NCV8537_17 [ONSEMI]

High Accuracy Low Dropout Linear Regulator;
NCV8537_17
型号: NCV8537_17
厂家: ONSEMI    ONSEMI
描述:

High Accuracy Low Dropout Linear Regulator

文件: 总16页 (文件大小:1288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8537  
500 mA High Accuracy Low  
Dropout Linear Regulator,  
with Power Good Function  
The NCV8537 is a high performance low dropout linear voltage  
regulator. Based on the popular NCV8535, the device retains all the  
best features of its predecessor which includes high accuracy,  
excellent stability, low noise performance and reverse bias protection  
but now includes a Power Good output signal to enable monitoring of  
the supply system. The device is available with fixed or adjustable  
outputs and is packaged in a 10 pin 3x3 mm DFN package.  
www.onsemi.com  
DFN10  
MN SUFFIX  
CASE 485C  
Features  
High Accuracy Output Over Line and Load Variances ( 0.9% at  
25°C)  
PIN CONFIGURATION  
Operating Temperature Range: −40°C to 125°C  
Pin 1, 2. V  
out  
Power Good Output to Indicate the Regulator is Within Specified  
3. Sense / ADJ  
4. GND  
5. PWRG  
6. NC  
Limits  
Stable Output with Low Value Capacitors of any type and with no  
Minimum Load Current Requirement  
7. NR  
Incorporates Current Limiting and Reverse Bias Protection  
8. SD  
9, 10. V  
in  
Thermal Shutdown Protection  
EP, GND  
Low Dropout Voltage at Full Load (340 mV typ at V = 3.3 V)  
o
Low Noise (33 mVrms w/ 10 nF C and 52 mVrms w/out C )  
nr  
nr  
MARKING DIAGRAM  
Low Shutdown Current (< 1 mA)  
Reverse Bias Protected  
1
V8537  
xxx  
ALYWG  
G
2.9 V to 12 V Supply Range  
Available in 1.8 V, 2.5 V, 3.3 V, 5.0 V and Adjustable Output  
Voltages  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
xxx = Specific Device Marking  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
These are Pb−Free Devices  
Applications  
(Note: Microdot may be in either location)  
Networking Systems, DSL/Cable Modems  
Audio Systems for Automotive Applications  
Navigation Systems  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 15 of this data sheet.  
Satellite Receivers  
This document contains information on some products that are still under development.  
ON Semiconductor reserves the right to change or discontinue these products without  
notice.  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
October, 2017 − Rev. 4  
NCV8537/D  
NCV8537  
C
nr  
ON  
(Optional)  
6
7
OFF  
NC  
NR  
8
SD  
IN  
SENSE  
3
2
1
9
OUT  
10  
V
in  
V
out  
OUT  
IN  
+
+
C
1.0 mF  
out  
C
1.0 mF  
in  
EP GND  
PWRG  
5
R1  
100k  
4
EP  
PWRG  
Figure 1. Typical Fixed Version Application Schematic  
C
nr  
R2  
R3  
(Optional)  
ON  
6
7
OFF  
NC  
NR  
8
3
SD  
IN  
ADJ  
OUT  
OUT  
9
2
1
10  
V
in  
V
out  
IN  
+
+
C
1.0 mF  
out  
EP GND  
R1  
100k  
PWRG  
5
C
in  
4
EP  
1.0 mF  
PWRG  
Figure 2. Typical Adjustable Version Application Schematic  
www.onsemi.com  
2
 
NCV8537  
Comp.  
PWRG  
Vin  
SD  
Voltage  
Reference  
Enable  
Block  
Current and  
Thermal  
Protection  
Circuit  
Series Pass  
Element with  
Reverse Bias  
Protection  
Error  
Amplifier  
Vout  
NR  
ADJ  
NCV8537 Adjustable  
GND  
Figure 3. Block Diagram, Adjustable Output Version  
Comp.  
PWRG  
Vin  
SD  
Voltage  
Reference  
Enable  
Block  
Current and  
Series Pass  
Error  
Amplifier  
Thermal  
Protection  
Circuit  
Element with  
Reverse Bias  
Protection  
Vout  
NR  
SENSE  
NCV8537 Fix  
GND  
Figure 4. Block Diagram, Fixed Output Version  
www.onsemi.com  
3
NCV8537  
PIN FUNCTION DESCRIPTION  
Pin No.  
1, 2  
Pin Name  
Description  
V
out  
Regulated output voltage. Bypass to ground with C w 1.0 mF  
out  
3
SENSE/ADJ  
For output voltage sensing, connect to Pins 1 and 2.at Fixed output Voltage version  
Adjustable pin at Adjustable output version  
4
GND  
PWRG  
NC  
Power Supply Ground  
5
6
Power Good  
Not Connected  
7
NR  
Noise Reduction Pin. This is an optional pin used to further reduce noise.  
Shutdown pin. When not in use, this pin should be connected to the input pin.  
Power Supply Input Voltage  
8
SD  
9, 10  
EPAD  
V
in  
EPAD  
Exposed thermal pad should be connected to ground.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
V
in  
−0.3 to +16  
Output Voltage  
V
out  
−0.3 to V +0.3 or 10 V*  
V
in  
PWRG Pin Voltage  
V
−0.3 to +16  
−0.3 to +16  
−40 to +150  
−50 to +150  
V
PWRG  
Shutdown Pin Voltage  
Junction Temperature Range  
Storage Temperature Range  
V
sh  
V
T
J
°C  
°C  
T
stg  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
NOTE: This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) tested per AEC−Q100−002 (EIA/JESD22−A114)  
Machine Model (MM) tested per AEC−Q100−003 (EIA/JESD22−A115)  
Charged Device Model (CDM) tested per EIA/JESD22−C101.  
*Which ever is less. Reverse bias protection feature valid only if (V − V ) 7 V.  
out  
in  
THERMAL CHARACTERISTICS  
Test Conditions (Typical Value)  
Min Pad Board (Note 1)  
1, Pad Board (Note 1)  
Characteristic  
Junction−to−Air, qJA  
Unit  
°C/W  
°C/W  
215  
58  
66  
Junction−to−Pin, J−L4  
18  
1. As mounted on a 35 x 35 x 1.5 mm FR4 Substrate, with a single layer of a specified copper area of 2 oz (0.07 mm thick) copper traces and  
heat spreading area. JEDEC 51 specifications for a low and high conductivity test board recommend a 2 oz copper thickness. Test conditions  
are under natural convection or zero air flow.  
www.onsemi.com  
4
 
NCV8537  
ELECTRICAL CHARACTERISTICS − 1.8 V  
(V = 1.8 V typical, V = 2.9 V, T = −40°C to +125°C, unless otherwise noted, Note 2)  
out  
in  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Accuracy)  
= 2.9 V to 5.8 V, I  
V
out  
−0.9%  
1.783  
1.8  
+0.9%  
1.817  
V
V
= 0.1 mA to 500 mA, T = 25°C  
in  
load  
A
Output Voltage (Accuracy)  
= 2.9 V to 5.8 V, I  
V
−1.4%  
1.774  
1.8  
1.8  
+1.4%  
1.826  
V
V
out  
V
in  
= 0.1 mA to 500 mA, T = 0°C to +85°C  
load  
A
Output Voltage (Accuracy)  
V
out  
−1.5%  
1.773  
+1.5%  
1.827  
V
in  
= 2.9 V to 5.8 V, I  
= 0.1 mA to 500 mA, T = −40°C to +125°C  
load  
A
Minimum Input Voltage  
Line Regulation  
V
2.9  
V
inmin  
Line  
0.04  
mV/V  
Reg  
V
in  
= 2.9 V to 12 V, I  
= 0.1 mA  
load  
Load Regulation  
= 2.9 V, I  
Load  
0.04  
mV/mA  
mV  
Reg  
V
in  
= 0.1 mA to 500 mA  
load  
Dropout Voltage (See Figure 9)  
V
DO  
I
I
I
= 500 mA (Notes 3, 4)  
= 300 mA (Notes 3, 4)  
= 50 mA (Notes 3, 4)  
620  
230  
95  
load  
load  
load  
Peak Output Current (See Figures 14 and 17)  
I
I
500  
700  
830  
900  
mA  
mA  
°C  
pk  
Short Output Current (See Figure 14) V < 7 V, T = 25°C  
in  
A
sc  
Thermal Shutdown / Hysteresis  
T
160/10  
J
Ground Current  
In Regulation  
I
GND  
I
I
I
I
= 500 mA (Note 3)  
= 300 mA (Note 3)  
= 50 mA  
9.0  
4.6  
0.8  
14  
7.5  
2.5  
220  
mA  
mA  
mA  
mA  
load  
load  
load  
load  
= 0.1 mA  
In Dropout  
= 2.2 V, I  
V
in  
= 0.1 mA  
load  
500  
1.0  
In Shutdown  
= 0 V  
V
SD  
I
GNDsh  
Output Noise  
V
noise  
C
= 0 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
52  
33  
mVrms  
mVrms  
nr  
nr  
load  
out  
C
= 10 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
load  
out  
Power Good Voltage  
Low Threshold  
Hysteresis  
V
elft  
% of  
93  
95  
2
97  
V
out  
High Threshold  
99  
Power Good Pin Voltage Saturation (I − 1.0 mA)  
V
200  
1.0  
50  
mV  
mA  
ms  
ef  
efdo  
Power Good Pin Leakage  
I
efleak  
Power Good Blanking Time (Note 7)  
t
ef  
Shutdown  
V
SD  
Threshold Voltage ON  
Threshold Voltage OFF  
2.0  
V
V
0.4  
1.0  
1.0  
SD Input Current, V = 0 V to 0.4 V or V = 2.0 V to V  
I
0.07  
0.07  
10  
mA  
mA  
mA  
SD  
SD  
in  
SD  
Output Current In Shutdown Mode, V = 0 V  
I
OSD  
out  
Reverse Bias Protection, Current Flowing from the Output Pin to GND  
(V = 0 V, V = 1.8 V)  
I
OUTR  
in  
out_forced  
2. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
3. T must be greater than 0°C.  
A
4. Maximum dropout voltage is limited by minimum input voltage V = 2.9 V recommended for guaranteed operation.  
in  
www.onsemi.com  
5
 
NCV8537  
ELECTRICAL CHARACTERISTICS − 2.5 V  
(V = 2.5 V typical, V = 2.9 V, T = −40°C to +125°C, unless otherwise noted, Note 5)  
out  
in  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Accuracy)  
= 2.9 V to 6.5 V, I  
V
out  
−0.9%  
2.477  
2.5  
+0.9%  
2.523  
V
V
= 0.1 mA to 500 mA, T = 25°C  
in  
load  
A
Output Voltage (Accuracy)  
= 2.9 V to 6.5 V, I  
V
−1.4%  
2.465  
2.5  
2.5  
+1.4%  
2.535  
V
V
out  
V
in  
= 0.1 mA to 500 mA, T = 0°C to +85°C  
load  
A
Output Voltage (Accuracy)  
V
out  
−1.5%  
2.462  
+1.5%  
2.538  
V
in  
= 2.9 V to 6.5 V, I  
= 0.1 mA to 500 mA, T = −40°C to +125°C  
load  
A
Minimum Input Voltage  
Line Regulation  
V
2.9  
V
inmin  
Line  
0.04  
mV/V  
Reg  
V
in  
= 2.9 V to 12 V, I  
= 0.1 mA  
load  
Load Regulation  
= 2.9 V, I  
Load  
0.04  
mV/mA  
mV  
Reg  
V
in  
= 0.1 mA to 500 mA  
load  
Dropout Voltage (See Figure 10)  
V
DO  
I
I
I
I
= 500 mA (Note 6)  
= 300 mA (Note 6)  
= 50 mA  
340  
230  
110  
10  
load  
load  
load  
load  
= 0.1mA  
Peak Output Current (See Figures 14 and 18)  
I
I
500  
700  
800  
900  
mA  
mA  
°C  
pk  
Short Output Current (See Figure 14) V < 7 V, T = 25°C  
in  
A
sc  
Thermal Shutdown / Hysteresis  
T
160/10  
J
Ground Current  
In Regulation  
I
GND  
I
I
I
I
= 500 mA (Note 6)  
= 300 mA (Note 6)  
= 50 mA  
9.0  
4.6  
0.8  
14  
7.5  
2.5  
220  
mA  
mA  
mA  
mA  
load  
load  
load  
load  
= 0.1 mA  
In Dropout  
= 2.4 V, I  
V
in  
= 0.1 mA  
load  
500  
1.0  
In Shutdown  
= 0 V  
V
SD  
I
GNDsh  
Output Noise  
V
noise  
C
= 0 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
56  
35  
mVrms  
mVrms  
nr  
nr  
load  
out  
C
= 10 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
load  
out  
Power Good Voltage  
Low Threshold  
Hysteresis  
V
elft  
% of  
93  
95  
2
97  
V
out  
High Threshold  
99  
Power Good Pin Voltage Saturation (I − 1.0 mA)  
V
200  
1.0  
50  
mV  
mA  
ms  
ef  
efdo  
Power Good Pin Leakage  
I
efleak  
Power Good Blanking Time (Note 7)  
t
ef  
Shutdown  
V
SD  
Threshold Voltage ON  
Threshold Voltage OFF  
2.0  
V
V
0.4  
1.0  
1.0  
S
D
Input Current, V = 0 V to 0.4 V or V = 2.0 V to V  
I
0.07  
0.07  
10  
mA  
mA  
mA  
SD  
SD  
in  
SD  
Output Current In Shutdown Mode, V = 0 V  
I
OSD  
out  
Reverse Bias Protection, Current Flowing from the Output Pin to GND  
(V = 0 V, V = 2.5 V)  
I
OUTR  
in  
out_forced  
5. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
6. T must be greater than 0°C.  
A
7. Can be disabled per customer request.  
www.onsemi.com  
6
 
NCV8537  
ELECTRICAL CHARACTERISTICS − 3.3 V  
(V = 3.3 V typical, V = 3.7 V, T = −40°C to +125°C, unless otherwise noted, Note 8)  
out  
in  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Accuracy) V  
V
out  
−0.90%  
3.27  
3.3  
0.90%  
3.33  
V
in  
V
in  
= 3.7 V to 7.3 V, I  
= 0.1 mA to 500 mA, T = 25°C  
load  
A
Output Voltage (Accuracy)  
= 3.7 V to 7.3 V, I  
V
−1.40%  
3.254  
3.3  
3.3  
1.40%  
3.346  
V
V
out  
V
in  
= 0.1 mA to 500 mA, T = 0°C to +85°C  
load  
A
Output Voltage (Accuracy)  
V
out  
−1.50%  
3.25  
1.50%  
3.35  
V
= 3.7 V to 7.3 V, I  
= 0.1 mA to 500 mA, T = −40°C to +125°C  
in  
load  
load  
A
Line Regulation  
= 3.7 V to 12 V, I  
Line  
0.04  
0.04  
mV/V  
mV/mA  
mV  
Reg  
V
in  
= 0.1 mA  
Load Regulation  
= 3.7 V, I  
Load  
Reg  
V
= 0.1 mA to 500 mA  
load  
in  
Dropout Voltage  
V
DO  
I
I
I
I
= 500 mA  
= 300 mA  
= 50 mA  
= 0.1 mA  
340  
230  
110  
10  
load  
load  
load  
load  
Peak Output Current (See Figure 14)  
I
I
500  
700  
800  
900  
mA  
mA  
°C  
pk  
Short Output Current (See Figure 14) V < 7 V, T = 25°C  
in  
A
sc  
Thermal Shutdown / Hysteresis  
T
160/10  
J
Ground Current  
In Regulation  
I
GND  
I
I
I
I
= 500 mA (Note 8)  
= 300 mA  
= 50 mA  
9
14  
7.5  
2.5  
220  
mA  
load  
load  
load  
load  
4.6  
0.8  
= 0.1 mA  
mA  
mA  
In Dropout  
V
in  
= 3.7 V, I  
= 0.1 mA  
500  
1
load  
In Shutdown  
= 0 V  
V
SD  
I
GNDsh  
mA  
Output Noise  
V
noise  
mVrms  
C
= 0 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
69  
46  
nr  
nr  
load  
out  
C
= 10 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
load  
out  
Power Good Voltage  
Low Threshold  
Hysteresis  
V
elft  
% of  
93  
95  
2
97  
V
out  
High Threshold  
99  
Power Good Pin Voltage Saturation (I = 1.0 mA)  
V
200  
1
mV  
mA  
ms  
V
ef  
efdo  
Power Good Pin Leakage  
I
efleak  
Power Good Blanking Time (Note 9)  
t
50  
ef  
Shutdown  
V
SD  
Threshold Voltage ON  
Threshold Voltage OFF  
2
0.4  
1
SD Input Current, V = 0 V to 0.4 V or V = 2.0 V to V  
I
0.07  
0.07  
10  
mA  
mA  
mA  
SD  
SD  
in  
SD  
Output Current In Shutdown Mode, V = 0 V  
I
1
out  
OSD  
Reverse Bias Protection, Current Flowing from the Output Pin to GND  
(V = 0 V, V = 3.3 V)  
I
OUTR  
in  
out_forced  
8. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
9. Can be disabled per customer request.  
www.onsemi.com  
7
 
NCV8537  
ELECTRICAL CHARACTERISTICS − 5 V  
(V = 5.0 V typical, V = 5.4 V, T = −40°C to +125°C, unless otherwise noted, Note 10)  
out  
in  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Accuracy) V  
V
out  
−0.90%  
4.955  
5
0.90%  
5.045  
V
in  
V
in  
= 5.4 V to 7.3 V, I  
= 0.1 mA to 500 mA, T = 25°C  
load  
A
Output Voltage (Accuracy)  
= 5.4 V to 7.3 V, I  
V
−1.40%  
4.93  
5
5
1.40%  
5.07  
V
V
out  
V
in  
= 0.1 mA to 500 mA, T = 0°C to +85°C  
load  
A
Output Voltage (Accuracy)  
V
out  
−1.50%  
4.925  
1.50%  
5.075  
V
in  
= 5.4 V to 7.3 V, I  
= 0.1 mA to 500 mA, T = −40°C to +125°C  
load  
A
Line Regulation  
= 5.4 V to 12 V, I  
Line  
0.04  
0.04  
mV/V  
mV/mA  
mV  
Reg  
V
in  
= 0.1 mA  
load  
Load Regulation  
= 5.4 V, I  
Load  
Reg  
V
= 0.1 mA to 500 mA  
load  
in  
Dropout Voltage  
V
DO  
I
I
I
I
= 500 mA  
= 300 mA  
= 50 mA  
= 0.1 mA  
340  
230  
110  
10  
load  
load  
load  
load  
Peak Output Current (See Figure 14)  
I
I
500  
700  
830  
930  
mA  
mA  
°C  
pk  
Short Output Current (See Figure 14) V < 7 V, T = 25°C  
in  
A
sc  
Thermal Shutdown / Hysteresis  
T
160/10  
J
Ground Current  
In Regulation  
I
GND  
I
I
I
I
= 500 mA (Note 10)  
= 300 mA  
= 50 mA  
9
14  
7.5  
2.5  
220  
mA  
load  
load  
load  
load  
4.6  
0.8  
= 0.1 mA  
mA  
mA  
In Dropout  
= 3.2 V, I  
V
in  
= 0.1 mA  
load  
500  
1
In Shutdown  
= 0 V  
V
SD  
I
GNDsh  
mA  
Output Noise  
V
noise  
mVrms  
C
= 0 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
93  
58  
nr  
nr  
load  
out  
C
= 10 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, C = 10 mF  
load  
out  
Power Good Voltage  
Low Threshold  
Hysteresis  
V
elft  
% of  
93  
95  
2
97  
V
out  
High Threshold  
99  
Power Good Pin Voltage Saturation (I = 1.0 mA)  
V
200  
1
mV  
mA  
ms  
V
ef  
efdo  
Power Good Pin Leakage  
I
efleak  
Power Good Blanking Time (Note 11)  
t
50  
ef  
Shutdown  
V
SD  
Threshold Voltage ON  
Threshold Voltage OFF  
2
0.4  
1
SD Input Current, V = 0 V to 0.4 V or V = 2.0 V to V  
I
0.07  
0.07  
10  
mA  
mA  
mA  
SD  
SD  
in  
SD  
Output Current In Shutdown Mode, V = 0 V  
I
1
out  
OSD  
Reverse Bias Protection, Current Flowing from the Output Pin to GND  
(V = 0 V, V = 5 V)  
I
OUTR  
in  
out_forced  
10.Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
11. Can be disabled per customer request.  
www.onsemi.com  
8
 
NCV8537  
ELECTRICAL CHARACTERISTICS − ADJUSTABLE  
(V = 1.25 V typical, V = 2.9 V, T = −40°C to +125°C, unless otherwise noted, Note 12)  
out  
in  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Reference Voltage (Accuracy)  
= 2.9 V to V +4.0 V, I  
V
ref  
V
ref  
V
ref  
−0.90%  
1.239  
1.25  
0.90%  
1.261  
V
V
in  
= 0.1 mA to 500 mA, T = 25°C  
out  
load  
A
Reference Voltage (Accuracy)  
= 2.9 V to V + 4.0 V, I  
−1.40%  
1.233  
1.25  
1.25  
1.40%  
1.268  
V
V
V
in  
= 0.1 mA to 500 mA, T = 0°C to +85°C  
out  
load  
A
Reference Voltage (Accuracy)  
= 2.9 V to V + 4.0 V, I  
−1.50%  
1.231  
1.50%  
1.269  
V
in  
= 0.1 mA to 500 mA, T = −40°C to  
out  
load  
A
+125°C  
Line Regulation  
Line  
0.04  
0.04  
mV/V  
mV/mA  
mV  
Reg  
V
in  
= 2.9 V to 12 V, I  
= 0.1 mA  
load  
Load Regulation  
= 2.9 V to 12 V, I  
Load  
Reg  
V
in  
= 0.1 mA to 500 mA  
load  
Dropout Voltage (V = 2.5 V − 10 V)  
V
DO  
out  
I
I
I
I
= 500 mA  
= 300 mA  
= 50 mA  
= 0.1 mA  
340  
230  
110  
10  
load  
load  
load  
load  
Peak Output Current (See Figure 14)  
I
I
500  
700  
830  
mA  
mA  
pk  
Short Output Current (See Figure 14) V < 7 V, T = 25°C  
in  
A
sc  
V
v 3.3 V  
> 3.3 V  
900  
930  
out  
V
out  
Thermal Shutdown / Hysteresis  
T
J
160/  
10  
°C  
Ground Current  
In Regulation  
I
GND  
I
I
I
I
= 500 mA (Note 12)  
= 300 mA  
= 50 mA  
9
4.6  
0.8  
14  
7.5  
2.5  
220  
mA  
load  
load  
load  
load  
= 0.1 mA  
mA  
mA  
mA  
In Dropout  
Vin = V + 0.1 V or 2.9 V (whichever is higher), I  
= 0.1 mA  
load  
500  
1
out  
In Shutdown  
V
SD  
= 0 V  
I
GNDsh  
Output Noise  
V
noise  
mV  
rms  
C
= 0 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, Cout = 10 mF  
69  
46  
nr  
nr  
load  
C
= 10 nF, I  
= 500 mA, f = 10 Hz to 100 kHz, Cout = 10 mF  
load  
Power Good Voltage  
Low Threshold  
Hysteresis  
V
elft  
% of  
93  
95  
2
97  
V
out  
High Threshold  
99  
Power Good Pin Voltage Saturation (I = 1.0 mA)  
V
200  
1
mV  
mA  
ms  
V
ef  
efdo  
Power Good Pin Leakage  
I
efleak  
Power Good Pin Blanking Time (Note 13)  
t
50  
ef  
Shutdown  
V
SD  
Threshold Voltage ON  
Threshold Voltage OFF  
2
0.4  
SD Input Current, V = 0 V to 0.4 V or V = 2.0 V to V  
I
mA  
SD  
SD  
in  
SD  
V
in  
V
in  
v 5.4 V  
> 5.4 V  
0.07  
1
5
Output Current In Shutdown Mode, V = 0 V  
I
0.07  
1
1
mA  
mA  
out  
OSD  
Reverse Bias Protection, Current Flowing from the Output Pin to GND  
(V = 0 V, V = V v 7 V)  
I
OUTR  
in  
out_forced  
out (nom)  
12.Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
13.Can be disabled per customer request.  
www.onsemi.com  
9
 
NCV8537  
2.52  
2.515  
2.51  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
V
I
= 2.9 V  
V
I
= 2.9 V  
IN  
IN  
= 0  
= 0  
OUT  
OUT  
2.505  
2.5  
V
OUT  
= 2.5 V  
2.495  
2.49  
V
= 1.8 V  
OUT  
1.79  
1.78  
1.77  
1.76  
1.75  
2.485  
2.48  
2.475  
2.47  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 5. Output Voltage vs. Temperature  
1.8 V Version  
Figure 6. Output Voltage vs. Temperature  
2.5 V Version  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
5.1  
5.05  
5
V
I
= 3.7 V  
V
I
= 5.4 V  
IN  
IN  
= 0  
= 0  
OUT  
OUT  
V
= 3.3 V  
V
OUT  
= 5.0 V  
OUT  
4.95  
4.9  
4.85  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 7. Output Voltage vs. Temperature 3.3 V  
Version  
Figure 8. Output Voltage vs. Temperature 5.0 V  
Version  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
500 mA  
300 mA  
500 mA  
300 mA  
50 mA  
50 mA  
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 9. Dropout Voltage vs. Temperature  
1.8 V Version  
Figure 10. Dropout Voltage vs. Temperature  
2.5 V Version  
www.onsemi.com  
10  
NCV8537  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
500 mA  
500 mA  
300 mA  
300 mA  
50 mA  
50 mA  
0
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 11. Dropout Voltage vs. Temperature  
3.3 V Version  
Figure 12. Dropout Voltage vs. Temperature  
5.0 V Version  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.97 V  
out  
I
sc  
I
pk  
V
= 2.9 V  
IN  
V
OUT  
= 1.8 V  
I
pk  
I
sc  
0
20  
40  
60  
80  
100  
120  
140  
I
(mA)  
out  
(For specific values of I and I , please refer to Figure 13)  
pk  
sc  
T , TEMPERATURE (°C)  
A
Figure 13. Peak and Short Current  
vs. Temperature  
Figure 14. Output Voltage vs. Output Current  
12  
10  
8
12  
V
= 2.9 V  
= 1.8 V  
IN  
V
= 2.9 V  
= 1.8 V  
IN  
V
OUT  
V
OUT  
10  
8
T = 25°C  
A
500 mA  
6
6
300 mA  
4
4
2
2
50 mA  
0
0
0
0
0.1  
0.2  
, OUTPUT CURRENT (A)  
OUT  
0.3  
0.4  
0.5  
20  
40  
60  
80  
100  
120  
140  
T , TEMPERATURE (°C)  
I
A
Figure 15. Ground Current vs. Temperature  
Figure 16. Ground Current vs. Output Current  
www.onsemi.com  
11  
 
NCV8537  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
25°C  
25°C  
0°C  
0°C  
−20°C  
−40°C  
−20°C  
−40°C  
V
= 2.9 V  
= 2.5 V  
IN  
V
= 2.9 V  
= 1.8 V  
IN  
V
OUT  
V
OUT  
3.6  
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 17. Output Current Capability for the  
1.8 V Version  
Figure 18. Output Current Capability for the  
2.5 V Version  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.4 V +0.5 V Modulation  
PP  
IN  
V
OUT  
= 2.5 V  
T = 25°C  
A
I
= 50 mA  
out  
I
= 50 mA  
out  
I
= 0.5 A  
out  
I
= 0.5 A  
out  
I
= 0.25 A  
out  
V
= 2.9 V +0.5 V Modulation  
PP  
I
= 0.25 A  
IN  
out  
V
OUT  
= 1.25 V  
T = 25°C  
A
100  
1k  
10k  
F, FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
F, FREQUENCY (Hz)  
100k  
1M  
Figure 20. PSRR vs. Frequency Adjustable  
Version  
Figure 21. PSRR vs. Frequency 2.5 V Version  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
C
= 0 nF  
C = 0 nF  
nr  
nr  
C
= 10 nF  
nr  
C
= 10 nF  
nr  
V
= 2.9 V  
= 1.25 V  
V
= 2.9 V  
= 2.5 V  
IN  
IN  
V
V
OUT  
OUT  
T = 25°C  
T = 25°C  
A
A
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
F, FREQUENCY (Hz)  
F, FREQUENCY (Hz)  
Figure 22. Output Noise Density Adjustable  
Version  
Figure 23. Output Noise Density 2.5 V Version  
www.onsemi.com  
12  
NCV8537  
Figure 24. Power Good Activation  
Figure 25. Power Good Inactivation  
300  
250  
200  
150  
15  
10  
V
in  
at Data Sheet Test Conditions,  
25°C, 1 mF Capacitance  
Unstable Area  
Stable Area  
1 oz CF  
2 oz CF  
5.0  
0
100  
50  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
600  
700  
2
OUTPUT CURRENT (mA)  
COPPER HEAT SPREADING AREA (mm )  
Figure 26. Stability with ESR vs. Output  
Current  
Figure 27. DFN10 Self−Heating Thermal  
Characterstics as a Function of Copper Area  
on the PCB  
NOTE: Typical characteristics were measured with the same conditions as electrical characteristics.  
www.onsemi.com  
13  
NCV8537  
APPLICATIONS INFORMATION  
Reverse Bias Protection  
temperature is exceeded. This feature provides protection  
from a catastrophic device failure due to accidental  
overheating. This protection feature is not intended to be used  
as a substitute to heat sinking. The maximum power that can  
be dissipated, can be calculated with the equation below:  
Reverse bias is a condition caused when the input voltage  
goes to zero, but the output voltage is kept high either by a  
large output capacitor or another source in the application  
which feeds the output pin.  
Normally in a bipolar LDO all the current will flow from  
the output pin to input pin through the PN junction with  
limited current capability and with the potential to destroy  
the IC.  
Due to an improved architecture, the NCV8537 can  
withstand up to 7.0 V on the output pin with virtually no  
current flowing from output pin to input pin, and only  
negligible amount of current (tens of mA) flowing from the  
output pin to ground for infinite duration.  
T
* T  
A
J(max)  
(eq. 1)  
P
+
D
R
qJA  
For improved thermal performance, contact the factory  
for the DFN package option. The DFN package includes an  
exposed metal pad that is specifically designed to reduce the  
junction to air thermal resistance, R  
.
qJA  
Adjustable Operation  
The output voltage can be set by using a resistor divider  
as shown in Figure 2 with a range of 1.25 to 10 V. The  
appropriate resistor divider can be found by solving the  
equation below. The recommended current through the  
resistor divider is from 10 mA to 100 mA. This can be  
accomplished by selecting resistors in the kW range. As  
Input Capacitor  
An input capacitor of at least 1.0 mF, any type, is  
recommended to improve the transient response of the  
regulator and/or if the regulator is located more than a few  
inches from the power source. It will also reduce the circuit’s  
sensitivity to the input line impedance at high frequencies.  
The capacitor should be mounted with the shortest possible  
track length directly across the regular’s input terminals.  
result, the I * R2 becomes negligible in the equation and  
adj  
can be ignored.  
V
out + 1.25 * (1 ) R3ńR2) ) Iadj * R2  
(eq. 2)  
Output Capacitor  
Power Good Operation  
The NCV8537 remains stable with any type of capacitor  
as long as it fulfills its 1.0 mF requirement. There are no  
constraints on the minimum ESR and it will remain stable up  
to an ESR of 5.0 W. Larger capacitor values will improve the  
noise rejection and load transient response.  
The Power Good pin on the NCV8537 will produce a  
logic Low when it drops below the nominal output voltage.  
Refer to the electrical characteristics for the threshold values  
at which point the Power Good goes Low. When the  
NCV8537 is above the nominal output voltage, the  
Power Good will remain at logic High.  
Noise Reduction Pin  
Output noise can be greatly reduced by connecting a 10 nF  
The external pullup resistor needs to be connected  
between V and the Power Good pin. A resistor of  
in  
capacitor (C ) between the noise reduction pin and ground  
nr  
approximately 100 kW is recommended to minimize the  
current consumption. No pullup resistor is required if the  
Power Good output is not being used. The Power Good does  
not function during thermal shutdown and when the part is  
disabled.  
(see Figure 1). In applications where very low noise is not  
required, the noise reduction pin can be left unconnected.  
Dropout Voltage  
The voltage dropout is measured at 97% of the nominal  
output voltage.  
Thermal Considerations  
Internal thermal limiting circuitry is provided to protect the  
integrated circuit in the event that the maximum junction  
www.onsemi.com  
14  
NCV8537  
ORDERING INFORMATION  
Device*  
Voltage Option  
Marking  
V8537 180  
V8537 250  
V8537 330  
V8537 500  
V8537 ADJ  
L8537 180  
L8537 250  
L8537 330  
L8537 500  
L8537 ADJ  
Package  
Package  
Shipping  
NCV8537MN180R2G  
NCV8537MN250R2G  
NCV8537MN330R2G  
NCV8537MN500R2G  
NCV8537MNADJR2G  
NCV8537ML180R2G**  
NCV8537ML250R2G**  
NCV8537ML330R2G**  
NCV8537ML500R2G**  
NCV8537MLADJR2G**  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
Adj  
DFN10  
(Pb−Free)  
Non−Wettable  
Flank  
3000 / Tape & Reel  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
Adj  
DFN10  
(Pb−Free)  
Wettable Flank  
SLP Process  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP  
Capable.  
**In Development.  
www.onsemi.com  
15  
NCV8537  
PACKAGE DIMENSIONS  
DFN10, 3x3, 0.5P  
CASE 485C  
ISSUE E  
D
A
B
NOTES:  
L
L
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS  
MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS  
THE TERMINALS.  
L1  
ALTERNATE A−1  
ALTERNATE A−2  
5. TERMINAL b MAY HAVE MOLD COMPOUND MATERIAL ALONG  
SIDE EDGE. MOLD FLASHING MAY NOT EXCEED 30 MICRONS  
ONTO BOTTOM SURFACE OF TERMINAL b.  
6. FOR DEVICE OPN CONTAINING W OPTION, DETAIL A AND B  
ALTERNATE CONSTRUCTION ARE NOT APPLICABLE. WET-  
TABLE FLANK CONSTRUCTION IS DETAIL B AS SHOWN ON  
SIDE VIEW OF PACKAGE.  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
PIN ONE  
REFERENCE  
2X  
0.15  
C
A3  
MILLIMETERS  
EXPOSED Cu  
MOLD CMPD  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
2X  
0.15  
C
TOP VIEW  
A
A3  
b
D
D2 2.40  
E
0.20 REF  
A1  
C
(A3)  
DETAIL B  
ALTERNATE B−1  
ALTERNATE B−2  
0.18  
0.30  
0.10  
0.08  
C
C
3.00 BSC  
DETAIL B  
2.60  
1.90  
A
ALTERNATE  
CONSTRUCTIONS  
3.00 BSC  
E2 1.70  
10X  
e
K
L
0.50 BSC  
0.19 TYP  
SEATING  
PLANE  
A1  
A3  
SIDE VIEW  
D2  
0.35  
0.45  
0.03  
L1 0.00  
DETAIL A  
10X  
L
A1  
1
5
SOLDERING FOOTPRINT*  
DETAIL B  
WETTABLE FLANK OPTION  
CONSTRUCTION  
10X  
0.55  
2.64  
PACKAGE  
OUTLINE  
E2  
K
10  
6
1.90  
3.30  
10X b  
e
0.10  
0.05  
C
C
A B  
NOTE 3  
BOTTOM VIEW  
10X  
0.30  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8537/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY