NCV86602D50R2G [ONSEMI]

Very Low Iq LD0 150 mA Regulator with RESET and Delay Time Select; 非常低Iq LD0 150毫安稳压器,带有复位和延迟时间选择
NCV86602D50R2G
型号: NCV86602D50R2G
厂家: ONSEMI    ONSEMI
描述:

Very Low Iq LD0 150 mA Regulator with RESET and Delay Time Select
非常低Iq LD0 150毫安稳压器,带有复位和延迟时间选择

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总14页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8660  
Very Low Iq LD0 150 mA  
Regulator with RESET and  
Delay Time Select  
The NCV8660 is a precision very low Iq low dropout voltage  
regulator. Quiescent currents as low as 28 mA typical make it ideal for  
automotive applications requiring low quiescent current with or  
without a load. Integrated control features such as Reset and Delay  
Time Select make it ideal for powering microprocessors.  
It is available with a fixed output voltage of 5.0 V and 3.3 V and  
regulates within 2.0%.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8660yxG  
ALYWW  
DPAK 5PIN  
DT SUFFIX  
Features  
CASE 175AA  
Fixed Output Voltage of 5 V and 3.3 V  
1
5
2.0% Output Voltage up to V  
= 40 V  
BAT  
Output Current up to 150 mA  
1
Microprocessor Compatible Control Functions:  
8
Delay Time Select  
660yx  
ALYWW  
G
RESET Output  
SOIC8 FUSED  
8
CASE 751  
NCV Prefix for Automotive  
Site and Change Control  
AECQ100 Qualified  
1
1
Low Dropout Voltage  
x
y
= 5 for 5 V Output, 3 for 3.3 V Output  
= 1 for 8 ms, 128 ms Reset Delay,  
= 3 for 16 ms, 64 ms Reset Delay  
= Assembly Location  
= Wafer Lot  
Low Quiescent Current of 28 mA Typical  
Stable Under No Load Conditions  
A
L
Y
Protection Features:  
Thermal Shutdown  
Short Circuit  
These are PbFree Devices  
Applications  
= Year  
= Work Week  
WW  
G or G = PbFree Package  
Automotive:  
Body Control Module  
Instrument and Clusters  
Occupant Protection and Comfort  
Powertrain  
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
dimensions section on page 12 of this data sheet.  
Battery Powered Consumer Electronics  
OUT  
NCV8660  
IN  
OUT  
V
BAT  
C
C
OUT  
IN  
13.2 V  
0.1 mF  
2.2 mF  
RO  
DT  
RO  
DT  
GND  
Figure 1. Application Diagram  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
January, 2009 Rev. 9  
NCV8660/D  
NCV8660  
PIN DESCRIPTIONS  
Pin  
SOIC8  
FUSED  
DPAK  
Symbol  
Function  
Input Supply Voltage. 0.1 mF bypass capacitor to GND at the IC.  
1
2
1
2
IN  
R
Reset Output. CMOS compatible output. Goes low when V drops by more than 7%  
OUT  
O
from nominal.  
3, Tab  
58  
3
GND  
DT  
Ground  
4
5
Reset Delay Time Select. Short to GND or connect to OUT to select time.  
4
OUT  
Regulated Voltage Output. 2.2 mF to ground for typical applications.  
IN  
OUT  
Current Limit  
and Thermal  
Shutdown  
+
Vref1  
GND  
DT  
Timing  
Circuit  
+
RO  
Vref2  
Figure 2. Block Diagram  
http://onsemi.com  
2
NCV8660  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Min  
0.3  
1.0  
Max  
40  
Unit  
V
Input Voltage (IN)  
Input Current  
V
IN  
IN  
I
mA  
V
Output Voltage (OUT)  
DC  
Transient, t < 10 s (Note 1)  
V
OUT  
0.3  
0.3  
5.5  
16  
Output Current (OUT)  
I
1.0  
Current  
Limited  
mA  
OUT  
Storage Temperature Range  
T
55  
0.3  
1.0  
150  
16  
°C  
V
STG  
DT (Reset Delay Time Select) Voltage (Note 2)  
DT (Reset Delay Time Select) Current (Note 2)  
V
DT  
DT  
I
1.0  
mA  
V
RO (Reset Output) Voltage  
DC  
Transient, t < 10 s  
V
RO  
0.3  
0.3  
5.5  
16  
RO (Reset Output) Current  
I
1.0  
1.0  
mA  
RO  
ESD CAPABILITY  
ESD Capability, Human Body Model (Note 3)  
ESD Capability, Machine Model (Note 3)  
ESD Capability, Charged Device Model (Note 3)  
THERMAL RESISTANCE  
ESD  
2.0  
200  
1.0  
2.0  
200  
1.0  
kV  
V
HB  
ESD  
MM  
ESD  
kV  
CDM  
JunctiontoCase (Note 4)  
DPAK 5  
DPAK 5  
DPAK 5  
15  
66  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
R
q
JC  
JA  
JT  
JA  
JT  
JunctiontoAmbient (Note 4)  
JunctiontoTab (Note 4)  
R
q
R
4.0  
104  
33  
q
JunctiontoAmbient (Note 4)  
JunctiontoLead (pin 6) (Note 4)  
LEAD SOLDERING TEMPERATURE AND MSL  
Moisture Sensitivity Level  
SOIC8 FUSED  
R
q
SOIC8 FUSED  
R
q
DPAK 5  
SOIC8 FUSED  
MSL  
SLD  
1
3
Lead Temperature Soldering: SMD style only, Reflow (Note 5)  
PbFree Part 60 150 sec above 217°C, 40 sec max at peak  
265 peak  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. The output voltage must not exceed the input voltage.  
2. External resistor required to minimize current to less than 1 mA when the control voltage is above 16 V.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD HBM tested per AECQ100002 (EIA/JESD22A114)  
ESD MM tested per AECQ100003 (EIA/JESD22A115)  
ESD CDM tested per EIA/JESD22/C101, Field Induced Charge Model  
2
4. Values represented typical steadystate thermal performance on 1 oz. copper FR4 PCB with 1 in copper area.  
5. Per IPC / JEDEC JSTD020C.  
OPERATING RANGE  
Pin Symbol, Parameter  
, Input Voltage Operating Range  
Symbol  
Min  
4.5  
Max  
40  
Unit  
V
V
IN  
V
IN  
Junction Temperature Range  
T
J
40  
150  
°C  
http://onsemi.com  
3
 
NCV8660  
ELECTRICAL CHARACTERISTICS 5.5 V < V < 40 V, 40°C T +150°C, unless otherwise specified  
IN  
J
Characteristic  
GENERAL  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Quiescent Current  
I
mA  
100mA < I  
100mA < I  
< 150mA, V = 13.2V, T = 25°C  
25  
30  
40  
195  
q
OUT  
IN  
J
< 150mA, V = 13.2V, T 85°C  
OUT  
IN  
J
Thermal Shutdown (Note 6)  
Thermal Hysteresis (Note 6)  
T
SD  
150  
175  
25  
°C  
°C  
T
HYS  
OUT  
Output Voltage  
V
OUT  
V
4.9  
4.9  
4.9  
5.0  
5.0  
5.0  
5.1  
5.1  
5.1  
6 V V 16 V, 0.1 mA I  
150 mA  
100 mA  
150 mA,  
IN  
OUT  
OUT  
OUT  
6 V V 40 V, 0.1 mA I  
IN  
5.6 V V 16 V, 0 mA I  
IN  
40°C T +125°C  
J
Output Voltage  
V
OUT  
V
3.234  
3.234  
3.3  
3.3  
3.366  
3.366  
5.5 V V 16 V, 0.1 mA I  
150 mA  
100 mA  
IN  
OUT  
5.5 V V 40 V, 0.1 mA I  
IN  
OUT  
Output Current Limit  
I
OUT = 96% x V  
nominal  
OUT  
205  
205  
525  
525  
mA  
mA  
CL  
Output Current Limit,  
Short Circuit  
I
SCKT  
OUT = 0 V  
Load Regulation  
DV  
DV  
V
V
= 13.2 V, I = 0.1 mA to 150 mA  
OUT  
40  
20  
10  
0
40  
20  
mV  
mV  
V
OUT  
IN  
Line Regulation  
I
= 5 mA, V = 6 V to 28 V  
OUT  
OUT  
IN  
Dropout Voltage 5.0 V Only  
I
= 100 mA, (Note 7)  
0.225  
0.45  
DR  
OUT  
DR  
V
= V – V  
, (DV  
= 100 mV)  
IN  
OUT  
OUT  
I
= 150 mA, (Note 7)  
0.30  
0.60  
OUT  
DR  
V
= V – V  
, (DV  
= 100 mV)  
IN  
OUT OUT  
Output Load Capacitance  
Output capacitance for stability  
= 13.2 V, 0.5 V , 100 Hz  
2.2  
mF  
C
O
Power Supply Ripple Rejection  
PSRR  
V
IN  
60  
dB  
PP  
DT (Reset Delay Time Select)  
Threshold Voltage  
High  
Low  
2
0.8  
V
V
Input Current  
DT = 5 V  
1.0  
mA  
RO, Reset Output  
RESET Threshold  
V
V
decreasing  
90  
93  
2.0  
0.2  
96  
%V  
Rf  
OUT  
OUT  
RESET Threshold Hysteresis  
RO Output Low  
V
Rhys  
%V  
OUT  
V
RL  
10 kW RESET to OUT, V  
= 4.5 V  
OUT  
0.4  
V
RO Output High (OUTRO)  
V
RH  
10 kW RESET to GND  
V
V
V
OUT  
V
OUT  
OUT  
0.4  
0.2  
Reset Reaction Time  
t
V into UV to RESET Low  
OUT  
16  
25  
38  
msec  
RR  
Input Voltage Reset Threshold  
RESET Delay with DT Selection  
V
IN_RT  
V
IN  
Decreasing, V  
> V  
RT  
3.8  
4.25  
V
OUT  
Delay Time Out of RESET  
8 ms version  
t
V
OUT  
into regulation to RO High  
msec  
dRx  
5.0  
10  
20  
40  
80  
8.0  
16  
11.5  
23  
16 ms version  
32 ms version  
32  
46  
64 ms version  
64  
128  
92  
184  
128 ms version  
6. Not production tested, guaranteed by design.  
7. Dropout at a given current level is defined as the voltage difference of V to V  
with V decreasing until the output drops by 100 mV.  
IN  
IN  
OUT  
http://onsemi.com  
4
 
NCV8660  
TYPICAL OPERATING CHARACTERISTICS  
5.0  
4.995  
4.99  
3.315  
3.310  
3.305  
3.300  
4.985  
4.98  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
4.975  
4.97  
4.965  
4.96  
3.265  
3.260  
I
= 0 mA, 150 mA  
out  
I
= 0 mA, 150 mA  
out  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Output Voltage vs. Temperature  
(OUT = 5 V)  
Figure 4. Output Voltage vs. Temperature  
(OUT = 3.3 V)  
5.0  
4.995  
4.99  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
25°C  
25°C  
40°C  
4.985  
4.98  
40°C  
4.975  
4.97  
4.965  
4.96  
150°C  
150°C  
3.260  
3.255  
4.955  
0
20  
40  
60  
80  
100 120  
140 160  
0
20  
40  
60  
80  
100 120  
140 160  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 5. Output Voltage vs. Output Current  
(OUT = 5 V)  
Figure 6. Output Voltage vs. Output Current  
(OUT = 3.3 V)  
6
5
4
3
2
1
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
40°C  
150°C 25°C  
40°C  
25°C  
150°C  
0
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 7. Output Voltage vs. Input Voltage  
Figure 8. Output Voltage vs. Input Voltage  
(RLOAD = 51 k, Iout = 100 mA, OUT = 5 V)  
(RLOAD = 51 k, Iout = 100 mA, OUT = 3.3 V)  
http://onsemi.com  
5
NCV8660  
TYPICAL OPERATING CHARACTERISTICS  
380  
370  
360  
350  
340  
330  
320  
310  
600  
500  
400  
300  
200  
100  
150°C  
25°C  
40°C  
V
= 13.2 V  
in  
0
40 20  
0
20  
40 60 80 100 120 140 160  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 9. Current Limit vs. Temperature  
Figure 10. Dropout Voltage vs. Output Current  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
150 mA  
125 mA  
100 mA  
1 mA  
75 mA  
50 mA  
25 mA  
10 mA  
5
0
I
= 0 mA  
14  
out  
40 20  
0
20  
40 60 80 100 120 140 160  
0
2
4
6
8
10  
12  
16  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 11. Dropout Voltage vs. Temperature  
Figure 12. Quiescent Current vs. Input Voltage  
35  
30  
25  
20  
15  
10  
5
29  
28.5  
28  
150°C  
25°C  
27.5  
27  
40°C  
26.5  
26  
25.5  
25  
24.5  
24  
0
23.5  
0
20  
40  
60  
80  
100 120  
140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 13. Quiescent Current vs. Temperature  
Figure 14. Quiescent Current vs. Output Current  
http://onsemi.com  
6
 
NCV8660  
TYPICAL OPERATING CHARACTERISTICS  
Figure 15. Load Transient  
(VIN = 13.2 V, OUT = 5 V)  
Figure 17. Load Transient  
(VIN = 13.2 V, OUT = 3.3 V)  
IN  
OUT  
C
= 2.2 mF  
out  
I
= 150 mA  
out  
Figure 16. Line Transient (OUT = 5 V)  
Figure 18. Line Transient (OUT = 3.3 V)  
http://onsemi.com  
7
NCV8660  
TYPICAL OPERATING CHARACTERISTICS  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
V
C
= 13.2 V  
V
C
= 13.2 V  
= 4.7 mF  
OUT  
IN  
IN  
10  
0
= 4.7 mF  
OUT  
I
= 100 mA  
I
= 150 mA  
OUT  
OUT  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
FREQUENCY  
FREQUENCY  
Figure 19. Ripple Rejection vs. Frequency  
Figure 20. Ripple Rejection vs. Frequency  
(VIN = 13.2 V, IOUT = 150 mA)  
(VIN = 13.2 V, IOUT = 100 mA)  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
Unstable Region  
Unstable Region  
25°C  
40°C  
125°C  
25°C  
40°C  
125°C  
Stable Region  
Stable Region  
1
1
V
C
= 13.2 V  
in  
0.1  
0.1  
V
C
= 13.2 V  
in  
= 2.2 mF  
LOAD  
= 2.2 mF  
LOAD  
0.01  
0.01  
0
20  
40  
60  
80  
100 120  
140 160  
0
20  
40  
60  
80  
100 120  
140 160  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 21. Output Capacitor ESR vs. Output  
Current (OUT = 5 V)  
Figure 22. Output Capacitor ESR vs. Output  
Current (OUT = 3.3 V)  
5.5  
5.0  
4.5  
Temperature Increasing  
Temperature Decreasing  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
25  
50  
75  
100  
125  
150  
175  
TEMPERATURE (°C)  
Figure 23. Thermal Shutdown vs. Temperature  
http://onsemi.com  
8
 
NCV8660  
DETAILED OPERATING DESCRIPTION  
Current Limit  
General  
The NCV8660 is a 5 V and 3.3 V linear regulator  
Current limit is provided on OUT to protect the IC. The  
minimum specification is 205 mA. Current limit is specified  
under two conditions (OUT = 96% x OUT nominal) and  
(OUT = 0 V). No foldback circuitry exists. Any measured  
differences can be attributed to change in die temperature.  
The part may be operated up to 205 mA provided thermal die  
temperature is considered and is kept below 150°C.  
Degradation of electrical parameters at this current is  
expected at these elevated levels. A reset (RO) will not occur  
with a load less than 205 mA.  
providing low dropout voltage for 150 mA at low quiescent  
current levels. Also featured in this part is a reset output with  
selectable delay times. Delay times are selectable via part  
selection and control through the Delay Time Select (DT)  
pin. No pullup resistor is needed on the reset output (RO).  
Pullup and pulldown capability are included. Only a small  
bypass capacitor on the input (IN) supply pin and output  
(OUT) voltage pin are required for normal operation.  
Thermal shutdown functionality protects the IC from  
damage caused from excessively high temperatures  
appearing on the IC.  
Reset Output  
A reset signal is provided on the Reset Output (RO) pin to  
provide feedback to the microprocessor of an out of  
regulation condition. This is in the form of a logic signal on  
RO. Output (OUT) voltage conditions below the RESET  
threshold cause RO to go low. The RO integrity is  
maintained down to OUT = 1.0 V.  
The Reset Output (RO) circuitry includes an active  
internal pullup to the output (OUT) as shown in Figure 24.  
No external pullup is neccessary.  
Output Voltage  
Output stability is determined by the capacitor selected  
from OUT to GND. The NCV8660 has been designed to  
work with low ESR (equivalent series resistance) ceramic  
capacitors. The device is extremely stable using virtually  
any capacitor 2.2 mF and above. Reference the Output  
Capacitor Stability graph in Figure 21.  
The output capacitor value will affect overshoot during  
powerup. A lower value capacitor will cause higher  
overshoot on the output. System evaluation should be  
performed with minimum loading for evaluation of  
overshoot.  
OUT  
Selection of process technology for the NCV8660 allows  
for low quiescent current independent of loading. Quiescent  
current will remain flat across the entire range of loads  
providing a low quiescent current condition in standby and  
under heavy loads. This is highly beneficial to systems  
requiring microprocessor interrupts during standby mode as  
duty cycle and load changes have no impact on the standby  
current. Reference Figure 14 for Quiescent Current vs  
Output Current.  
RO  
Reset  
Control  
Signal  
Figure 24. Reset Output Circuitry  
http://onsemi.com  
9
 
NCV8660  
IN  
t
Reset Delay Time  
t < Reset Reaction Time  
OUT Reset Threshold plus Hysteresis  
OUT  
RO  
OUT Reset Threshold  
t
t
Reset  
Threshold  
Plus  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Secondary Overload  
Spike  
at Output  
Reset Delay Time  
Reset Delay Time  
Hysteresis  
Thermal Shutdown  
minus  
Thermal Hysteresis  
Reset  
Reaction  
Time  
Figure 25. Reset Timing  
During powerup (or restoring OUT voltage from a reset  
event), the OUT voltage must be maintained above the Reset  
threshold for the Reset Delay time before RO goes high. The  
time for Reset Delay is determined by the choice of IC and  
the state of the DT pin.  
The Delay Time select (DT) pin is logic level controlled  
and provides Reset Delay time per the chart. Note the DT pin  
is sampled only when RO is low, and changes to the DT pin  
when RO is high will not effect the reset delay time.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold, a Thermal Shutdown event is detected OUT is  
turned off, and RO goes low. The IC will remain in this state  
until the die temperature moves below the shutdown  
threshold (175°C typical) minus the hysteresis factor (25°C  
typical). The output will then turn back on and RO will go  
high after the RESET Delay time.  
Reset Delay Time Select  
Selection of the NCV8660 device and the state of the DT  
pin determines the available Reset Delay times. The part is  
designed for use with DT tied to ground or OUT, but may be  
controlled by any logic signal which provides a threshold  
between 0.8 V and 2 V. The default condition for an open DT  
pin is the slower Reset time (DT = GND condition). Times  
are in pairs and are highlighted in the chart below. Consult  
factory for availability.  
DT=GND  
Reset Time  
8 ms  
DT=OUT  
Reset Time  
128 ms  
NCV86601  
NCV86602  
NCV86603  
NCV86604  
8 ms  
32 ms  
16 ms  
64 ms  
32 ms  
128 ms  
http://onsemi.com  
10  
NCV8660  
110  
100  
90  
2.0 180  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
170  
160  
150  
140  
130  
120  
110  
100  
Power curve with PCB 1 oz cu  
Power curve with PCB 1 oz cu  
Theta JA curve  
80  
70  
60  
Theta JA curve  
50  
90  
80  
40  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
500  
600  
700  
2
2
COPPER HEAT SPREADER AREA (mm )  
COPPER HEAT SPREADER AREA (mm )  
Figure 26. RqJA vs. PCB Copper Area (DPAK)  
Figure 28. RqJA vs. PCB Copper Area  
(SOIC8 Fused)  
100  
10  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
Single Pulse  
0.1  
0.01  
Psi TabA  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 27. Transient Thermal Response (DPAK)  
Cu Area = 645 mm2  
100  
10  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
Single Pulse  
0.1  
0.01  
Psi LA  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 29. Transient Thermal Response (SOIC8 Fused)  
Cu Area = 645 mm2  
http://onsemi.com  
11  
NCV8660  
ORDERING INFORMATION  
Reset Delay Time,  
Reset Delay Time,  
DT to OUT  
DT to GND  
Device  
Output Voltage  
Package  
Shipping  
NCV86601DT50RKG  
NCV86602DT50RKG  
NCV86603DT50RKG  
NCV86604DT50RKG  
NCV86601D50G  
8 ms  
128 ms  
32 ms  
8 ms  
DPAK  
2500 / Tape & Reel  
98 Units / Rail  
(PbFree)  
16 ms  
32 ms  
8 ms  
64 ms  
128 ms  
128 ms  
128 ms  
32 ms  
5.0 V  
NCV86601D50R2G  
NCV86602D50R2G  
NCV86603D50R2G  
NCV86604D50R2G  
NCV86601DT33RKG  
NCV86602DT33RKG  
NCV86603DT33RKG  
NCV86604DT33RKG  
NCV86601D33R2G  
NCV86602D33R2G  
NCV86603D33R2G  
NCV86604D33R2G  
8 ms  
SOIC8 FUSED  
(PbFree)  
8 ms  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
16 ms  
32 ms  
8 ms  
64 ms  
128 ms  
128 ms  
32 ms  
8 ms  
DPAK  
(PbFree)  
16 ms  
32 ms  
8 ms  
64 ms  
128 ms  
128 ms  
32 ms  
3.3 V  
8 ms  
SOIC8 FUSED  
(PbFree)  
16 ms  
32 ms  
64 ms  
128 ms  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
http://onsemi.com  
12  
NCV8660  
PACKAGE DIMENSIONS  
DPAK 5, CENTER LEAD CROP  
DT SUFFIX  
CASE 175AA01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
SEATING  
T−  
PLANE  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
R1  
Z
A
K
S
4.56 BSC  
1 2 3 4  
5
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
1.14 BSC  
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
F
R1 0.185 0.210  
J
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
L
H
D 5 PL  
M
G
0.13 (0.005)  
T
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
NCV8660  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8660/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY