NCV8560MN150R2G [ONSEMI]

High Performance Low-Power, LDO Regulator with Enable; 高性能低功耗, LDO稳压器启用
NCV8560MN150R2G
型号: NCV8560MN150R2G
厂家: ONSEMI    ONSEMI
描述:

High Performance Low-Power, LDO Regulator with Enable
高性能低功耗, LDO稳压器启用

稳压器
文件: 总15页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8560  
High Performance  
Low-Power, LDO Regulator  
with Enable  
The NCV8560 provides 150 mA of output current at fixed voltage  
options, or an adjustable output voltage from 5.0 V down to 1.250 V. It  
is designed for portable battery powered applications and offers high  
performance features such as low power operation, fast enable  
response time, and low dropout.  
http://onsemi.com  
MARKING  
DIAGRAMS  
The device is designed to be used with low cost ceramic capacitors  
and is packaged in the DFN6, 3x3 and TSOP5 packages.  
DFN6, 3x3  
MN SUFFIX  
CASE 488AE  
V8560  
xxx  
ALYWG  
Features  
Output Voltage Options:  
1
Adjustable, 1.3 V, 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V, 3.5 V, 5.0 V  
UltraLow Dropout Voltage of 150 mV at 150 mA  
Adjustable Output by External Resistors from 5.0 V down to 1.250 V  
V8560 = Specific Device Code  
xxx  
= ADJ, 150, 180, 250, 280,  
300, 330, 350 or 500  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
Fast Enable Turnon Time of 15 ms  
Wide Supply Voltage Range Operating Range  
Excellent Line and Load Regulation  
A
L
Y
W
G
High Accuracy up to 1.5% Output Voltage Tolerance over All  
= PbFree Package  
Operating Conditions  
Typical Noise Voltage of 50 mV without a Bypass Capacitor  
rms  
NCV Prefix for Automotive and Other Applications Requiring Site  
5
TSOP5  
SN SUFFIX  
CASE 483  
and Control Changes  
xxxAYWG  
5
PbFree Package is Available  
Typical Applications  
G
1
1
SMPS PostRegulation  
xxx  
= Specific Device Code  
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
A
Y
W
G
Handheld Instrumentation  
Noise Sensitive Circuits – VCO, RF Stages, etc.  
Camcorders and Cameras  
(Note: Microdot may be in either location)  
V
OUT  
V
IN  
ORDERING INFORMATION  
Fixed Voltage Only  
See detailed ordering and shipping information in the  
package dimensions section on page 13 of this data sheet.  
Driver w/  
+
Current Limit  
-
+
1.25 V  
GND  
Thermal  
Shutdown  
ADJ  
Adjustable Version Only  
ENABLE  
Figure 1. Simplified Block Diagram  
© Semiconductor Components Industries, LLC, 2008  
1
Publication Order Number:  
May, 2008 Rev. 1  
NCV8560/D  
NCV8560  
PIN CONNECTIONS  
ADJ/NC* 1  
GND 2  
6
5
4
V
out  
V
V
1
2
5
4
out  
in  
GND  
GND  
GND  
ENABLE  
ENABLE  
3
3
ADJ/NC*  
V
in  
(Top View)  
(Top View)  
* ADJ Adjustable Version  
* NC Fixed Voltage Version  
* ADJ Adjustable Version  
* NC Fixed Voltage Version  
Figure 2. Pin Connections TSOP5  
Figure 3. Pin Connections DFN6  
PIN FUNCTION DESCRIPTION  
Pin No.  
TSOP5  
DFN6  
Pin Name  
Description  
1
4
ADJ/NC  
Output Voltage Adjust Input (Adjustable Version), No Connection (Fixed Voltage Versions)  
(Note 1)  
2, 5, EPAD  
3
2
3
GND  
Power Supply Ground; Device Substrate  
ENABLE  
The Enable Input places the device into lowpower standby when pulled to logic low  
(< 0.4 V). Connect to V if the function is not used.  
in  
4
6
1
5
V
Positive Power Supply Input  
Regulated Output Voltage  
in  
V
out  
1. True no connect. Printed circuit board traces are allowable.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Input Voltage (Note 2)  
Symbol  
Min  
0.3  
0.3  
Max  
6
Unit  
V
V
in  
Output, Enable, Adjustable Voltage  
Maximum Junction Temperature  
Storage Temperature  
V
out  
, ENABLE, ADJ  
V
+ 0.3 V  
150  
150  
V
in  
T
°C  
°C  
V
J(max)  
T
STG  
65  
3500  
400  
ESD Capability, Human Body Model (Note 3)  
ESD Capability, Machine Model (Note 3)  
Moisture Sensitivity Level  
ESD  
HBM  
ESD  
V
MM  
MSL  
MSL1/260  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
2. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating: v150 mA per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
107  
Unit  
Thermal Characteristics, DFN6, 3x3.3 mm (Note 4)  
R
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir (Note 5)  
Thermal Characteristics, TSOP5 (Note 4)  
Thermal Resistance, JunctiontoAir (Note 5)  
R
°C/W  
q
JA  
205  
4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
5. As measured using a copper heat spreading area of 650 mm2, 1 oz copper thickness.  
OPERATING RANGES  
Rating  
Symbol  
Min  
Max  
Unit  
Operating Input Voltage (Note 6)  
V
in  
Vout + VDO  
,
6
V
1.75 V (Note 7)  
Adjustable Output Voltage Range (Adjustable Version Only)  
Operating Ambient Temperature Range  
V
1.25  
5.0  
V
out  
T
40  
125  
°C  
A
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
7. Minimum Vin = 1.75 V or (V + VDO), whichever is higher.  
out  
http://onsemi.com  
2
 
NCV8560  
ELECTRICAL CHARACTERISTICS  
(V = 1.750 V, V = 1.250 V, C = C =1.0 mF, 40°C T 125°C, Figure 4, unless otherwise specified.) (Note 8)  
in  
out  
in  
out  
A
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Regulator Output (Adjustable Voltage Version)  
Output Voltage  
V
out  
1.231  
(1.5%)  
1.250  
1.269  
(+1.5%)  
V
I
V
V
= 1.0 mA to 150 mA  
= 1.75 V to 6.0 V,  
= ADJ  
out  
in  
out  
Ripple Rejection  
RR  
dB  
I
= 1.0 mA to 150 mA  
out  
62  
55  
38  
(V = V  
in out  
+ 1.0 V + 0.5 V  
)
f = 120 Hz  
f = 1.0 kHz  
f = 10 kHz  
pp  
Line Regulation  
Load Regulation  
1.0  
10  
mV  
mV  
Reg  
V
= 1.750 V to 6.0 V,  
= 1.0 mA  
line  
in  
I
out  
2.0  
50  
15  
Reg  
V
I
= 1.0 mA to 150 mA  
load  
out  
Output Noise Voltage (Note 9)  
Output Short Circuit Current  
Dropout Voltage  
f = 10 Hz to 100 kHz  
mV  
rms  
n
300  
550  
800  
mA  
mV  
I
sc  
V
DO  
Measured at: V  
– 2.0%,  
= 150 mA, Figure 5  
out  
V
out  
= 1.25 V  
= 1.3 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
2.8 V  
175  
175  
150  
125  
100  
75  
250  
250  
225  
175  
150  
125  
out  
I
out  
V
V
out  
out  
V
V
out  
out  
V
Regulator Output (Fixed Voltage Version)  
(V = V + 0.5 V, C = C =1.0 mF, 40°C T 125°C, Figure 6, unless otherwise specified.) (Note 8)  
in  
out  
in  
out  
A
Output Voltage  
V
V
I
V
= 1.0 mA to 150 mA  
= (V + 0.5 V) to 6.0 V  
out  
out  
in  
out  
1.3 V Option  
1.5 V Option  
1.8 V Option  
2.5 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
3.5 V Option  
5.0 V Option  
1.274  
1.470  
1.764  
2.450  
2.744  
2.940  
3.234  
3.430  
4.900  
(2%)  
1.326  
1.530  
1.836  
2.550  
2.856  
3.060  
3.366  
3.570  
5.100  
(+2%)  
Power Supply Ripple Rejection (Note 9)  
(V = V + 1.0 V + 0.5 V  
PSRR  
dB  
I
= 1.0 mA to 150 mA  
out  
62  
55  
38  
)
f = 120 Hz  
f = 1.0 kHz  
f = 10 kHz  
pp  
in out  
Line Regulation  
Load Regulation  
Reg  
1.0  
10  
mV  
mV  
V
= 1.750 V to 6.0 V,  
= 1.0 mA  
line  
in  
I
out  
Reg  
I
= 1.0 mA to 150 mA  
load  
out  
1.3 V to 1.5 V Option  
1.8 V Option  
2.5 V to 5.0 V Option  
2.0  
2.0  
2.0  
20  
25  
30  
Output Noise Voltage (Note 9)  
Output Short Circuit Current  
V
f = 10 Hz to 100 kHz  
50  
mV  
rms  
n
300  
550  
800  
mA  
mV  
I
sc  
Dropout Voltage  
1.3 V Option  
V
DO  
Measured at: V – 2.0%  
out  
175  
150  
125  
100  
75  
250  
225  
175  
150  
125  
1.5 V Option  
1.8 V Option  
2.5 V Option  
2.8 V to 5.0 V Option  
8. Performance guaranteed over the indicated operating temperature range by design and/or characterization, production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
9. Values based on design and/or characterization.  
http://onsemi.com  
3
 
NCV8560  
ELECTRICAL CHARACTERISTICS (V = 1.750 V, V = 1.250 V (adjustable version)), (V = V + 0.5 V (fixed version)),  
in  
out  
in  
out  
C
= C =1.0 mF, 40°C T 125°C, Figure 4, unless otherwise specified.) (Note 10)  
in  
out  
A
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
General  
Disable Current  
I
ENABLE = 0 V, Vin = 6 V  
0.01  
1.0  
mA  
mA  
DIS  
40°C T 85°C  
A
Ground Current  
I
ENABLE = 0.9 V,  
GND  
Adjustable Option  
100  
135  
135  
140  
145  
135  
150  
170  
175  
180  
I
= 1.0 mA to 150 mA  
out  
1.3 V Option  
1.5 V Option  
1.8 V to 3.0 V Option  
3.3 V to 5.0 V Option  
Thermal Shutdown Temperature (Note 11)  
Thermal Shutdown Hysteresis  
ADJ Input Bias Current  
T
T
150  
175  
10  
200  
°C  
°C  
mA  
SD  
SH  
I
0.75  
0.75  
ADJ  
Chip Enable  
ENABLE Input Threshold Voltage  
Voltage Increasing, Logic High  
Voltage Decreasing, Logic Low  
Enable Input Bias Current (Note 11)  
Timing  
V
V
th(EN)  
0.9  
0.4  
100  
I
t
3.0  
nA  
EN  
Output Turn On Time  
Adjustable Option  
1.3 V to 3.5 V Option  
5.0 V Option  
ms  
ENABLE = 0 V to V  
in  
EN  
15  
15  
30  
25  
25  
50  
10.Performance guaranteed over the indicated operating temperature range by design and/or characterization, production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
11. Values based on design and/or characterization.  
http://onsemi.com  
4
 
NCV8560  
V
IN  
V
OUT  
V
IN  
V
OUT  
NCV8560  
(adjustable)  
C
C
IN  
OUT  
EN  
ADJ  
GND  
Figure 4. Typical Application Circuit for Vout = 1.25 V  
(Adjustable Version)  
V
IN  
V
OUT  
V
IN  
V
OUT  
NCV8560  
(adjustable)  
C
C
IN  
OUT  
EN  
ADJ  
GND  
Figure 5. Typical Application Circuit for Adjustable Vout  
V
IN  
V
OUT  
V
IN  
V
OUT  
NCV8560  
(fixed)  
C
C
IN  
OUT  
EN  
GND  
Figure 6. Typical Application Circuit  
(Fixed Voltage Version)  
http://onsemi.com  
5
 
NCV8560  
TYPICAL CHARACTERISTICS  
1.260  
1.256  
1.252  
1.248  
1.260  
1.256  
I
= 1.0 mA  
I
= 1.0 mA  
out  
out  
1.252  
1.248  
I
= 150 mA  
out  
I
= 150 mA  
out  
V
= V + 0.5 V  
out  
= ADJ  
in  
V
= 6.0 V  
= ADJ  
1.244  
1.240  
1.244  
1.240  
in  
V
out  
V
out  
40 20  
0
20  
40  
60  
80  
100 120  
40  
15  
10  
35  
60  
85  
110 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Output Voltage vs. Temperature  
(Vin = Vout + 0.5 V)  
Figure 8. Output Voltage vs. Temperature  
(Vin = 6.0 V)  
1.500  
1.495  
1.490  
1.485  
1.500  
1.495  
1.490  
1.485  
I
= 1.0 mA  
out  
I
= 1.0 mA  
out  
I
= 150 mA  
out  
I
= 150 mA  
out  
1.480  
1.475  
1.480  
1.475  
40  
15  
10  
35  
60  
85  
110 125  
40  
15  
10  
35  
60  
85  
110 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 9. Output Voltage vs. Temperature  
(1.5 V Fixed Output, Vin = 2 V)  
Figure 10. Output Voltage vs. Temperature  
(1.5 V Fixed Output, Vin = 6 V)  
3.005  
3.000  
2.995  
2.990  
3.005  
3.000  
I
= 1.0 mA  
out  
I
= 1.0 mA  
= 150 mA  
out  
2.995  
2.990  
2.985  
2.980  
I
out  
I
= 150 mA  
out  
2.985  
2.980  
2.975  
2.975  
2.970  
40  
15  
10  
35  
60  
85  
110 125  
40  
15  
10  
35  
60  
85  
110 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 11. Output Voltage vs. Temperature  
(3.0 V Fixed Output, Vin = 3.5 V)  
Figure 12. Output Voltage vs. Temperature  
(3.0 V Fixed Output, Vin = 6 V)  
http://onsemi.com  
6
NCV8560  
TYPICAL CHARACTERISTICS  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
5.000  
I
= 1.0 mA  
out  
I
= 1.0 mA  
out  
4.995  
4.990  
4.985  
4.980  
4.975  
I
= 150 mA  
out  
I
= 150 mA  
out  
4.970  
4.965  
4.970  
4.965  
40  
15  
10  
35  
60  
85  
110 125  
40  
15  
10  
35  
60  
85  
110 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Output Voltage vs. Temperature  
(5.0 V Fixed Output, Vin = 5.5 V)  
Figure 14. Output Voltage vs. Temperature  
(5.0 V Fixed Output, Vin = 6 V)  
250  
200  
150  
100  
250  
200  
150  
100  
V
out  
= ADJ  
I
= 150 mA  
out  
I
= 150 mA  
out  
V
out  
= 1.25 V  
1.50 V  
1.80 V  
2.80 V  
I
= 50 mA  
= 1.0 mA  
out  
3.00 V  
5.00 V  
50  
0
50  
0
I
out  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 15. Dropout Voltage vs. Temperature  
(Over Current Range)  
Figure 16. Dropout Voltage vs. Temperature  
(Over Output Voltage)  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
800  
750  
700  
I
C
T
= 0 mA  
out  
5.0 V  
= 1.0 mF  
out  
= 25°C  
A
ENABLE = V  
in  
Enable Increasing  
Enable Decreasing  
3.3 V  
3.0 V  
2.80 V  
1.80 V  
1.5 V  
650  
600  
1.25 V  
V
in  
= 5.5 V  
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
40  
15  
10  
35  
60  
85  
110 125  
V , INPUT VOLTAGE (V)  
in  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 17. Output Voltage vs. Input Voltage  
Figure 18. Enable Threshold vs. Temperature  
http://onsemi.com  
7
NCV8560  
TYPICAL CHARACTERISTICS  
6.0  
5.0  
4.0  
3.0  
2.0  
154  
146  
I
= 1.0 mA  
= 150 mA  
out  
I
out  
V
= 5.0 V  
out  
138  
130  
122  
114  
106  
V
out  
= 1.25 V  
I
= 1.0 mA  
= 150 mA  
out  
ENABLE = 0 V  
I
out  
1.0  
0
98  
90  
40 20  
ENABLE = 0.9 V  
40  
15  
10  
35  
60  
85  
110 125  
0
20  
40  
60  
80  
100 120  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 19. Ground Current (Sleep Mode) vs.  
Temperature  
Figure 20. Ground Current (Run Mode) vs.  
Temperature  
160  
140  
120  
100  
80  
106  
105  
104  
103  
102  
101  
100  
3.0 V  
2.8 V  
1.5 V  
5.0 V  
3.3 V  
1.8 V  
1.25 V  
60  
40  
V
= ADJ  
= 1.75 V  
out  
20  
0
99  
98  
V
in  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0
25  
50  
, OUTPUT CURRENT (mA)  
out  
75  
100  
125  
150  
V , INPUT VOLTAGE (V)  
in  
I
Figure 21. Ground Current vs. Input Voltage  
Figure 22. Ground Current vs. Output Current  
400  
300  
200  
100  
0
40 20  
0
20  
40  
60  
80  
100 120  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 23. ADJ Input Bias Current vs. Temperature  
http://onsemi.com  
8
 
NCV8560  
TYPICAL CHARACTERISTICS  
650  
600  
700  
600  
500  
400  
300  
200  
550  
500  
450  
100  
0
40 20  
0
20  
40  
60  
80  
100 120  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
T , AMBIENT TEMPERATURE (°C)  
A
V , INPUT VOLTAGE (V)  
in  
Figure 24. Output Short Circuit Current vs.  
Temperature  
Figure 25. Current Limit vs. Input Voltage  
4.0  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
1.0  
0
V
I
= (V + 0.5 V) to 6.0 V  
= 1.0 mA  
in  
out  
I
= 1.0 mA to 150 mA  
out  
out  
40 20  
0
20  
40  
60  
80  
100 120  
40  
15  
10  
35  
60  
85  
110 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 26. Line Regulation vs. Temperature  
Figure 27. Load Regulation vs. Temperature  
45  
40  
35  
30  
25  
20  
80  
70  
60  
50  
40  
30  
20  
1.25 V  
3.3 V  
5.0 V  
5.0 V  
3.0 V  
1.5 V  
V
V
= V + 1.0 V  
out  
in  
= 0.5 V  
ripple  
pp  
1.25 V (ADJ)  
15  
10  
C
= 1.0 mF  
out  
10  
0
I
= 1.0 mA to 150 mA  
out  
40 20  
0
20  
40  
60  
80  
100  
120  
0.1  
1.0  
10  
100  
T , AMBIENT TEMPERATURE (°C)  
A
f, FREQUENCY (kHz)  
Figure 28. Output Turn On Time vs.  
Temperature  
Figure 29. Power Supply Ripple Rejection vs.  
Frequency  
http://onsemi.com  
9
NCV8560  
TYPICAL CHARACTERISTICS  
10  
V
out  
= 5.0 V  
Unstable Region  
V
out  
= 1.25 V  
1.0  
Stable Region  
0.1  
C
= 1.0 mF to 10 mF  
out  
T
V
= 40°C to 125°C  
= up to 6.0 V  
A
in  
0.01  
0
25  
50  
75  
100  
125  
150  
I
, OUTPUT CURRENT (mA)  
out  
Figure 30. Output Stability with Output  
Capacitor ESR over Output Current  
V
out  
= 1.25 V  
Figure 31. Load Transient Response (1.0 mF)  
V
out  
= 1.25 V  
Figure 32. Load Transient Response (10 mF)  
http://onsemi.com  
10  
 
NCV8560  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output load  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse techniques such that the  
average junction temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 2% below its  
nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical output voltage overshoot and undershoot  
response when the input voltage is excited with a given  
slope.  
Output Noise Voltage  
Load Transient Response  
This is the integrated value of the output noise over a  
specified frequency range. Input voltage and output load  
current are kept constant during the measurement. Results  
Typical output voltage overshoot and undershoot  
response when the output current is excited with a given  
slope between noload and fullload conditions.  
are expressed in mV or nV/Hz.  
rms  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 175°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Ground Current  
Ground Current (I  
) is the current that flows through  
GND  
the ground pin when the regulator operates with a load on its  
output. This consists of internal IC operation, bias, etc. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output load current. If  
the regulator has an input pin that reduces its internal bias  
and shuts off the output (enable/disable function), this term  
Maximum Package Power Dissipation  
The power dissipation level at which the junction  
temperature reaches its maximum operating value.  
is called the disable current (I ).  
DIS  
APPLICATIONS INFORMATION  
The NCV8560 series regulator is selfprotected with  
internal thermal shutdown and internal current limit. Typical  
application circuits are shown in Figures 4 and 5.  
V output, there is no resistor divider. If the part is enabled  
under noload conditions, leakage current through the pass  
transistor at junction temperatures above 85°C can approach  
several microamps, especially as junction temperature  
approaches 150°C. If this leakage current is not directed into  
a load, the output voltage will rise up to a level  
approximately 20 mV above nominal.  
The NCV8560 contains an overshoot clamp circuit to  
improve transient response during a load current step  
release. When output voltage exceeds the nominal by  
approximately 20 mV, this circuit becomes active and  
clamps the output from further voltage increase. Tying the  
Input Decoupling (Cin)  
A ceramic or tantalum 1.0 mF capacitor is recommended  
and should be connected close to the NCV8560 package.  
Higher capacitance and lower ESR will improve the overall  
line transient response.  
Output Decoupling (Cout  
)
The NCV8560 is a stable component and does not require  
a minimum Equivalent Series Resistance (ESR) for the  
output capacitor. The minimum output decoupling value is  
1.0 mF and can be augmented to fulfill stringent load  
transient requirements. The regulator works with ceramic  
chip capacitors as well as tantalum devices. Larger values  
improve noise rejection and load regulation transient  
response. Figure 30 shows the stability region for a range of  
operating conditions and ESR values.  
ENABLE pin to V will ensure that the part is active  
in  
whenever the supply voltage is present, thus guaranteeing  
that the clamp circuit is active whenever leakage current is  
present.  
When the NCV8560 adjustable regulator is disabled, the  
overshoot clamp circuit becomes inactive and the pass  
transistor leakage will charge any capacitance on V . If no  
out  
load is present, the output can charge up to within a few  
millivolts of V . In most applications, the load will present  
NoLoad Regulation Considerations  
in  
some impedance to V such that the output voltage will be  
inherently clamped at a safe level. A minimum load of  
10 mA is recommended.  
The NCV8560 adjustable regulator will operate properly  
under conditions where the only load current is through the  
resistor divider that sets the output voltage. However, in the  
case where the NCV8560 is configured to provide a 1.250  
out  
http://onsemi.com  
11  
NCV8560  
Noise Decoupling  
600 mW when the ambient temperature (T ) is 25°C, and  
A
2
The NCV8560 is a low noise regulator and needs no  
external noise reduction capacitor. Unlike other low noise  
regulators which require an external capacitor and have slow  
startup times, the NCV8560 operates without a noise  
reduction capacitor, has a typical 15 ms start up delay and  
PCB area is 150mm and larger, see Figure 33.  
The power dissipated by the NCV8560 can be calculated  
from the following equations:  
inǒIGND outǓ) I ǒV  
outǓ  
(eq. 4)  
P
[ V  
@ I  
* V  
out  
D
in  
or  
achieves a 50 mV overall noise level between 10 Hz and  
rms  
100 kHz.  
) ǒV  
outǓ  
  I  
P
out  
D(MAX)  
I
(eq. 5)  
V
[
in(MAX)  
Enable Operation  
) I  
out  
GND  
The enable pin will turn the regulator on or off. The  
threshold limits are covered in the electrical characteristics  
table in this data sheet. The turnon/turnoff transient  
voltage being supplied to the enable pin should exceed a  
slew rate of 10 mV/ms to ensure correct operation. If the  
enable function is not to be used then the pin should be  
If a 150 mA output current is needed, the quiescent current  
is taken from the data sheet electrical characteristics  
I
GND  
table or extracted from Figure 20 and Figure 22. I  
is  
GND  
approximately 108 mA when I = 150 mA. For an output  
out  
voltage of 1.250 V, the maximum input voltage will then be  
3.9 V, good for a 1 Cell Liion battery.  
connected to V .  
in  
Output Voltage Adjust  
The output voltage can be adjusted from 1 times  
(Figure 4) to 4 times (Figure 5) the typical 1.250 V  
regulation voltage via the use of resistors between the output  
and the ADJ input. The output voltage and resistors are  
chosen using Equation 1 and Equation 2.  
350  
300  
TSOP5 (1 oz)  
250  
200  
150  
100  
50  
R
1
) ǒI  
1Ǔ  
  R  
(eq. 1)  
+ 1.250 ǒ1 ) Ǔ  
V
out  
ADJ  
R
2
DFN6 3x3.3 (1 oz)  
R
1
R
^
2
V
(eq. 2)  
out  
* 1  
1.25  
Input bias current I  
is typically less than 150 nA.  
ADJ  
Choose R2 arbitrarily to minimize errors due to the bias  
current and to minimize noise contribution to the output  
voltage. Use Equation 2 to find the required value for R1.  
0
0
100  
200  
300  
400  
500  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 33. RthJA vs. PCB Copper Area  
Thermal  
As power in the NCV8560 increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
affect the rate of junction temperature rise for the part. When  
the NCV8560 has good thermal conductivity through the  
PCB, the junction temperature will be relatively low with  
high power applications. The maximum dissipation the  
NCV8560 can handle is given by:  
Hints  
V and GND printed circuit board traces should be as  
in  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external components, especially the  
output capacitor, as close as possible to the NCV8560, and  
make traces as short as possible.  
T
* T  
A
J(MAX)  
P
+
D(MAX)  
(eq. 3)  
R
qJA  
Since T is not recommended to exceed 125°C (T  
),  
J
J(MAX)  
then the NCV8560 in a DFN6 package can dissipate up to  
http://onsemi.com  
12  
 
NCV8560  
DEVICE ORDERING INFORMATION  
Device  
Marking Code  
Version  
Package  
Shipping*  
NCV8560MNADJR2G  
1st Line: V8560  
2nd Line: ADJ  
ADJ  
1.5 V  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
3.5 V  
5.0 V  
NCV8560MN150R2G  
NCV8560MN180R2G  
NCV8560MN250R2G  
NCV8560MN280R2G  
NCV8560MN300R2G  
NCV8560MN330R2G  
NCV8560MN350R2G  
NCV8560MN500R2G  
1st Line: V8560  
2nd Line: 150  
1st Line: V8560  
2nd Line: 180  
1st Line: V8560  
2nd Line: 250  
1st Line: V8560  
2nd Line: 280  
DFN6  
(PbFree)  
3000/Tape & Reel  
1st Line: V8560  
2nd Line: 300  
1st Line: V8560  
2nd Line: 330  
1st Line: V8560  
2nd Line: 350  
1st Line: V8560  
2nd Line: 500  
NCV8560SNADJT1G  
NCV8560SN130T1G  
NCV8560SN150T1G  
NCV8560SN180T1G  
NCV8560SN250T1G  
NCV8560SN280T1G  
NCV8560SN300T1G  
NCV8560SN330T1G  
NCV8560SN350T1G  
NCV8560SN500T1G  
LJ9  
LJ2  
AAJ  
LJ3  
AAQ  
AAR  
LJ4  
LJ5  
LJ7  
LJ8  
ADJ  
1.3 V  
1.5 V  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
3.5 V  
5.0 V  
TSOP­5  
(Pb−Free)  
3000/Tape & Reel  
*For additional information on our PbFree strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
NCV8560  
PACKAGE DIMENSIONS  
DFN6 3x3  
CASE 488AE01  
ISSUE B  
EDGE OF PACKAGE  
NOTES:  
A
B
D
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. TERMINAL b MAY HAVE MOLD COMPOUND  
MATERIAL ALONG SIDE EDGE. MOLD  
FLASHING MAY NOT EXCEED 30 MICRONS  
ONTO BOTTOM SURFACE OF TERMINAL b.  
L1  
E
DETAIL A  
PIN ONE  
REFERENCE  
BOTTOM VIEW  
2X  
0.15  
C
MILLIMETERS  
EXPOSED Cu  
DIM MIN  
0.80  
MAX  
1.00  
0.05  
0.25  
0.30  
A
MOLD COMPOUND  
A1 0.00  
A3 0.20  
TOP VIEW  
2X  
0.15  
C
b
0.18  
D
3.00 BSC  
D2 2.25  
2.55  
DETAIL B  
E
3.00 BSC  
(A3)  
E2 1.55  
1.85  
0.10  
0.08  
C
C
e
K
L
0.65 BSC  
0.20  
0.30  
−−−  
0.50  
A
A1  
L1 0.00 0.021  
DETAIL B  
SIDE VIEW  
6X  
(A3)  
e
A1  
SEATING  
PLANE  
C
SIDE VIEW  
D2  
1
3
DETAIL A  
6X L  
E2  
6
4
6X K  
6X b  
NOTE 3  
0.10  
0.05  
C
C
A B  
BOTTOM VIEW  
http://onsemi.com  
14  
NCV8560  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
C
D
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
0.90  
1.10  
0.50  
C
0.25  
SEATING  
PLANE  
0.05  
G
H
J
K
L
M
S
0.95 BSC  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
10  
3.00  
T
SOLDERING FOOTPRINT*  
_
_
2.50  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8560/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY