NCV8774CDT33RKG [ONSEMI]

LDO Regulator - Ultra Low Iq 350 mA;
NCV8774CDT33RKG
型号: NCV8774CDT33RKG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator - Ultra Low Iq 350 mA

文件: 总13页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LDO Regulator - Ultra  
Low Iq  
350 mA  
NCV8774C  
The NCV8774C is a 350 mA LDO regulator. Its robustness allows  
NCV8774C to be used in severe automotive environments. Ultra low  
quiescent current as low as 17 mA typical makes it suitable for  
applications permanently connected to battery requiring ultra low  
quiescent current with or without load. This feature is especially critical  
when modules remain in active mode when ignition is off. The  
NCV8774C contains protection functions as current limit, thermal  
shutdown.  
www.onsemi.com  
MARKING  
DIAGRAM  
DPAK3  
DT SUFFIX  
CASE 369C  
8774CxG  
ALYWW  
Features  
Output Voltage Options: 3.3 V and 5 V  
Output Voltage Accuracy: 2%  
Output Current up to 350 mA  
Ultra Low Quiescent Current: typ 17 mA  
Wide Input Voltage Operation Range: up to 40 V  
x
A
= Voltage Option  
= Assembly Location  
WL, L = Wafer Lot  
Protection Features  
Current Limitation  
Thermal Shutdown  
EMC Compliant  
Y
WW  
G
= Year  
= Work Week  
= PbFree Package  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100 Grade 1  
Qualified and PPAP Capable  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
These are PbFree Devices  
Typical Applications (For safety applications refer to Figure 29)  
Body Control Module  
Instruments and Clusters  
Occupant Protection and Comfort  
Powertrain  
V
BAT  
V
out  
V
out  
V
in  
C
0.1 mF  
C
out  
1 mF  
in  
NCV8774C  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
May, 2020 Rev. 2  
NCV8774C/D  
NCV8774C  
V
in  
V
out  
Driver  
With  
Current  
Limit  
+
Thermal  
Vref  
Shutdown  
GND  
Figure 2. Simplified Block Diagram  
PIN CONNECTIONS  
PIN 1. V  
in  
Tab, 2. GND  
3. V  
out  
1
DPAK3  
Figure 3. Pin Connections  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2, TAB  
3
V
Positive Power Supply Input. Connect 0.1 mF capacitor to ground.  
Power Supply Ground.  
in  
GND  
V
out  
Regulated Output Voltage. Connect 1 mF capacitor with ESR < 5 W to ground.  
www.onsemi.com  
2
NCV8774C  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Min  
0.3  
Max  
40  
Unit  
V
Input Voltage (Note 1)  
DC  
Load Dump Suppressed  
V
in  
*
Input Voltage (Note 2)  
Output Voltage  
U
45  
V
S
V
out  
0.3  
40  
55  
7
V
Junction Temperature  
Storage Temperature  
T
J
150  
150  
°C  
°C  
T
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. Load Dump Test B (with centralized load dump suppression) according to ISO167502 standard. Guaranteed by design. Not tested in  
production. Passed Class A according to ISO167501.  
ESD CAPABILITY (Note 3)  
Rating  
ESD Capability, Human Body Model  
ESD Capability, Charged Device Model  
Symbol  
Min  
4  
Max  
4
Unit  
kV  
ESD  
ESD  
HBM  
CDM  
1  
1
kV  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (JS0012017)  
Field Induced Charge Device Model ESD characterization is not performed on plastic molded packages with body sizes smaller than  
2 x 2 mm due to the inability of a small package body to acquire and retain enough charge to meet the minimum CDM discharge current  
waveform characteristic defined in JEDEC JS0022018  
LEAD SOLDERING TEMPERATURE AND MSL (Note 4)  
Rating  
Symbol  
Min  
Max  
Unit  
Moisture Sensitivity Level  
DPAK3  
MSL  
1
4. For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, DPAK3  
°C/W  
R
Y
49  
6.6  
28  
Thermal Resistance, JunctiontoAir (Note 5)  
q
JA  
JC  
JA  
R
Thermal Reference, JunctiontoCase (Note 5)  
Thermal Resistance, JunctiontoAir (Note 6)  
Thermal Reference, JunctiontoCase (Note 6)  
R
R
q
6.6  
Y
JC  
2
2
5. Values based on 1s0p board with copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate. Single layer according  
to JEDEC51.3.  
2
2
6. Values based on 2s2p board with copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate. 4 layers according  
to JEDEC51.7.  
RECOMMENDED OPERATING RANGE  
Rating  
Symbol  
Min  
4.5  
Max  
40  
Unit  
V
Input Voltage (Note 7)  
Junction Temperature  
V
in  
T
J
40  
150  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
7. Minimum V = 4.5 V or (V + V ), whichever is higher.  
in  
out  
DO  
www.onsemi.com  
3
 
NCV8774C  
ELECTRICAL CHARACTERISTICS V = 13.5 V, C = 0.1 mF, C = 1 mF, Min and Max values are valid for temperature range  
in  
in  
out  
40°C T +150°C unless noted otherwise and are guaranteed by test, design or statistical correlation. Typical values are referenced to  
J
T = 25°C. (Note 8)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
REGULATOR OUTPUT  
Output Voltage (Accuracy %)  
V
out  
V
3.3 V V = 4.5 V to 40 V, I = 0.1 mA to 200 mA  
3.234  
3.234  
4.9  
3.3  
3.3  
5.0  
5.0  
3.366  
3.366  
5.1  
in  
in  
out  
V
= 4.5 V to 16 V, I = 0.1 mA to 350 mA  
out  
5.0 V V = 5.45 V to 40 V, I = 0.1 mA to 200 mA  
in  
in  
out  
out  
V
= 5.7 V to 16 V, I = 0.1 mA to 350 mA  
4.9  
5.1  
Output Voltage (Accuracy %)  
Line Regulation  
V
V
out  
3.3 V V = 4.5 V to 40 V, I = 0 mA  
3.234  
4.9  
3.3  
5.0  
3.366  
5.1  
in  
out  
5.0 V V = 5.45 V to 40 V, I = 0 mA  
in  
out  
Reg  
20  
0
20  
mV  
line  
3.3 V V = 4.5 V to 28 V, I = 5 mA  
in  
out  
5.0 V V = 6 V to 28 V, I = 5 mA  
in  
out  
Load Regulation  
I
= 0.1 mA to 350 mA  
Reg  
35  
0
35  
mV  
mV  
out  
load  
Dropout Voltage (Note 9)  
V
DO  
5.0 V I = 200 mA  
200  
350  
350  
600  
out  
out  
I
= 350 mA  
QUIESCENT CURRENT  
Quiescent Current (I = I I  
)
I
q
mA  
q
in  
out  
I
I
I
I
= 0 mA, T = 25°C  
17  
19  
21  
23  
23  
25  
out  
out  
out  
out  
J
= 0 mA, T 125°C  
J
= 0.1 mA, T = 25°C  
J
= 0.1 mA, T 125°C  
J
CURRENT LIMIT PROTECTION  
Current Limit  
V
= 0.96 x V  
= 0 V  
I
400  
400  
1100  
1100  
mA  
mA  
out  
out_nom  
LIM  
Short Circuit Current Limit  
PSRR  
V
out  
I
SC  
Power Supply Ripple Rejection (Note 10) f = 100 Hz, 0.5 V  
PSRR  
80  
dB  
pp  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
(Note 10)  
T
T
150  
175  
10  
195  
°C  
°C  
SD  
Thermal Shutdown Hysteresis  
(Note 10)  
SH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T [ T . Low duty cycle  
A
J
pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
9. Measured when output voltage falls 100 mV below the regulated voltage at V = 13.5 V.  
in  
10.Values based on design and/or characterization.  
www.onsemi.com  
4
 
NCV8774C  
TYPICAL CHARACTERISTICS  
800  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
V
I
= 13.5 V  
= 100 mA  
in  
I
= 100 mA  
V
out  
= 3.3 V  
out  
700  
600  
out  
T = 25°C  
J
500  
400  
300  
200  
V
out  
= 5 V  
100  
0
40 20  
0
20 40 60 80 100 120 140 160  
0 2 4 6 8 10 1214 16 1820 2224 2628 30 32 34 363840  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
in  
Figure 4. Quiescent Current vs. Temperature  
Figure 5. Quiescent Current vs. Input Voltage  
1200  
1000  
800  
600  
400  
200  
0
T = 40°C  
J
T = 25°C  
J
T = 150°C  
J
V
in  
= 13.5 V  
300 350  
0
50  
100  
150  
200  
250  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 6. Quiescent Current vs. Output Current  
5.10  
5.08  
5.05  
5.03  
5.00  
4.98  
4.95  
4.93  
4.90  
3.38  
V
= 13.5 V  
= 100 mA  
V
= 13.5 V  
= 100 mA  
in  
in  
3.36  
3.34  
3.32  
3.3  
I
I
out  
out  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
3.28  
3.26  
3.24  
3.22  
40 20  
0
20 40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 7. Output Voltage vs. Temperature  
Figure 8. Output Voltage vs. Temperature  
www.onsemi.com  
5
 
NCV8774C  
TYPICAL CHARACTERISTICS  
4.0  
6
5
4
3
2
1
0
I
V
= 100 mA  
I
V
= 100 mA  
out  
out  
= 5.0 V  
= 3.3 V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
out(nom)  
out(nom)  
T = 150°C  
J
T = 150°C  
J
T = 25°C  
J
T = 25°C  
J
T = 40°C  
J
T = 40°C  
J
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 9. Output Voltage vs. Input Voltage  
Figure 10. Output Voltage vs. Input Voltage  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
V
= 5.0 V  
V
= 5.0 V  
out(nom)  
out(nom)  
T = 150°C  
J
I
= 350 mA  
out  
T = 25°C  
J
T = 40°C  
J
I
= 200 mA  
out  
0
50  
100  
150  
200  
250  
300  
350  
0
20  
40  
60  
80  
100  
120  
140 160  
I
, OUTPUT CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
J
out  
Figure 12. Dropout vs. Temperature  
Figure 11. Dropout vs. Output Current  
www.onsemi.com  
6
NCV8774C  
TYPICAL CHARACTERISTICS  
T = 25°C  
out(nom)  
T = 25°C  
J
out(nom)  
J
V
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
= 5.0 V  
V
= 3.3 V  
I
@ V = 0 V  
out  
SC  
I
@ V = 0 V  
out  
SC  
I
@ V = 3.168 V  
out  
LIM  
I
@ V = 4.8 V  
out  
LIM  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 13. Output Current Limit vs. Input  
Voltage  
Figure 14. Output Current Limit vs. Input  
Voltage  
1100  
1000  
900  
800  
700  
600  
500  
400  
1100  
1000  
900  
800  
700  
600  
500  
400  
V
= 13.5 V  
V = 13.5 V  
in  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
I
@ V = 0 V  
out  
SC  
I
@ V = 0 V  
SC  
out  
I
@ V = 3.168 V  
out  
LIM  
I
@ V = 4.8 V  
LIM  
out  
40 20  
0
20 40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Output Current Limit vs. Temperature  
Figure 16. Output Current Limit vs. Temperature  
100  
10  
100  
10  
Unstable Region  
Stable Region  
Unstable Region  
Stable Region  
1
1
0.1  
0.01  
0.1  
0.01  
V
= 13.5 V  
V = 13.5 V  
in  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
C
= 1.0 mF 100 mF  
C
= 1.0 mF 100 mF  
out  
out  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
I , OUTPUT CURRENT (mA)  
out  
150  
200  
250  
300  
350  
I
, OUTPUT CURRENT (mA)  
out  
Figure 17. Cout ESR Stability Region vs. Output  
Current  
Figure 18. Cout ESR Stability Region vs. Output  
Current  
www.onsemi.com  
7
 
NCV8774C  
TYPICAL CHARACTERISTICS  
T = 25°C  
out  
T = 25°C  
J
out  
J
26 V  
26 V  
I
= 1 mA  
I
= 1 mA  
C
= 10 mF  
C
= 10 mF  
out  
out  
t
= 1 ms (V )  
t = 1 ms (V )  
rise/fall in  
rise/fall  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
6 V  
6 V  
3.310 V  
5.013 V  
4.989 V  
3.286 V  
TIME (1 ms/div)  
TIME (1 ms/div)  
Figure 19. Line Transients  
Figure 20. Line Transients  
T = 25°C  
in  
T = 25°C  
J
in  
J
V
100 mA  
= 13.5 V  
V = 13.5 V  
100 mA  
C
= 10 mF  
C
= 10 mF  
out  
out  
t
= 1 ms (I  
)
t
= 1 ms (I  
)
rise/fall  
out  
rise/fall  
out  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
0.1 mA  
0.1 mA  
5.07 V  
3.37 V  
3.21 V  
4.87 V  
TIME (200 ms/div)  
TIME (200 ms/div)  
Figure 21. Load Transients  
Figure 22. Load Transients  
13.5 V  
13.5 V  
0 V  
0 V  
T = 25°C  
out  
T = 25°C  
J
out  
J
I
= 1 mA  
I
= 1 mA  
C
= 10 mF  
C
= 10 mF  
out  
out  
t
= 100 ms (V )  
t = 100 ms (V )  
rise/fall in  
rise/fall  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
TIME (100 ms/div)  
TIME (100 ms/div)  
Figure 23. Power Up/Down Response  
Figure 24. Power Up/Down Response  
www.onsemi.com  
8
NCV8774C  
TYPICAL CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
120  
100  
I
= 100 mA  
I
= 100 mA  
out  
out  
80  
60  
40  
20  
0
I
= 100 mA  
I
= 100 mA  
out  
out  
V
C
= 13.5 V $ 0.5 V  
V = 13.5 V $ 0.5 V  
in  
in  
pp  
pp  
= 1 mF  
C
= 1 mF  
out  
out  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
10  
100  
1000  
10000  
100000 1000000  
10  
100  
1000  
10000  
100000 1000000  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 25. PSRR vs. Frequency  
Figure 26. PSRR vs. Frequency  
6000  
5000  
4000  
3000  
2000  
1000  
T = 25°C  
in  
J
V
= 13.5 V  
C
= 1 mF  
out  
I
= 100 mA  
out  
0
10  
100  
1000  
f, FREQUENCY (Hz)  
10000  
100000  
Figure 27. Noise vs. Frequency  
www.onsemi.com  
9
NCV8774C  
DEFINITIONS  
General  
Current Limit and Short Circuit Current Limit  
All measurements are performed using short pulse low  
duty cycle techniques to maintain junction temperature as  
close as possible to ambient temperature.  
Current Limit is value of output current by which output  
voltage drops below 96% of its nominal value. Short Circuit  
Current Limit is output current value measured with output  
of the regulator shorted to ground.  
Output voltage  
The output voltage parameter is defined for specific  
temperature, input voltage and output current values or  
specified over Line, Load and Temperature ranges.  
PSRR  
Power Supply Rejection Ratio is defined as ratio of output  
voltage and input voltage ripple. It is measured in decibels  
(dB).  
Line Regulation  
The change in output voltage for a change in input voltage  
measured for specific output current over operating ambient  
temperature range.  
Line Transient Response  
Typical output voltage overshoot and undershoot  
response when the input voltage is excited with a given  
slope.  
Load Regulation  
The change in output voltage for a change in output  
current measured for specific input voltage over operating  
ambient temperature range.  
Load Transient Response  
Typical output voltage overshoot and undershoot  
response when the output current is excited with a given  
slope between lowload and highload conditions.  
Dropout Voltage  
The input to output differential at which the regulator  
output no longer maintains regulation against further  
reductions in input voltage. It is measured when the output  
drops 100 mV below its nominal value. The junction  
temperature, load current, and minimum input supply  
requirements affect the dropout level.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 175°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Quiescent and Disable Currents  
Maximum Package Power Dissipation  
Quiescent Current (I ) is the difference between the input  
current (measured through the LDO input pin) and the  
output load current.  
The power dissipation level is maximum allowed power  
dissipation for particular package or power dissipation at  
which the junction temperature reaches its maximum  
operating value, whichever is lower.  
q
www.onsemi.com  
10  
NCV8774C  
APPLICATIONS INFORMATION  
The NCV8774C regulator is selfprotected with internal  
thermal shutdown and internal current limit. Typical  
characteristics are shown in Figures 4 to 27.  
can dissipate up to 2.53 W for 1s0p PCB board and 4.49 W  
for 2s2p PCB board when the ambient temperature (T ) is  
A
25°C. See Figure 28 for R  
versus PCB area. The power  
qJA  
dissipated by the NCV8774C can be calculated from the  
following equations:  
Input Decoupling (Cin)  
A ceramic or tantalum 0.1 mF capacitor is recommended  
and should be connected close to the NCV8774C package.  
Higher capacitance and lower ESR will improve the overall  
line and load transient response.  
If extremely fast input voltage transients are expected then  
appropriate input filter must be used in order to decrease  
rising and/or falling edges below 4 V/ms for proper  
operation. The filter can be composed of several capacitors  
in parallel.  
ǒ
Ǔ
ǒ
Ǔ
in * Vout  
(eq. 2)  
(eq. 3)  
P
D + Vin Iq@Iout ) Iout  
V
or  
ǒ
Ǔ
PD(max) ) Vout   Iout  
Vin(max)  
+
Iout ) Iq  
NOTE: Items containing I can be neglected if I >> I .  
q
out  
q
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Output Decoupling (Cout  
)
The NCV8774C is a stable component and does not  
require a minimum Equivalent Series Resistance (ESR) for  
the output capacitor. Stability region of ESR vs Output  
Current is shown in Figures 17 to 18. The minimum output  
decoupling value is 1 mF and can be augmented to fulfill  
stringent load transient requirements. The regulator works  
with ceramic chip capacitors as well as tantalum devices.  
Larger values improve noise rejection and load regulation  
transient response.  
1 oz, Single Layer  
2 oz, Single Layer  
1 oz, 4 Layer  
2 oz, 4 Layer  
Thermal Considerations  
0
200  
400  
600  
800  
2
1000  
As power in the NCV8774C increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
affect the rate of junction temperature rise for the part. When  
the NCV8774C has good thermal conductivity through the  
PCB, the junction temperature will be relatively low with  
high power applications. The maximum dissipation the  
NCV8774C can handle is given by:  
COPPER HEAT SPREADER (mm )  
Figure 28. Thermal Resistance vs. PCB Copper Area  
Hints  
V
and GND printed circuit board traces should be as  
in  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external components, especially the  
output capacitor, as close as possible to the NCV8774C and  
make traces as short as possible. The NCV8774C is not  
developed in compliance with ISO26262 standard. If  
application is safety critical then the below application  
example diagram shown in Figure 29 can be used.  
ƪT  
ƫ
J(max) * TA  
(eq. 1)  
PD max  
+
(
)
RqJA  
Since T is not recommended to exceed 150°C, then the  
J
2
NCV8774C soldered on 645 mm , 1 oz copper area, FR4  
V
BAT  
V
out  
V
in  
V
DD  
V
Cin  
0.1 μF  
CC  
Cout  
1 μF  
NCV8774C  
GND  
Voltage  
Microprocessor  
Supervisor  
(e.g. NCV30X, NCV809)  
RESET  
I/O  
GND  
Figure 29. NCV8774C Application Diagram  
www.onsemi.com  
11  
 
NCV8774C  
ORDERING INFORMATION  
Device  
Output Voltage  
Marking  
Package  
Shipping  
NCV8774CDT50RKG  
5.0 V  
8774C5G  
DPAK3  
(PbFree)  
2500 /  
Tape & Reel  
NCV8774CDT33RKG  
3.3 V  
8774C3G  
DPAK3  
(PbFree)  
2500 /  
Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
12  
NCV8774C  
PACKAGE DIMENSIONS  
DPAK (SINGLE GAUGE)  
CASE 369C  
NOTES:  
ISSUE F  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-  
MENSIONS b3, L3 and Z.  
A
D
E
C
A
b3  
B
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.006 INCHES PER SIDE.  
5. DIMENSIONS D AND E ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY.  
6. DATUMS A AND B ARE DETERMINED AT DATUM  
PLANE H.  
c2  
4
2
L3  
L4  
Z
DETAIL A  
H
1
3
7. OPTIONAL MOLD FEATURE.  
INCHES  
DIM MIN MAX  
0.086 0.094  
A1 0.000 0.005  
0.025 0.035  
b2 0.028 0.045  
b3 0.180 0.215  
MILLIMETERS  
NOTE 7  
MIN  
2.18  
0.00  
0.63  
0.72  
4.57  
0.46  
0.46  
5.97  
6.35  
MAX  
2.38  
0.13  
0.89  
1.14  
5.46  
0.61  
0.61  
6.22  
6.73  
c
b2  
e
BOTTOM VIEW  
A
SIDE VIEW  
b
b
M
0.005 (0.13)  
C
TOP VIEW  
c
0.018 0.024  
c2 0.018 0.024  
Z
Z
D
E
e
0.235 0.245  
0.250 0.265  
0.090 BSC  
H
2.29 BSC  
9.40 10.41  
1.40 1.78  
2.90 REF  
0.51 BSC  
0.89 1.27  
GAUGE  
PLANE  
SEATING  
PLANE  
H
L
L1  
L2  
0.370 0.410  
0.055 0.070  
0.114 REF  
L2  
C
0.020 BSC  
L3 0.035 0.050  
L
BOTTOM VIEW  
A1  
L4  
Z
−−− 0.040  
0.155 −−−  
−−−  
3.93  
1.01  
−−−  
L1  
ALTERNATE  
CONSTRUCTIONS  
DETAIL A  
ROTATED 905 CW  
SOLDERING FOOTPRINT*  
6.20  
0.244  
3.00  
0.118  
2.58  
0.102  
5.80  
0.228  
1.60  
0.063  
6.17  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCV8774CDT50RKG

LDO Regulator - Ultra Low Iq 350 mA
ONSEMI

NCV8774DT33RKG

Ultra Low Iq 350 mA LDO Regulator
ONSEMI

NCV8774DT50RKG

Ultra Low Iq 350 mA LDO Regulator
ONSEMI

NCV8775C

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8775CDS33R4G

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8775CDS50R4G

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8775CDT33RKG

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8775CDT50RKG

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8800

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800/D

Synchronous Buck Regulator with 1.0 Amp Switch
ETC

NCV8800DW2HR2

IC 2.5 A SWITCHING REGULATOR, 230 kHz SWITCHING FREQ-MAX, PDSO16, SO-16, Switching Regulator or Controller
ONSEMI

NCV8800HDW26

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI