NCV7450DB0R2G [ONSEMI]

具有 CAN FD、LDO 稳压器和 HS 驱动器的系统基础芯片;
NCV7450DB0R2G
型号: NCV7450DB0R2G
厂家: ONSEMI    ONSEMI
描述:

具有 CAN FD、LDO 稳压器和 HS 驱动器的系统基础芯片

驱动 驱动器 稳压器
文件: 总18页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Basis Chip with  
CAN FD, LDO Regulator and  
HS Driver  
NCV7450  
The system basis chip (SBC) NCV7450 integrates +5 V / 250 mA  
LDO regulator with a highspeed CAN FD transceiver and one  
highside driver with diagnostics, directly controlled by dedicated  
pins.  
www.onsemi.com  
Features  
16  
5 V 2% / 250 mA LDO  
Current Limitation with Foldback  
Output Voltage Monitoring  
1
TSSOP16EP  
CASE 948BV  
One HighSpeed CAN FD Transceiver  
Current Limitation, Reverse Current Protected  
Compliant to ISO118982:2016  
CAN FD Timing Specified up to 5 Mbit/s  
TxDC Timeout  
MARKING DIAGRAM  
16  
One HighSide Driver  
Rdson = 300 mW @ 25°C  
Current Limitation  
NCV  
7450  
ALYWG  
Diagnostic Output  
Overcurrent Protection  
Underload Detection  
1
NCV7450  
= Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Direct Control  
Window Watchdog  
Twolevel Thermal Shutdown Protection  
AECQ100 Qualified and PPAP Capable  
This Device is PbFree, Halogen Free/BFR Free and RoHS  
Compliant  
PIN CONNECTIONS  
1
2
3
4
5
6
7
8
Typical Applications  
Automotive  
Industrial Networks  
16  
15  
14  
13  
12  
11  
10  
9
VS1  
VR1  
WD_EN  
RSTN  
VS2  
HS  
NCV  
7450  
GND  
CANL  
CANH  
GND  
CAN_EN  
TxDC  
HS_DIAG  
RxDC  
WDI  
HS_EN  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCV7450DB0R2G TSSOP16EP 4000 / Tape &  
(PbFree) Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
November, 2019 Rev. 1  
NCV7450/D  
NCV7450  
Battery  
Cbuf  
100n  
connection  
VS1  
VS2  
References,  
oscillator  
VR1  
VR1  
5 V / 250 mA  
4u7  
VDD  
RESET  
RSTN  
WD_EN  
WDI  
Watchdog  
HS_EN  
HS_DIAG  
HS  
HighSide  
10n  
MCU  
Load  
VR1  
CAN_EN  
TxDC  
CANH  
CANL  
Termination,  
Protection  
CAN  
CAN bus  
CAN  
RxDC  
NCV7450  
GND  
GND  
GND  
Figure 1. Simplified Application Diagram  
www.onsemi.com  
2
NCV7450  
VS1  
16  
VS2  
15  
1
3
VR1  
UV  
Internal  
supply  
RSTN  
ref  
References  
LDO  
VR1  
Regulator  
Thermal  
Monitoring  
Oscillator  
2
7
WD_EN  
WDI  
Watchdog  
OV  
8
5
HS_EN  
14  
HS  
Slope Control  
Diagnosis  
VR1  
HS_DIAG  
Thermal  
Monitoring  
HighSide Driver  
9
CAN_EN  
VR1  
VR1  
4
6
11  
12  
Tx  
Timeout  
TxDC  
RxDC  
CANH  
CANL  
VR1  
CAN  
10  
13  
GND  
GND  
Figure 2. Block Diagram  
www.onsemi.com  
3
NCV7450  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VS1  
VR1  
WD_EN  
RSTN  
VS2  
HS  
NCV  
7450  
GND  
CANL  
CANH  
GND  
CAN_EN  
TxDC  
HS_DIAG  
RxDC  
WDI  
HS_EN  
Table 1. PIN DESCRIPTION  
Pin  
Pin Type  
No.  
(LV = Low Voltage; HV = High Voltage)  
Pin Name  
Description  
1
VR1  
LV supply output  
Output of the 5 V / 250 mA lowdrop regulator  
Watchdog enable input  
2
WD_EN  
RSTN  
TxDC  
HS_DIAG  
RxDC  
WDI  
LV digital input; internal pullup current  
LV digital output; open drain; internal pullup  
LV digital input; internal pullup  
LV digital output; pushpull  
LV digital output; pushpull  
LV digital input; internal pulldown  
LV digital input; internal pulldown  
LV digital input; internal pulldown  
Ground connection  
3
Reset signal to the MCU  
4
CAN transmitter data input  
5
HS driver diagnostic output (active Low)  
CAN receiver data output  
6
7
Watchdog trigger input  
8
HS_EN  
CAN_EN  
GND  
HS driver enable input  
9
CAN transceiver enable input  
10  
11  
12  
13  
14  
15  
16  
Ground supply (all GND pins have to be connected externally)  
CANH line of the CAN bus  
CANH  
CANL  
GND  
CAN bus interface  
CAN bus interface  
CANL line of the CAN bus  
Ground connection  
Ground supply (all GND pins have to be connected externally)  
Highside driver output  
HS  
HV output; highside  
VS2  
HV supply input  
Main supply input (HS Driver), keep floating if HS driver not used  
Main supply input (VR1, logic)  
VS1  
HV supply input  
EP  
Exposed pad  
Substrate (has to be connected to all GND pins externally)  
www.onsemi.com  
4
NCV7450  
Table 2. MAXIMUM RATINGS  
Symbol  
Rating  
Min  
0.3  
0.3  
0.3  
0.3  
Max  
40  
Unit  
V
Vmax_VS1  
DC Power Supply Voltage (Note 1)  
DC Power Supply Voltage (Note 1)  
DC Highside driver Voltage  
DC voltage on digital pins  
Vmax_VS2  
40  
V
Vmax_HS  
VS2+0.3  
VR1+0.3  
V
Vmax_digIO  
V
(CAN_EN, WD_EN, WDI, RSTN, RxDC, TxDC, HS_EN, HS_DIAG)  
Vmax_CAN  
Vmax_diff  
DC voltage on pin CANH and CANL  
40  
40  
0.3  
40  
40  
V
V
V
Differential DC voltage between any two pins (incl. CANH and CANL)  
LDO Supply pin output voltage  
Vmax_VR1  
6 or  
VS1+0.3  
(whichever  
is lower)  
Tj  
Tstg  
Junction Temperature Range  
Storage Temperature Range  
40  
55  
150  
150  
260  
+5  
°C  
°C  
°C  
kV  
Tsld  
Peak Soldering Temperature (Note 3)  
V_ESDHBM  
ESD Capability, Device HBM (Note 2)  
Pins VS1/2, CANH,  
5  
CANL, HS  
V_ESDHBM  
V_ESDMM  
V_ESDCDM  
V_ESDIEC  
V_SCHAF  
ESD Capability, Device HBM (Note 2)  
All other pins  
4  
250  
750  
6  
+4  
+250  
+750  
+6  
kV  
V
ESD Capability, Machine Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
ESD Capability, System HBM (Note 2), pins VS1/2, CANH, CANL, HS  
V
kV  
V
Voltage transients per ISO7637*3, Class D, pins VS1/2,  
Test pulse 1  
Test pulse 2a  
Test pulse 3a  
Test pulse 3b  
100  
CANH and CANL  
+75  
V
150  
V
+100  
V
MSL  
Moisture Sensitivity Level  
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. This device series incorporates ESD protection and is tested by the following methods:  
Device ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
Device ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Device ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101)  
System ESD Human Body Model tested per IEC6100042 (150 pF, 330 W)  
Latchup Current Maximum Rating: v150 mA per JEDEC standard: JESD78.  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 3. THERMAL CHARACTERISTICS  
Symbol  
Rating  
Value  
Unit  
°C/W  
Thermal Characteristics,  
R
Thermal Resistance, JunctiontoAir (Note 4)  
Thermal Resistance, JunctiontoAir (Note 5)  
54  
81  
θJA  
R
ψJA  
°C/W  
Thermal Characteristics,  
Thermal Resistance, JunctiontoCase  
R
10.5  
θJC  
4. Value based on test board according to JESD513 standard, signal layer with 10% trace coverage.  
5. Value based on test board according to JESD517 standard, signal layers with 20% trace coverage, inner planes with 90% coverage.  
www.onsemi.com  
5
 
NCV7450  
Table 4. RECOMMENDED OPERATING RANGES  
Symbol  
Rating  
Min  
5
Max  
28  
Unit  
V
Functional supply voltage  
VS1  
Supply voltage for valid parameter specification  
Functional supply voltage  
6
18  
V
4.3  
6
24  
V
VS2  
Supply voltage for valid parameter specification  
VR1 LDO output voltage  
18  
V
VR1  
VdigIO  
4.9  
0
5.1  
VR1  
VS2  
40  
V
Digital inputs/outputs voltage  
Highside driver voltage  
V
HS  
0
V
CANH, CANL  
CAN bus pins voltage  
40  
40  
40  
V
T
J
Junction Temperature  
150  
125  
°C  
°C  
T
A
Ambient Temperature  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 5. ELECTRICAL CHARACTERISTICS (6 V v Vs1 = Vs2 v 18 V; 40°C v Tj v 150°C; unless otherwise specified.)  
Symbol  
VS1, VS2 SUPPLY  
VS_PORH  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VS1 POR threshold  
VS1 rising  
VS1 falling  
3.4  
2.0  
4.1  
3.5  
V
V
VS_PORL  
VS1 POR threshold  
Is1_off  
VS1 consumption, lowpower  
VS1 = VS2 = 14 V, VR1 on (not loaded), HS load  
to GND, CAN bus recessive, CAN_EN = Low,  
HS_EN = Low, WD_EN = Low, Tj v 85°C  
VS1 = VS2 = 14 V, HS load to GND,  
HS_EN = Low, Tj v 85°C  
VS1 = VS2 = 14 V, VR1 on (loaded by 100 mA,  
not included in Is_act), HS floating, CAN bus  
recessive, CAN_EN = High, HS_EN = High,  
WD_EN = High, TxDC = High  
25  
mA  
Is2_off  
Is_act  
VS2 consumption, lowpower  
4
mA  
VS1+VS2 consumption, active  
10  
20  
mA  
VS2_OV  
VS2 overvoltage  
HS_EN = High  
HS_EN = High  
VS2 rising  
28  
1
V
V
VS2_OV_hyst  
tfilt_VS2_OV  
VS2 overvoltage hysteresis  
VS2 overvoltage filter time  
60  
105  
ms  
VR1 VOLTAGE REGULATOR  
V_VR1  
Regulator output voltage  
0 mA v I(VR1) v 250 mA,  
6 V v VS1 v 28 V  
4.9  
5.0  
5.1  
V
Iout_VR1  
Ilim_VR1  
Regulator output current  
Maximum VR1 load current  
250  
mA  
Regulator current limitation  
Maximum VR1 overload current, VR1 >  
RES_VR1  
400  
1000 mA  
Ishort_VR1  
Vdrop_VR1  
Regulator short current  
Dropout Voltage  
Maximum VR1 short current, VR1 < RES_VR1  
133  
1/3 x  
Ilim_VR1  
333  
mA  
V
I(VR1) = 100 mA, VS1 = 5 V  
·Tj v 150°C  
0.2  
0.4  
0.2  
·Tj v 40°C (Note 6)  
·Tj = 40°C  
I(VR1) = 100 mA, VS1 = 4.5 V  
I(VR1) = 50 mA, VS1 = 4.5 V  
1 mA v I(VR1) v 100 mA  
0.5  
0.4  
50  
30  
Loadreg_VR1  
Linereg_VR1  
Cload_VR1  
Load Regulation  
Line Regulation  
VR1 load capacity  
50  
30  
1
mV  
mV  
mF  
I(VR1) v 100 mA  
ESR < 200 mW, ceramic capacitor recommended  
4.7  
www.onsemi.com  
6
 
NCV7450  
Table 5. ELECTRICAL CHARACTERISTICS (6 V v Vs1 = Vs2 v 18 V; 40°C v Tj v 150°C; unless otherwise specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VR1 VOLTAGE REGULATOR  
RES_VR1  
RES_hyst_VR1  
tfilt_RES_VR1  
toff_VR1  
VR1 Reset threshold  
VR1 voltage decreasing  
4.3  
0.05  
4.5  
0.1  
15  
4.7  
0.2  
V
V
VR1 Reset threshold hysteresis  
VR1 undervoltage filter time  
VR1 off time after TSD  
ms  
s
1.0  
Is_add_VR1  
VS consumption adder of VR1  
(Note 6)  
0.02 x  
I(VR1)  
A
HS DRIVER  
Ron_HS  
Onresistance  
Tj = 25°C (Note 6)  
Tj = 125°C  
0.3  
W
0.6  
Tj = 125°C, Vs2 = 4.3 V (Note 6)  
Tj = 150°C  
0.8  
0.7  
Ilim_HS  
Ioc_HS  
Current Limitation  
3.7  
3.7  
40  
3  
2.7  
2.5  
1.7  
6.0  
A
A
Overcurrent threshold  
Underload detection threshold  
Output leakage current  
Iuld_HS  
Ileak_HS  
mA  
mA  
HS off ; V(HS) = 0 V  
Tj = 25°C (Note 6)  
Tj = 150°C  
1  
5  
td_on_HS  
Output delay time  
HS_EN = Low > High;  
ms  
V(HS) = 0.1 x Vs2  
·HS_EN was Low for more than 30 ms  
·HS_EN was Low for less than 20 ms  
140  
40  
td_off_HS  
td_oc_HS  
tdb_uld_HS  
Output delay time  
HS_EN = High > Low; V(HS) = 0.9 x Vs2  
40  
ms  
ms  
ms  
Overcurrent detection filter time  
65  
Underload detection blanking  
delay  
Timer started after driver activation and  
V(HS) = Vs2 – 2 V  
130  
td_uld_HS  
dVout_HS  
Is_add_HS  
Underload detection filter time  
Slew rate  
HS Driver active, tdb_uld_HS elapsed  
HS load = 16 Ω to GND  
70  
ms  
0.2  
4.4  
V/ms  
mA  
HS consumption from VS2  
HS_EN = High; HS pin floating  
2.0  
8.0  
WATCHDOG TIMING (see Figure 3)  
twd_acc  
t_wd_TO  
Watchdog timing accuracy  
15  
+15  
%
Timeout watchdog period  
After WD_EN low > high transition or RSTN  
pulse  
65  
ms  
t_wd_CW  
Window watchdog closed win-  
dow  
6
ms  
t_wd_OW  
t_RSTN  
Window watchdog open window  
100  
8
ms  
ms  
Reset pulse length after VR1 un-  
dervoltage or watchdog failure  
t_WDI  
Minimum WDI pulse width ac-  
cepted as a watchdog service  
6.0  
ms  
DIGITAL OUTPUTS, RxDC, HS_DIAG  
IoutL_pinx  
IoutH_pinx  
Lowlevel output driving current pinx is logical Low, forced V(pinx) = 0.4 V  
1.0  
6
12  
mA  
mA  
Highlevel output driving current pinx is logical High, forced V(pinx) = VR1 0.4 V 8.0  
3  
1.0  
DIGITAL OUTPUT RSTN  
IoutL_RSTN Lowlevel output driving current RSTN is active (logical Low), forced V(RSTN) =  
2.0  
5
12  
mA  
0.4 V  
www.onsemi.com  
7
NCV7450  
Table 5. ELECTRICAL CHARACTERISTICS (6 V v Vs1 = Vs2 v 18 V; 40°C v Tj v 150°C; unless otherwise specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DIGITAL OUTPUT RSTN  
VoutL_RSTN  
Lowlevel output voltage, low  
VR1/VS1  
VR1 > 4.7 V, I(RSTN) = 0.7 mA  
0.4  
0.4  
V
VR1 > 2 V, VS1 < VR1, I(RSTN) = 0.1 mA  
VS1 > 2 V, I(RSTN) = 0.3 mA  
0.4  
19  
Rpullup_RSTN  
Internal pullup resistor to VR1  
5.0  
10  
kW  
DIGITAL INPUTS TxDC, CAN_EN, WD_EN, HS_EN, WDI  
VinL_pinx  
Lowlevel input voltage (logical  
0
0.8  
V
V
“Low”)  
VinH_pinx  
Highlevel input voltage (logical  
“High”)  
2.0  
VR1  
Vin_hys_pinx  
Rpullup_pinx  
Input voltage hysteresis  
100  
55  
500  
185  
mV  
Internal pullup resistor to VR1;  
pin TxDC  
100  
kΩ  
Rpulldown_pinx  
Ipullup_WD_EN  
Internal pulldown resistor to  
ground;  
55  
100  
185  
kΩ  
pins CAN_EN, HS_EN, WDI  
Internal pullup current to VR1, V(WD_EN) = 0 V, pullup current source active  
pin WD_EN  
50  
100  
610  
5.0  
200  
mA  
ms  
ms  
tper_pullup_WDEN WD_EN pullup current source WD_EN = CAN_EN = HS_EN = Low  
activation period  
ton_pullup_WDEN WD_EN pullup current source WD_EN = CAN_EN = HS_EN = Low  
activation ontime  
THERMAL PROTECTION  
Tsd1  
Thermal shutdown level 1  
Temperature increasing; HS switched off conse-  
quently  
145  
165  
135  
155  
175  
145  
165  
185  
155  
°C  
°C  
°C  
Tsd2  
Thermal shutdown level 2  
Temperature increasing; VR1 and CAN switched  
off consequently  
Tsd1_off  
Thermal shutdown recovery  
temperature  
Temperature decreasing; HS switched on  
6. Not tested in production, guaranteed by design.  
Reset or previous  
WD service  
nominal t _wd_TO  
Timeout WD  
Safe trigger of timeout WD  
WD expired  
period  
Previous  
WD service  
t_wd_TO  
tolerance  
nominal t_wd_OW  
t_wd_trig  
nominal t _wd_CW  
Closed window  
(WD trigger would be too early )  
Window WD  
period  
Safe trigger of window WD  
OK20121113 .01  
t_wd_CW  
tolerance  
t_wd_OW  
tolerance  
recommended  
WD trigger  
Figure 3. Watchdog modes timing  
www.onsemi.com  
8
NCV7450  
Table 6. ELECTRICAL CHARACTERISTICS (CONTINUED)  
(VR1 = 4.75 V to 5.25 V; T = 40°C to +150°C; R = 60 W, C = 100 pF, C not used unless specified otherwise.)  
J
LT  
LT  
1
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CAN BUS LINES (Pins CANH and CANL)  
I
Recessive output current at pins CANH  
and CANL  
CAN enabled;  
27 V < V  
5.0  
5.0  
+5.0  
+5.0  
mA  
o(rec)  
< +32 V  
CANH/L  
I
LI  
Input leakage current  
0 < R(VR1 to GND) < 1 MW  
0
mA  
V
CANH  
= V  
= 5 V  
CANH  
V
Recessive output voltage at pin CANH  
Recessive output voltage at pin CANL  
Recessive output voltage at pin CANH  
Recessive output voltage at pin CANL  
Differential bus output voltage in off  
CAN enabled; V  
CAN enabled; V  
CAN disabled  
CAN disabled  
CAN disabled  
= VR1  
= VR1  
2.0  
2.0  
2.5  
2.5  
0
3.0  
3.0  
0.1  
0.1  
0.2  
V
V
V
V
V
o(rec) (CANH)  
TxDC  
V
o(rec) (CANL)  
TxDC  
V
0.1  
0.1  
0.2  
o(off) (CANH)  
V
0
o(off) (CANL)  
V
0
o(off) (diff)  
mode (V  
V  
)
CANH  
CANL  
V
Dominant output voltage at pin CANH  
Dominant output voltage at pin CANL  
Dominant output CANH/CANL drivers  
50 Ω < R < 65 Ω; V  
= 0 V;  
2.75  
0.5  
3.5  
1.5  
4.5  
2.25  
1.1  
V
V
o(dom) (CANH)  
LT  
dom(TxDC)  
TxDC  
t < t  
V
50 Ω < R < 65 Ω; V  
= 0 V;  
o(dom) (CANL)  
LT  
dom(TxDC)  
TxDC  
t < t  
V
R
= 60 Ω; C = 4.7 nF;  
0.9  
VR1  
o(dom)(sym)  
LT  
1
symmetry (V  
+ V  
)
CANH  
CANL  
TxDC driven by square wave up  
to 1 MHz  
V
Differential bus output voltage  
(V V  
V
= 0 V; dominant;  
1.5  
1.5  
50  
2.25  
3.0  
5.0  
V
V
o(dom) (diff)  
TxDC  
)
CANL  
CANH  
45 Ω < R < 65 Ω  
LT  
V
Differential bus output voltage during ar-  
bitration (V V  
V
TxDC  
= 0 V; dominant;  
= 2240 Ω; (Note 7)  
o(dom) (diff)_arb  
)
CANL  
CANH  
R
LT  
V
Differential bus output voltage  
(V V  
V
TxDC  
= VR1; recessive;  
0
70  
70  
+50  
mV  
mA  
mA  
V
o(rec) (diff)  
)
CANL  
CANH  
no load  
= 3 V; V = 0 V  
TxDC  
I
Short circuit output current at pin CANH  
Short circuit output current at pin CANL  
V
CANH  
100  
100  
40  
1.0  
o(sc) (CANH)  
3 V V  
+18 V  
CANH  
I
V
CANL  
= 36 V; V = 0 V  
TxDC  
40  
1.0  
100  
100  
o(sc) (CANL)  
3 V V  
+18 V  
CANL  
V
Differential receiver threshold voltage in  
normal mode  
CAN enabled;  
12 V V  
12 V V  
0.5  
3.0  
0.9  
0.9  
0.5  
8.0  
1.05  
0.4  
8.0  
37  
i(th)(diff)_NORM  
+12 V;  
+12 V  
CANH  
CANL  
V
Differential receiver input voltage for re-  
cessive state in normal mode  
CAN enabled;  
12 V V  
12 V V  
V
V
i(rec)(diff)_NORM  
+12 V;  
+12 V  
CANH  
CANL  
V
Differential receiver input voltage for  
dominant state in normal mode  
CAN enabled;  
12 V V  
12 V V  
i(dom)(diff)_NORM  
+12 V;  
+12 V  
CANH  
CANL  
V
Differential receiver threshold voltage in  
wakeupdetection mode  
CAN in wakeupdetection mode;  
12 V V  
12 V V  
0.4  
V
i(th)(diff)_WU  
+12 V;  
+12 V  
CANH  
CANL  
V
Differential receiver input voltage for re-  
cessive state in wakeupdetection mode  
CAN in wakeupdetection mode;  
12 V V  
12 V V  
3.0  
1.05  
15  
V
i(rec)(diff) _WU  
+12 V;  
+12 V  
CANH  
CANL  
V
Differential receiver input voltage for  
dominant state in wakeupdetection  
mode  
CAN in wakeupdetection mode;  
12 V V  
12 V V  
V
i(dom)(diff)_WU  
+12 V;  
+12 V  
CANH  
CANL  
R
Commonmode input resistance at pin  
CANH  
2 V V  
2 V V  
+7 V;  
+7 V  
25  
kΩ  
i(cm) (CANH)  
CANH  
CANL  
www.onsemi.com  
9
 
NCV7450  
Table 6. ELECTRICAL CHARACTERISTICS (CONTINUED)  
(VR1 = 4.75 V to 5.25 V; T = 40°C to +150°C; R = 60 W, C = 100 pF, C not used unless specified otherwise.)  
J
LT  
LT  
1
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CAN BUS LINES (Pins CANH and CANL)  
R
Commonmode input resistance at pin  
CANL  
2 V V  
2 V V  
+7 V;  
+7 V  
15  
25  
37  
kΩ  
i(cm) (CANL)  
CANH  
CANL  
R
Matching between pin CANH and pin  
CANL common mode input resistance  
V
= V = 5 V  
CANL  
1.0  
0
+1.0  
75  
%
i(cm) (m)  
CANH  
R
Differential input resistance  
2 V V  
2 V V  
+7 V;  
+7 V  
25  
50  
kΩ  
i(diff)  
CANH  
CANL  
C
Input capacitance at pin CANH  
Input capacitance at pin CANL  
Differential input capacitance  
V
TxDC  
V
TxDC  
V
TxDC  
= VR1; (Note 7)  
= VR1; (Note 7)  
= VR1; (Note 7)  
7.5  
7.5  
20  
20  
10  
pF  
pF  
pF  
i(CANH)  
C
i(CANL)  
C
3.75  
i(diff)  
TIMING CHARACTERISTICS (see Figure 4 and Figure 5)  
t
t
Delay TxDC to bus dominant  
Delay TxDC to bus recessive  
Delay bus dominant to RxDC  
Delay bus recessive to RxDC  
65  
90  
ns  
ns  
ns  
ns  
ns  
d(TxDCBUSon)  
d(TxDCBUSoff)  
d(BUSonRxDC)  
d(BUSoffRxDC)  
t
t
60  
65  
t
Propagation delay TxDC to RxDC domi-  
nant to recessive transition  
50  
100  
210  
pd_dr  
t
Propagation delay TxDC to RxDC reces-  
sive to dominant transition  
50  
120  
25  
210  
47  
ns  
pd_rd  
t
Delay wakeup detection mode to nor-  
mal mode  
7.0  
ms  
d(stbnm)  
t
Dominant time for wakeup via bus  
CAN_EN = low  
0.15  
0.5  
1.8  
10  
ms  
ms  
wake_filt  
t
Delay to flag wake event (recessive to  
dominant transitions)  
Valid bus wakeup event  
dwakerd  
t
Delay to flag wake event (dominant to  
recessive transitions)  
Valid bus wakeup event  
0.5  
10  
ms  
dwakedr  
t
Bus time for wakeup timeout  
TxDC dominant time for timeout  
Bit time on RxDC pin  
CAN_EN = low  
1.0  
1.0  
10  
10  
ms  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
wake_to  
t
CAN_EN = high; V  
= 0 V  
dom(TxDC)  
TxDC  
t
t
t
t
t
t
t
= 500 ns  
= 200 ns  
= 500 ns  
= 200 ns  
= 500 ns  
= 200 ns  
400  
120  
435  
155  
65  
45  
550  
220  
530  
210  
40  
Bit(RxDC)  
Bit(TxDC)  
Bit(TxDC)  
Bit(TxDC)  
Bit(TxDC)  
Bit(TxDC)  
Bit(TxDC)  
t
Bit time on bus (CANH – CANL pin)  
Receiver timing symmetry  
Bit(Vi(diff))  
Dt  
Rec  
Dt  
t
t
Rec = Bit(RxDC) Bit(Vi(diff))  
15  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Not tested in production, guaranteed by design.  
www.onsemi.com  
10  
 
NCV7450  
6-18 V  
100 nF  
VS1  
VS2  
CANH  
VR1  
2.2 uF  
RLT  
CLT  
NCV7450  
CAN_EN  
TxDC  
100 pF  
60 W  
CANL  
RxDC  
15 pF  
GND  
Figure 4. Test Circuit for Timing Characteristics  
0.7 x VR1  
TxDC  
0.3 x VR1  
0.3 x VR1  
tpd_rd  
tBit(TxDC)  
td(TxDCBUSon )  
5 x tBit(TxDC)  
td(BUSon RxDC )  
900 mV  
Vi(diff)= VCANH V  
CANL  
500 mV  
tBit(Vi(diff ))  
td(TxDCBUSoff )  
d(BUSoff RxDC))  
tpd_dr  
0.7 x VR1  
RxDC  
0.3 x VR1  
tBit(RxDC )  
Figure 5. CAN Transceiver Timing Diagram  
www.onsemi.com  
11  
NCV7450  
FUNCTIONAL DESCRIPTION  
Supply Concept  
V(VR1)  
The device has two independent supply pins VS1 and  
VS2. While VR1 regulator and logic control are supplied  
from VS1, Highside driver is supplied from VS2. Both  
supply lines have to be properly decoupled by filtration  
capacitors close to the device pins.  
V_VR1  
RES_hys_VR1  
RES_VR1  
As long as VS1 < VS_POR level, all the blocks are in  
powerdown mode.  
VR1 Lowdrop Regulator  
Ishort _VR1  
Ilim_VR1  
I(VR1)  
VR1 is a lowdrop output regulator providing 5 V voltage  
derived from the VS1 main supply. It is able to deliver up to  
250 mA and is primarily intended to supply the onchip  
CAN transceiver, the application microcontroller unit  
(MCU) and related 5 V loads (e.g. its own MCUrelated  
digital inputs/outputs). An external capacitor needs to be  
connected on VR1 pin in order to ensure the regulator’s  
stability and to filter the disturbances caused by the  
connected loads.  
VR1 voltage is supplying all the digital lowvoltage  
input/output pins.  
The protection and monitoring of the VR1 regulator  
consist of the following features:  
Figure 7. VR1 current foldback  
CAN Transceiver  
The SBC contains one highspeed CAN transceiver  
compliant with ISO118982:2016, supporting bit rates up to  
5 Mbit/s. The transceiver consists of the following  
subblocks: transmitter, receiver, and wakeup detector.  
If enabled (CAN_EN = High), the CAN transceiver is  
ready to provide the fullspeed interface between the bus  
and a CAN controller connected on pins RxDC (received  
data) and TxDC (data to transmit). The bus lines are biased  
to VR1 / 2.  
In order to prevent a faulty node from blocking the bus  
traffic, the maximum length of the transmitted dominant  
symbol is limited by a timeout counter to tdom(TxDC). In  
case the TxDC Low signal exceeds the timeout value, the  
transmitter returns automatically to the recessive state. The  
transmission is again deblocked when TxDC pin returns to  
high (recessive) state.  
If the CAN block is disabled (CAN_EN = Low) or RSTN  
pin active (Low) due to failed watchdog service or VR1  
undervoltage, the CAN transceiver is in its wakeup  
detection state. The bus lines are biased to ground. Logical  
level on TxDC is ignored and pin RxDC is kept high until a  
CAN bus wakeup is detected. The CAN bus wakeup  
corresponds to a pattern consisting of dominant – recessive  
VR1 Current Limitation – the twolevel current  
limitation controlled by VR1 reset comparator to  
reduce the power dissipation in case of shorts to  
ground by the current foldback (see Figure 7)  
VR1 Reset Comparator – the VR1 regulator output  
is compared with a reset level RES_VR1. If the VR1  
level drops below this level for longer than  
tflt_RES_VR1, a reset towards the MCU is generated  
through the RSTN pin and peripherals (CAN  
transceiver and HS driver) disabled.  
Temperature (see Figure 14)  
V(VS)  
V(VR1)  
Vdrop_VR1  
V_VR1  
RES_VR1  
VS_PORH  
VS_PORL  
– dominant symbols of at least t  
each. The RxDC  
wake_filt  
starts following the CAN bus afterwards. The pattern must  
be received within t to be recognized as a valid  
wakeup event, otherwise internal wakeup logic is reset.  
tfilt_VR1_RES  
t_RSTN  
tfilt_VR1_RES  
wake_to  
<tfilt_VR1_RES  
RSTN  
t_RSTN  
Reset  
EN_CAN  
Off  
Reset  
Normal functionality  
Norm. R Off  
Mode  
twake_filt  
twake_filt  
twake_filt  
Figure 6. VR1 monitoring  
CANH  
CANL  
< twake_to  
tdwakerd  
RxDC  
Figure 8. CAN wakeup pattern  
www.onsemi.com  
12  
 
NCV7450  
HS Driver  
features are limited by td_oc_HS in case of an overcurrent  
and (VS2 / dVout_HS) + td_uld_HS in case of an underload.  
The HS driver is designed to drive resistive loads.  
Therefore only a limited clamping energy (W < 1 mJ) can be  
dissipated by the device. For inductive loads (L > 100 mH)  
an external freewheeling diode connected between GND  
and the HS pin is required.  
HS highside driver is intended to drive an external load.  
Its state is directly controlled via HS_EN pin and diagnostics  
are flagged on HS_DIAG pin (see Table 7).  
When the driver is enabled (HS_EN = High), it is  
protected against an excessive current and temperature and  
diagnosed on Underload condition.  
In case the HS driver is controlled by a PWM signal  
through HS_EN with very low dutycycle, the diagnostic  
Table 7. HS Driver Diagnostics  
Event  
HS_EN  
Low  
Failure condition  
HS status  
HS_DIAG  
High  
Recovery condition  
Off  
On  
Off  
Normal operation (no failure)  
High  
High  
Overcurrent  
High  
I(HS) > Ioc_HS  
Low  
HS_EN = Low  
Underload  
High  
I(HS) < Iuld_HS  
On  
Low  
I(HS) > Iuld_HS  
Shorttobattery  
Overtemperature  
VS2 Overvoltage  
RSTN active  
High  
High  
High  
Tj > Tsd1  
VS2 > VS2_OV  
RSTN = Low  
Off  
Off  
Off  
Low  
Low  
Low  
Tj < Tsd1_off  
VS2 < VS2_OV  
RSTN = High  
Vs < Vs_PORL  
Vs > Vs_PORH  
Unpowered  
Reset  
No trigger  
within t_wd_OW  
No trigger  
within  
WD_EN = high  
Trigger  
t_wd_TO  
Trigger  
WD_EN = low  
WD_EN = high  
Closed  
Window  
Open  
Disabled  
Timeout  
Window  
t_wd_CW  
elapsed  
Trigger  
Figure 9. Watchdog operating modes  
WD Enable  
Watchdog  
The onchip watchdog requires that the MCU software  
“triggers” or “services” the watchdog in a specified time  
frame. A correct watchdog service consists of hightolow  
transition on the WDI input. The watchdog timer restarts  
immediately after a successful trigger is received.  
WD_EN  
WDI  
Service  
Service  
Service  
After any Reset event (powerup, watchdog failure, VR1  
undervoltage, thermal shutdown 2) or watchdog enable  
(WD_EN = Low > High), the watchdog always starts in a  
timeout mode. The MCU software must serve the watchdog  
any time before the timeout expiration. After the watchdog  
is triggered for the first time, it starts working in a window  
mode operation: the watchdog time is split to two distinct  
parts – a closed window, where the watchdog may not be  
triggered, is followed by an open window where the MCU  
must send a valid watchdog trigger (see Figure 10).  
RSTN  
Closed  
Open  
Closed  
window window window window  
Open  
Timeout  
WD status off  
<t_wd_TO  
t_wd_CW <t_wd_OW  
t_wd_trig  
Figure 10. Correct watchdog services  
www.onsemi.com  
13  
 
NCV7450  
In case the watchdog is not triggered before the timeout or  
To ensure the High level is correctly detected if the pin  
becomes floating, external WD_EN capacity should stay  
below 50 pF.  
After the rising edge on WD_EN pin, the MCU should  
wait tper_pullup_WDEN before the first watchdog service.  
open window elapses (Figure 11, Figure 12), or trigger is  
sent within the closed window (Figure 13), RSTN signal is  
generated and then watchdog restarted in the timeout mode  
again.  
WD Enable  
WD_EN  
sampled  
WD_EN  
sampled  
WD_EN  
sampled  
WD_EN  
WD_EN  
WDI  
Timeout elapsed  
Ipullup_WD_EN  
Pull-up current  
tper_pullup_WDEN  
ton_pullup_WDEN  
Enabled  
(timeout )  
Enabled  
Disabled  
WD status  
RSTN  
Figure 14. WD_EN pullup current source activation  
Closed  
window  
Open  
win.  
Reset  
Timeout  
off  
Timeout  
t_wd_TO  
WD status  
t_RSTN  
t_wd_CW  
Thermal Protection  
The device junction temperature is monitored in order to  
avoid permanent degradation or damage. Two distinct  
junction temperature levels are provided thermal  
shutdown level 1 Tsd1 (typ. 155°C) and thermal shutdown  
level 2 Tsd2 (typ. 175°C).  
When the junction temperature exceeds the first thermal  
shutdown level, the highside driver is disabled while VR1  
and CAN transceiver keeps running so that the MCU can  
still take appropriate actions. The junction temperature  
above the second shutdown level leads to complete device  
deactivation, VR1 included; the device recovers  
automatically after the junction temperature drops below  
Tsd1 level and toff_VR1 (typ. 1 second) elapses. HS driver  
functionality is recovered when the junction temperature  
drops below Tsd1_off.  
Figure 11. Missed watchdog in Timeout mode  
WD_EN  
WDI  
Open Window elapsed  
RSTN  
Closed Open  
window window  
Closed Open  
window window  
Reset  
Timeout  
WD status  
t_wd_CW t_wd_OW t_RSTN  
t_wd_CW  
Figure 12. Missed watchdog in Window mode  
The details of the thermal protection handling are shown  
in Figure 15.  
Trigger in  
Closed Window  
WD_EN  
WDI  
Normal operation  
VR1: on  
CAN: per CAN _EN  
HS: per HS _EN  
Watchdog: per WD _EN  
RSTN: High  
RSTN  
Closed  
Reset  
win.  
Closed Open Closed Open  
window win. window win.  
Timeout  
WD status  
Tj < Tsd1_off  
<t_wd_CW t_RSTN  
t_wd_CW  
t_wd_CW  
Thermal Shutdown 1  
Figure 13. Watchdog service during closed window  
VR1: on  
CAN: per CAN _EN  
HS: off  
Watchdog: per WD _EN  
RSTN: High  
The WD_EN pin has an integrated pullup source to  
enable the watchdog in case the pin is disconnected from the  
application. To reduce the power consumption in the  
lowpower mode (watchdog, CAN and HS driver disabled),  
the WD_EN pullup current source is switched on for  
Thermal Shutdown 2  
Cool-down  
ton_pullup_WDEN  
time  
with  
period  
of  
tper_pullup_WDEN. The pin state is sampled in the end of  
the current source activation. Once High level is detected on  
the WD_EN pin, the current source is activated  
permanently.  
VR1: off  
CAN: off  
HS: off  
Watchdog: off  
RSTN: Low  
VR1: off  
CAN: off  
HS: off  
Watchdog: off  
RSTN: Low  
Tj < Tsd1  
Figure 15. Thermal monitoring flow chart  
www.onsemi.com  
14  
 
NCV7450  
Table 8. ISO118982:2016 PARAMETER CROSSREFERENCE TABLE  
ISO 118982:2016 Specification  
NCV7450 Datasheet  
Symbol  
Parameter  
Notation  
DOMINANT OUTPUT CHARACTERISTICS  
Single ended voltage on CAN_H  
V
V
o(dom)(CANH)  
CAN_H  
Single ended voltage on CAN_L  
V
CAN_L  
V
o(dom)(CANL)  
Differential voltage on normal bus load  
Differential voltage on effective resistance during arbitration  
Optional: Differential voltage on extended bus load range  
DRIVER SYMMETRY  
V
Diff  
V
Diff  
V
Diff  
V
o(dom)(diff)  
V
o(dom)(diff)_arb  
V
o(dom)(diff)  
Driver symmetry  
V
V
SYM  
o(dom)(sym)  
I
o(SC)(CANH)  
DRIVER OUTPUT CURRENT  
Absolute current on CAN_H  
I
CAN_H  
Absolute current on CAN_L  
I
I
o(SC)(CANL)  
CAN_L  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
V
o(rec)(CANH)  
CAN_H  
V
V
o(rec)(CANL)  
CAN_L  
V
Diff  
V
o(rec)(diff)  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING INACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
V
o(off)(CANH)  
CAN_H  
V
V
o(off)(CANL)  
CAN_L  
V
Diff  
V
o(off)(dif)  
OPTIONAL TRANSMIT DOMINANT TIMEOUT  
Transmit dominant timeout, long  
t
t
t
dom(TxDC)  
dom  
Transmit dominant timeout, short  
NA  
dom  
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING ACTIVE  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING INACTIVE  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
RECEIVER INPUT RESISTANCE  
V
V
V
i(rec)(diff) _ NORM  
Diff  
V
Diff  
i(dom)(diff) _ NORM  
V
V
V
i(rec)(diff) _ WU  
Diff  
V
Diff  
i(dom)(diff) _ WU  
Differential internal resistance  
R
R
Diff  
i(diff)  
R
i(cm)(CANH)  
Single ended internal resistance  
R
CAN_H  
R
R
i(cm)(CANL)  
CAN_L  
RECEIVER INPUT RESISTANCE MATCHING  
Matching a of internal resistance  
IMPLEMENTATION LOOP DELAY REQUIREMENT  
Loop delay  
m
R
i(cm)(m)  
R
t
t
Loop  
pd_rd  
t
pd_dr  
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 1 Mbit/s and up to 2 Mbit/s  
Transmitted recessive bit width @ 2 Mbit/s  
Received recessive bit width @ 2 Mbit/s  
Receiver timing symmetry @ 2 Mbit/s  
t
t
Bit(Vi(diff))  
Bit(Bus)  
t
t
Bit(RxD)  
Bit(RXD)  
Dt  
Rec  
Dt  
Rec  
www.onsemi.com  
15  
 
NCV7450  
Table 8. ISO118982:2016 PARAMETER CROSSREFERENCE TABLE  
ISO 118982:2016 Specification  
NCV7450 Datasheet  
Symbol  
Parameter  
Notation  
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 2 Mbit/s and up to 5 Mbit/s  
Transmitted recessive bit width @ 5 Mbit/s  
Transmitted recessive bit width @ 5 Mbit / s  
Received recessive bit width @ 5 Mbit / s  
t
t
Bit(Vi(diff))  
Bit(Bus)  
t
t
Bit(RxD)  
Bit(RXD)  
Dt  
Rec  
Dt  
Rec  
MAXIMUM RATINGS OF V  
, V AND V  
CAN_L DIFF  
CAN_H  
Maximum rating V  
V
Diff  
Vmax_diff  
Diff  
General maximum rating V  
and V  
V
V
CANH  
CAN_H  
CAN_L  
CAN_H  
V
CAN_L  
V
CANL  
Optional: Extended maximum rating V  
and V  
V
NA  
CAN_H  
CAN_L  
CAN_H  
V
CAN_L  
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED  
Leakage current on CAN_H, CAN_L  
I
,
I
LI  
CAN_H  
I
CAN_L  
BUS BIASING CONTROL TIMINGS  
CAN activity filter time, long  
t
t
NA  
Filter  
CAN activity filter time, short  
t
wake_filt  
Filter  
Optional: Wakeup timeout, short  
t
t
t
wake_to  
Wake  
Wake  
Optional: Wakeup timeout, long  
t
wake_to  
Timeout for bus inactivity (Required for selective wakeup implementation only)  
Bus Bias reaction time (Required for selective wakeup implementation only)  
t
NA  
Silence  
t
NA  
Bias  
www.onsemi.com  
16  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSSOP16, 4.4x5 EXPOSED PAD  
CASE 948BV  
ISSUE O  
DATE 22 JUN 2017  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
SIDE VIEW  
MIN  
SYMBOL  
NOM  
MAX  
A
A1  
A2  
b
c
D
1.10  
0.15  
0.95  
0.30  
0.20  
5.10  
6.50  
4.50  
0.05  
0.85  
0.19  
0.13  
4.90  
6.30  
4.30  
E
E1  
e
L
0.65 BSC  
1.00 REF  
L1  
N
P
R
S
0.45  
0.90  
6.50  
4.60  
0.37  
0.75  
1.00  
6.70  
4.80  
0.47  
LAND PATTERN  
0º  
8º  
θ
X
Y
Notes:  
3.33 REF  
2.76 REF  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MO-153 variations ABT.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON65408G  
TSSOP16, 4.4X5 EXPOSED PAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV7451MW0R2G

System Basis Chip with CAN FD, LDO Regulator and Wake-up Comparator
ONSEMI

NCV7462

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ0R2G

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ1R2G

LDO 稳压器,250 mA/50 mA,低漏,超低 Iq,高 PSRR
ONSEMI

NCV7462_1

LIN/CAN SBC/System-IC
ONSEMI

NCV7462_16

LIN/CAN SBC/System-IC
ONSEMI

NCV7471

System Basis Chip
ONSEMI

NCV7471ADQ5R2G

System Basis Chip
ONSEMI

NCV7471B

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471BDQ5R2G

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471C

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471CDQ5R2G

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI