
8X b  
8. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING  
PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.  
B
M
0.25  
C A-B D  
NOTE 6  
MILLIMETERS  
TOP VIEW  
NOTES 3&7  
DIM MIN  
MAX  
1.75  
0.25  
---  
DETAIL A  
A
A1  
A2  
b
---  
0.10  
1.25  
0.31  
0.10  
A2  
NOcTE 7  
0.10 C  
0.51  
0.25  
c
D
4.90 BSC  
A
E
6.00 BSC  
3.90 BSC  
1.27 BSC  
e
END VIEW  
SEATING  
PLANE  
E1  
e
C
A1  
SIDE VIEW  
NOTE 8  
h
0.25  
0.40  
0.41  
1.27  
L
0.25 BSC  
L2  
RECOMMENDED  
SOLDERING FOOTPRINT*  
GENERIC  
MARKING DIAGRAM*  
8X  
0.76  
8X  
1.52  
7.00  
1
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*This information is generic. Please refer  
to device data sheet for actual part  
marking. PbFree indicator, “G”, may  
or not be present.  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCV7357  
DFNW8 3x3, 0.65P  
CASE 507AB  
ISSUE D  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L3  
L3  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.10 AND  
0.20mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. THIS DEVICE CONTAINS WETTABLE FLANK  
DESIGN FEATURES TO AID IN FILLET FORMA-  
TION ON THE LEADS DURING MOUNTING.  
L
L
DETAIL A  
ALTERNATE  
CONSTRUCTION  
E
A
PIN ONE  
REFERENCE  
EXPOSED  
COPPER  
MILLIMETERS  
DIM MIN  
NOM  
0.85  
−−−  
MAX  
0.90  
0.05  
A
A1  
A3  
A4  
b
D
D2  
E
E2  
e
K
L
L3  
0.80  
−−−  
0.20 REF  
−−−  
0.30  
3.00  
2.40  
3.00  
1.60  
TOP VIEW  
0.10  
0.25  
2.95  
2.30  
2.95  
1.50  
−−−  
0.35  
3.05  
2.50  
3.05  
1.70  
PLATING  
A1  
A4  
DETAIL B  
0.05  
0.05  
C
C
DETAIL B  
A4  
A3  
C
C
C
0.65 BSC  
0.30 REF  
0.40  
0.35  
0.00  
0.45  
0.10  
SEATING  
PLANE  
NOTE 4  
SIDE VIEW  
0.05  
L3  
PLATED  
SURFACES  
GENERIC  
MARKING DIAGRAM*  
D2  
DETAIL A  
SECTION CC  
1
4
5
8X  
L
E2  
K
8
8X b  
e/2  
e
0.10 C A B  
NOTE 3  
C
0.05  
BOTTOM VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT*  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
2.55  
2.28  
8X  
0.75  
8
5
4
3.30 1.76  
PACKAGE  
OUTLINE  
1
0.65  
PITCH  
8X  
0.33  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
14  
NCV7357  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV7357/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY