NCV8415DTRKG [ONSEMI]

Self-Protected Low Side Driver with In-Rush Current Management;
NCV8415DTRKG
型号: NCV8415DTRKG
厂家: ONSEMI    ONSEMI
描述:

Self-Protected Low Side Driver with In-Rush Current Management

文件: 总14页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Self-Protected Low Side  
Driver with In-Rush Current  
Management  
NCV8415  
The NCV8415 is a three terminal protected LowSide Smart  
Discrete FET. The protection features include Delta Thermal  
Shutdown, overcurrent, overtemperature, ESD and integrated  
DraintoGate clamping for overvoltage protection. The device also  
offers fault indication via the gate pin. This device is suitable for harsh  
automotive environments.  
www.onsemi.com  
V
I MAX  
D
(Limited)  
DSS  
(Clamped)  
R
TYP  
DS(ON)  
42 V  
80 mW @ 10 V  
11 A  
Features  
ShortCircuit Protection with InRush Current Management  
Delta Thermal Shutdown  
Thermal Shutdown with Automatic Restart  
Overvoltage Protection  
SOT223  
CASE 318E  
STYLE 3  
DPAK  
CASE 369C  
STYLE 2  
Integrated Clamp for Overvoltage Protection and Inductive  
Switching  
MARKING DIAGRAMS  
ESD Protection  
dV/dt Robustness  
Analog Drive Capability (Logic Level Input)  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ101 Grade 1  
Qualified and PPAP Capable  
4
AYW  
8415G  
G
Pin Marking  
Information  
1
2
3
These Devices are PbFree and are RoHS Compliant  
SOT223  
1 = Gate  
2 = Drain  
3 = Source  
4 = Drain  
Typical Applications  
1
3
Switch a Variety of Resistive, Inductive and Capacitive Loads  
Can Replace Electromechanical Relays and Discrete Circuits  
AYWW  
NCV  
8415G  
2
4
Automotive / Industrial  
Drain  
DPAK  
A
Y
= Assembly Location  
= Year  
Overvoltage  
Protection  
Gate  
Input  
W, WW = Work Week  
G or G = PbFree Package  
(Note: Microdot may be in either location)  
ESD Protection  
ORDERING INFORMATION  
Temperature  
Limit  
Current  
Limit  
Current  
Sense  
Device  
Package  
Shipping  
NCV8415DTRKG  
DPAK  
2500 /  
Source  
(PbFree)  
Tape & Reel  
Figure 1. Block Diagram  
NCV8415STT1G  
NCV8415STT3G  
SOT223  
(PbFree)  
1000 /  
Tape & Reel  
SOT223  
(PbFree)  
4000 /  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
January, 2021 Rev. 0  
NCV8415/D  
NCV8415  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
42  
Unit  
V
DraintoSource Voltage Internally Clamped  
DraintoGate Voltage Internally Clamped  
GatetoSource Voltage  
V
DSS  
V
42  
V
DG  
GS  
V
14  
V
Drain Current Continuous  
I
D
Internally Limited  
Total Power Dissipation (SOT223)  
P
D
W
@ T = 25°C (Note 1)  
1.29  
2.20  
A
@ T = 25°C (Note 2)  
A
Total Power Dissipation (DPAK)  
@ T = 25°C (Note 1)  
1.54  
2.99  
A
@ T = 25°C (Note 2)  
A
°C/W  
Thermal Resistance (SOT223)  
JunctiontoAmbient (Note 1)  
JunctiontoAmbient (Note 2)  
JunctiontoCase (Soldering Point)  
R
R
R
96.4  
56.8  
10.6  
q
JA  
JA  
JS  
q
q
Thermal Resistance (DPAK)  
JunctiontoAmbient (Note 1)  
JunctiontoAmbient (Note 2)  
JunctiontoCase (Soldering Point)  
80.8  
41.8  
3.2  
R
R
R
q
q
q
JA  
JA  
JS  
Single Pulse Inductive Load Switching Energy (L = 10 mH, I  
Jstart  
= 4.2 A, V = 5 V, R = 25 W,  
E
AS  
88  
mJ  
Lpeak  
GS  
G
T
= 25°C)  
Load Dump Voltage (V = 0 and 10 V, R = 10 W) (Note 3)  
U *  
S
52  
V
GS  
L
Operating Junction Temperature  
T
40 to 150  
55 to 150  
°C  
°C  
J
Storage Temperature  
T
storage  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Mounted onto a 80 × 80 × 1.6 mm single layer FR4 board (100 sq mm, 1 oz. Cu, steady state).  
2. Mounted onto a 80 × 80 × 1.6 mm single layer FR4 board (645 sq mm, 1 oz. Cu, steady state).  
3. Load Dump Test B (with centralized load dump suppression) according to ISO167502 standard. Guaranteed by design. Not tested in  
production. Passed Class C according to ISO167501.  
ESD ELECTRICAL CHARACTERISTICS (Note 4, 5)  
Parameter  
Test Condition  
Human Body Model (HBM)  
Charged Device Model (CDM)  
Symbol  
Min  
4000  
1000  
Typ  
Max  
Unit  
ElectroStatic Discharge Capability  
ESD  
V
4. Not tested in production.  
5. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (JS0012017).  
Field Induced Charge Device Model ESD characterization is not performed on plastic molded packages with body sizes smaller than  
2 × 2 mm due to the inability of a small package body to acquire and retain enough charge to meet the minimum CDM discharge current  
waveform characteristic defined in JEDEC JS0022018.  
+
I
D
DRAIN  
I
G
V
DS  
GATE  
+
SOURCE  
V
GS  
Figure 2. Voltage and Current Convention  
www.onsemi.com  
2
 
NCV8415  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
DraintoSource Breakdown Voltage  
V
V
V
= 0 V, I = 10 mA  
42  
42  
46  
44  
51  
51  
(BR)DSS  
GS  
D
V
V
= 0 V, I = 10 mA, T = 150°C  
D J  
GS  
(Note 6)  
Zero Gate Voltage Drain Current  
I
mA  
V
GS  
= 0 V, V = 32 V  
0.6  
2.4  
2.0  
10  
DSS  
DS  
= 0 V, V = 32 V, T = 150°C  
GS  
DS  
(Note 6)  
J
Gate Input Current  
V
GS  
= 5 V, V = 0 V  
I
GSS  
50  
70  
DS  
ON CHARACTERISTICS  
Gate Threshold Voltage  
V
= V , I = 150 mA  
V
GS(th)  
1.0  
1.6  
4.0  
80  
2.0  
V
GS  
DS  
D
Gate Threshold Temperature Coefficient  
Static DraintoSource On Resistance  
V
= V , I = 150 mA (Note 6)  
V /T  
GS(th) J  
mV/°C  
mW  
GS  
DS  
D
R
V
= 10 V, I = 1.4 A  
100  
190  
DS(ON)  
GS  
D
V
= 10 V, I = 1.4 A, T = 150°C  
150  
GS  
GS  
GS  
D
J
(Note 6)  
V
= 5.0 V, I = 1.4 A  
105  
185  
120  
210  
GS  
D
V
V
= 5.0 V, I = 1.4 A, T = 150°C  
D
J
(Note 6)  
V
= 5.0 V, I = 0.5 A  
105  
185  
120  
210  
GS  
D
= 5.0 V, I = 0.5 A, T = 150°C  
D
J
(Note 6)  
SourceDrain Forward On Voltage  
I
= 7 A, V = 0 V  
V
t
0.88  
1.10  
V
S
GS  
SD  
SWITCHING CHARACTERISTICS (Note 6)  
TurnOn Time (10% V to 90% I )  
V
= 0 V to 5 V, V = 12 V,  
ms  
30  
44  
35  
55  
20  
90  
15  
40  
GS  
DD  
GS  
D
ON  
I
D
= 1 A  
TurnOff Time (90% V to 10% I )  
t
GS  
D
OFF  
V
GS  
= 0 V to 10 V, V = 12 V,  
DD  
TurnOn Time (10% V to 90% I )  
t
13  
GS  
D
ON  
I
D
= 1 A  
TurnOff Time (90% V to 10% I )  
t
70  
GS  
D
OFF  
TurnOn Rise Time (10% I to 90% I )  
t
rise  
9
D
D
TurnOff Fall Time (90% I to 10% I )  
t
fall  
29  
D
D
V/ms  
Slew Rate On (80% V to 50% V  
)
dV /dt  
DS ON  
0.5  
0.4  
1.63  
0.55  
DS  
DS  
Slew Rate Off (50% V to 80% V  
)
dV /dt  
DS OFF  
DS  
DS  
SELF PROTECTION CHARACTERISTICS  
Current Limit  
I
A
V
= 5 V, V = 10 V  
7.0  
6.4  
8.8  
7.9  
11  
LIM  
GS  
DS  
V
GS  
= 5 V, V = 10 V, T = 150°C  
9.1  
DS  
J
(Note 6)  
V
= 10 V, V = 10 V (Note 6)  
5.2  
5.0  
8.2  
7.4  
11  
10  
GS  
DS  
V
= 10 V, V = 10 V, T = 150°C  
DS J  
GS  
(Note 6)  
V
= 5.0 V (Note 6)  
°C  
mA  
Temperature Limit (TurnOff)  
Thermal Hysteresis  
T
150  
175  
15  
185  
GS  
LIM(OFF)  
DT  
LIM(ON)  
V
= 10 V (Note 6)  
Temperature Limit (TurnOff)  
Thermal Hysteresis  
T
150  
185  
15  
200  
GS  
LIM(OFF)  
DT  
LIM(ON)  
GATE INPUT CHARACTERISTICS (Note 6)  
Device ON Gate Input Current  
I
GON  
V
GS  
= 5 V, V = 10 V, I = 1 A  
35  
50  
70  
DS  
D
V
GS  
= 10 V, V = 10 V, I = 1 A  
250  
45  
310  
76  
450  
95  
DS  
D
Current Limit Gate Input Current  
Thermal Limit Gate Input Current  
I
GCL  
V
GS  
= 5 V, V = 10 V  
DS  
V
= 10 V, V = 10 V  
320  
210  
620  
450  
240  
700  
550  
260  
830  
GS  
DS  
I
V
= 5 V, V = 10 V, I = 0 A  
DS D  
GTL  
GS  
V
GS  
= 10 V, V = 10 V, I = 0 A  
DS  
D
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Not subject to production testing.  
www.onsemi.com  
3
 
NCV8415  
TYPICAL PERFORMANCE CURVES  
10  
1000  
T
= 25°C  
J(start)  
T
= 25°C  
J(start)  
100  
T
= 150°C  
J(start)  
T
= 150°C  
J(start)  
1
10  
10  
100  
10  
5
10  
100  
L (mH)  
L (mH)  
Figure 3. Single Pulse Maximum SwitchOff  
Figure 4. Single Pulse Maximum Switching  
Energy vs. Load Inductance  
Current vs. Load Inductance  
1000  
10  
T
= 25°C  
J(start)  
T
= 25°C  
J(start)  
100  
T
= 150°C  
J(start)  
T
= 150°C  
J(start)  
1
10  
1
1
10  
t
(ms)  
t
(ms)  
av  
av  
Figure 5. Single Pulse Maximum Inductive  
SwitchOff Current vs. Time in Avalanche  
Figure 6. Single Pulse Maximum Inductive  
Switching Energy vs. Time in Avalanche  
12  
10  
8
10  
8
7 V  
9 V  
V
DS  
= 10 V  
T = 25°C  
6 V  
A
6
4 V  
3 V  
6
8 V  
5 V  
10 V  
4
40°C  
25°C  
105°C  
150°C  
4
2
2
V
= 2.5 V  
GS  
0
0
0
1
2
3
4
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
DS  
(V)  
V
GS  
(V)  
Figure 7. OnState Output Characteristics  
Figure 8. Transfer Characteristics  
www.onsemi.com  
4
NCV8415  
TYPICAL PERFORMANCE CURVES  
300  
250  
200  
150  
100  
50  
210  
190  
170  
150  
150°C, V = 5 V  
GS  
105°C, V = 5 V  
GS  
150°C, V = 10 V  
GS  
130  
110  
90  
150°C, I = 1.4 A  
D
105°C, V = 10 V  
GS  
150°C, I = 0.5 A  
D
105°C, I = 1.4 A  
D
25°C, V = 5 V  
GS  
105°C, I = 0.5 A  
40°C, I = 1.4 A  
D
D
25°C, V = 10 V  
GS  
25°C, I = 1.4 A  
D
70  
40°C, V = 5 V  
GS  
25°C, I = 0.5 A  
40°C, V = 10 V  
D
GS  
40°C, I = 0.5 A  
D
50  
3
4
5
6
V
7
(V)  
8
9
10  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6  
I (A)  
D
1.8  
2
GS  
Figure 9. RDS(ON) vs. GateSource Voltage  
Figure 10. RDS(ON) vs. Drain Current  
2.0  
1.75  
1.5  
12  
11.5  
11  
V
DS  
= 10 V  
I
D
= 1.4 A  
40°C  
10.5  
10  
25°C  
V
GS  
= 5 V  
1.25  
1.0  
9.5  
9
105°C  
150°C  
V
= 10 V  
GS  
8.5  
8
0.75  
0.5  
7.5  
7
40 20  
0
20  
40  
T (5C)  
60  
80 100 120 140  
5
5.5  
6
6.5  
7
7.5  
(V)  
8
8.5  
9
9.5 10  
V
J
GS  
Figure 11. Normalized RDS(ON) vs. Temperature  
Figure 12. Current Limit vs. GateSource  
Voltage  
10  
9.5  
9
100  
10  
V
DS  
= 10 V  
V
GS  
= 0 V  
1
150°C  
25°C  
V
GS  
= 10 V  
8.5  
8
105°C  
0.1  
V
GS  
= 5 V  
0.01  
0.001  
40°C  
7.5  
7
40 20  
0
20  
40  
60  
80 100 120 140  
10  
15  
20  
25  
(V)  
30  
35  
40  
T (5C)  
V
J
DS  
Figure 13. Current Limit vs. Junction  
Temperature  
Figure 14. DraintoSource Leakage Current  
www.onsemi.com  
5
NCV8415  
TYPICAL PERFORMANCE CURVES  
1.2  
1.1  
1
1.1  
I
V
= 150 mA  
V
= 0 V  
D
GS  
= V  
DS  
GS  
1
0.9  
0.8  
0.7  
0.6  
0.5  
40°C  
25°C  
0.9  
0.8  
0.7  
0.6  
105°C  
150°C  
1
2
3
4
5
6
7
8
9
10  
40 20  
0
20  
40  
60  
80 100 120 140  
T (5C)  
I
(A)  
J
S
Figure 15. Normalized Threshold Voltage vs.  
Temperature  
Figure 16. SourceDrain Diode Forward  
Characteristics  
140  
2
V
= 12 V  
= 1 A  
V
= 12 V  
= 1 A  
DD  
DD  
I
D
I
D
120  
100  
80  
60  
40  
20  
0
R
= 0 W  
R
= 0 W  
G
G
dV /dt  
1.5  
1.0  
0.5  
0
DS ON  
t
ON  
dV /dt  
DS OFF  
t
r
t
OFF  
t
f
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
V
GS  
(V)  
V
GS  
(V)  
Figure 17. Resistive Load Switching Time vs.  
Figure 18. Resistive Load Switching  
DrainSource Voltage Slope vs. GateSource  
GateSource Voltage  
Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
80  
70  
60  
V
= 12 V  
= 1 A  
DD  
I
D
dV /dt , V = 10 V  
DS ON  
GS  
t
, V = 10 V  
OFF GS  
50  
40  
30  
20  
10  
0
t
, V = 5 V  
OFF GS  
dV /dt  
, V = 5 V  
dV /dt  
, V = 10 V  
DS OFF GS  
DS OFF GS  
t
, V = 5 V  
ON GS  
0.8  
0.6  
0.4  
0.2  
0
t , V = 5 V  
r
GS  
dV /dt , V = 5 V  
DS ON  
GS  
V
= 12 V  
DD  
I = 1 A  
D
t , V = 10 V  
r
GS  
t , V = 5 V  
f
t , V = 10 V  
t
, V = 10 V  
GS  
f
GS  
ON GS  
0
500  
1000  
(W)  
1500  
2000  
0
500  
1000  
(W)  
1500  
2000  
R
R
G
G
Figure 19. Resistive Load Switching Time vs.  
Gate Resistance  
Figure 20. Resistive Load Switching  
DrainSource Voltage Slope vs. Gate Resistance  
www.onsemi.com  
6
NCV8415  
TYPICAL PERFORMANCE CURVES  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
PCB Cu thickness, 1.0 oz  
60  
50  
40  
30  
PCB Cu thickness, 1.0 oz  
PCB Cu thickness, 2.0 oz  
PCB Cu thickness, 2.0 oz  
0
100 200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700 800  
2
2
Copper Heat Spreader Area (mm )  
Copper Heat Spreader Area (mm )  
Figure 21. RqJA vs. Copper Area (SOT223)  
Figure 22. RqJA vs. Copper Area (DPAK)  
100  
10  
50% Duty Cycle  
20% Duty Cycle  
10% Duty Cycle  
5% Duty Cycle  
2% Duty Cycle  
1
1% Duty Cycle  
0.1  
0.01  
Single Pulse  
2
80 × 80 × 1.6 mm SingleLayer PCB, 645 mm 1 oz. Copper  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Width (s)  
Figure 23. Transient Thermal Resistance (SOT223)  
100  
50% Duty Cycle  
20% Duty Cycle  
10% Duty Cycle  
5% Duty Cycle  
10  
1
2% Duty Cycle  
1% Duty Cycle  
0.1  
0.01  
Single Pulse  
2
80 × 80 × 1.6 mm SingleLayer PCB, 645 mm 1 oz. Copper  
0.1 10 100  
Pulse Width (s)  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
1
1000  
Figure 24. Transient Thermal Resistance (DPAK)  
www.onsemi.com  
7
NCV8415  
APPLICATION INFORMATION  
Circuit Protection Features  
junction temperature is exceeded. When activated at  
typically 175°C, the NCV8415 turns off. This feature is  
provided to prevent failures from accidental overheating.  
The NCV8415 has three main protections. Current Limit,  
Thermal Shutdown and Delta Thermal Shutdown. These  
protections establish robustness of the NCV8415.  
EMC Performance  
Current Limit and Short Circuit Protection  
The NCV8415 has current sense element. In the event that  
the drain current reaches designed current limit level,  
integrated Current Limit protection establishes its constant  
level.  
To improve the EMC performance/robustness, connect  
a small ceramic capacitor to the drain pin as close to the  
device as possible according to Figure 25.  
R
L
Delta Thermal Shutdown  
Delta Thermal Shutdown (DTSD) Protection increases  
higher reliability of the NCV8415. DTSD consist of two  
independent temperature sensors – cold and hot sensors. The  
NCV8415 establishes a slow junction temperature rise by  
sensing the difference between the hot and cold sensors.  
ON/OFF output cycling is designed with hysteresis that  
results in a controlled saw tooth temperature profile  
(Figure 26). The die temperature slowly rises (DTSD) until  
the absolute temperature shutdown (TSD) is reached around  
175°C.  
+
Gate  
D
V
DD  
DUT  
S
G
C
Thermal Shutdown with Automatic Restart  
Internal Thermal Shutdown (TSD) circuitry is provided to  
protect the NCV8415 in the event that the maximum  
Figure 25. EMC Capacitor Placement  
TEST CIRCUITS AND WAVEFORMS  
Thermal Transient Limitation Phase  
Overtemperature  
Cycling  
Nominal  
Load  
V
I
G
I
LIM  
D
I
NOM  
TSD  
Delta TSD  
activation  
T
J
Time  
Figure 26. Overload Protection Behavior  
www.onsemi.com  
8
 
NCV8415  
TEST CIRCUITS AND WAVEFORMS  
R
L
V
IN  
+
D
V
DD  
R
G
DUT  
S
G
I
DS  
Figure 27. Resistive Load Switching Test Circuit  
90%  
V
IN  
10%  
90%  
t
t
OFF  
ON  
t
r
t
f
I
DS  
10%  
Time  
Figure 28. Resistive Load Switching Waveforms  
www.onsemi.com  
9
NCV8415  
TEST CIRCUITS AND WAVEFORMS  
L
V
DS  
V
IN  
D
+
R
G
V
DD  
G DUT  
S
t
p
I
DS  
Figure 29. Inductive Load Switching Test Circuit  
5 V  
0 V  
V
IN  
t
av  
t
p
V
(BR)DSS  
I
pk  
V
DD  
V
DS  
V
DS(on)  
I
0
DS  
Time  
Figure 30. Inductive Load Switching Waveforms  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOT223 (TO261)  
CASE 318E04  
ISSUE R  
DATE 02 OCT 2018  
SCALE 1:1  
q
q
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42680B  
SOT223 (TO261)  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
SOT223 (TO261)  
CASE 318E04  
ISSUE R  
DATE 02 OCT 2018  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
STYLE 2:  
PIN 1. ANODE  
STYLE 3:  
STYLE 4:  
PIN 1. SOURCE  
STYLE 5:  
PIN 1. DRAIN  
PIN 1. GATE  
2. DRAIN  
2. CATHODE  
3. NC  
2. DRAIN  
3. GATE  
4. DRAIN  
2. GATE  
3. SOURCE  
4. DRAIN  
3. SOURCE  
4. GATE  
4. CATHODE  
STYLE 6:  
PIN 1. RETURN  
STYLE 7:  
STYLE 8:  
STYLE 9:  
STYLE 10:  
PIN 1. ANODE 1  
2. CATHODE  
3. ANODE 2  
CANCELLED  
PIN 1. INPUT  
2. GROUND  
3. LOGIC  
PIN 1. CATHODE  
2. ANODE  
2. INPUT  
3. OUTPUT  
4. INPUT  
3. GATE  
4. CATHODE  
4. GROUND  
4. ANODE  
STYLE 11:  
PIN 1. MT 1  
STYLE 12:  
STYLE 13:  
PIN 1. INPUT  
2. OUTPUT  
3. NC  
PIN 1. GATE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
2. MT 2  
3. GATE  
4. MT 2  
4. OUTPUT  
GENERIC  
MARKING DIAGRAM*  
AYW  
XXXXXG  
G
1
A
Y
= Assembly Location  
= Year  
W
= Work Week  
XXXXX = Specific Device Code  
G
= PbFree Package  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42680B  
SOT223 (TO261)  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DPAK (SINGLE GAUGE)  
CASE 369C  
4
ISSUE F  
2
1
DATE 21 JUL 2015  
3
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-  
MENSIONS b3, L3 and Z.  
A
D
E
C
A
b3  
B
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.006 INCHES PER SIDE.  
5. DIMENSIONS D AND E ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY.  
6. DATUMS A AND B ARE DETERMINED AT DATUM  
PLANE H.  
c2  
4
2
L3  
Z
DETAIL A  
H
1
3
7. OPTIONAL MOLD FEATURE.  
INCHES  
DIM MIN MAX  
0.086 0.094  
A1 0.000 0.005  
0.025 0.035  
b2 0.028 0.045  
b3 0.180 0.215  
MILLIMETERS  
L4  
NOTE 7  
MIN  
2.18  
0.00  
0.63  
0.72  
4.57  
0.46  
0.46  
5.97  
6.35  
MAX  
2.38  
0.13  
0.89  
1.14  
5.46  
0.61  
0.61  
6.22  
6.73  
c
b2  
e
BOTTOM VIEW  
A
SIDE VIEW  
b
b
M
0.005 (0.13)  
C
TOP VIEW  
c
0.018 0.024  
c2 0.018 0.024  
Z
Z
D
E
e
0.235 0.245  
0.250 0.265  
0.090 BSC  
H
2.29 BSC  
9.40 10.41  
1.40 1.78  
2.90 REF  
0.51 BSC  
0.89 1.27  
GAUGE  
PLANE  
SEATING  
PLANE  
H
L
L1  
L2  
0.370 0.410  
0.055 0.070  
0.114 REF  
L2  
C
0.020 BSC  
L3 0.035 0.050  
L
BOTTOM VIEW  
A1  
L4  
Z
−−− 0.040  
0.155 −−−  
−−−  
3.93  
1.01  
−−−  
L1  
ALTERNATE  
CONSTRUCTIONS  
DETAIL A  
ROTATED 905 CW  
GENERIC  
MARKING DIAGRAM*  
STYLE 1:  
PIN 1. BASE  
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
STYLE 3:  
STYLE 4:  
STYLE 5:  
PIN 1. GATE  
PIN 1. ANODE  
2. CATHODE  
3. ANODE  
PIN 1. CATHODE  
2. ANODE  
2. COLLECTOR  
2. ANODE  
3. CATHODE  
4. ANODE  
3. EMITTER  
3. SOURCE  
4. DRAIN  
3. GATE  
4. ANODE  
XXXXXXG  
ALYWW  
AYWW  
XXX  
4. COLLECTOR  
4. CATHODE  
STYLE 6:  
PIN 1. MT1  
2. MT2  
STYLE 7:  
STYLE 8:  
STYLE 9:  
PIN 1. ANODE  
2. CATHODE  
STYLE 10:  
PIN 1. CATHODE  
2. ANODE  
XXXXXG  
PIN 1. GATE  
PIN 1. N/C  
2. COLLECTOR  
2. CATHODE  
3. GATE  
4. MT2  
3. EMITTER  
3. ANODE  
3. RESISTOR ADJUST  
4. CATHODE  
3. CATHODE  
4. ANODE  
4. COLLECTOR  
4. CATHODE  
IC  
Discrete  
SOLDERING FOOTPRINT*  
XXXXXX = Device Code  
A
L
Y
WW  
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
6.20  
0.244  
3.00  
0.118  
2.58  
0.102  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
5.80  
0.228  
1.60  
0.063  
6.17  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON10527D  
DPAK (SINGLE GAUGE)  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY